CHAPER III
COMPUTATION METHOD
OF FACTORIZATION OF RATIONAL INTEGERSIN ()( [d)

This chapter concern with factorization of elements
of Z in to irreducible factors in all pqssible ways.

We shall consider the following theorem,

v @

Theorem 3.1. Let a,ﬂqbelong to Id. Then

aId = bk if and only if an~vDbo

a

Proof. Let a,b be any elements of Id. If a or b is
a zero element in Id’ then.the theorem is true. So we
assume that a and b are nonzero elements in Id°

First, we suppose that‘ald = bId° Since 1é}Id, it
follows that a ¢bI, and b€al . Thea a = bc, and b = ac,

for some cl,czfgld, Thus, a X ac Cye Therefore,clc2 = Lo

So ey is a unit ot Id° Hence, ansbe

To prove the converse, wWe suppose that. a.nsbs. "Then

a = bu for some a unit u of Id. Let;x:gald. So X = ac,

for some cléId. Then x = buclo Since uclé Id’ it follows

that xégbId Therefore, aIdQ;bId. By the same argrument
we have bIdggaId. Hence, aId 2 bIdo #
Using the fact that a is a unit of Id if and only

if as~1l. We have a corollary.

Corollary 3.2. Let a be any element of Id. Then

aId = 'Id if and only if a is a unit of Id.
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We base our method on the following remark, which

follows immediatly from theorem.

Remark 3.3. Let 8,8 985900098, belong to Id' If
aId = (alld)(azld)....(anId),.......(I)

then a = uva ,a,....a_, where u is a unit of I_.
12 n d.

We make use of this result as follows,

Let a be a nonzero nonunit of Id. To find all the
factorizations of a into irreducible factors, it suffices
to find all factorizations of aId into * the form (1) in
which a; is irreducible in Id.

We ca; obtain all factorizations(I) with each a;
being irreducible by using thé’féct thgt each integral

module, which is not I can be factored into - prime

a?
modules in a unique way. So we can write

aIdv= Pl....Pr, el TSRS | & & &
where each Pi is prime,

Note that where each factor aiId on the: right
hand side of (I).is factored into prime modules, we must
get the féctorization (I1). Hence each aiId is a product
of a combination_of P;s on the right hand side of (II).
Therefore any factorization of aId of the form (I) can be
obtained by grouping the P;? in the factorigation (I1) an
a suitable way. So we can find all factorizationsof the
form (I) by inspecting all possible groupings of the P;S
in (I1)s

The following results will be useful in deciding  whether

module is of the-form aiI where a isirreducible in I..

d il d
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Theorém 3.4, .Let Ml,MQ,...,MdPl,PQ,...,Pn be ihtegral

modules such that
(i) each M, # Id,

(ii) each Pi is prime

If P1'°°Pn = Ml"’mn’ then there exists a permutation i

1.

12""’in OF 1.:9,.40,0 stch. that Pj = Mi- for. 3 = 1y 3o
3

Prgof. Suppose that Pl"°Pn = le"Mn' for each

1¢ign, M, # I,. By Theorem 2.4.11.

i i
My o= Mi..o.MD
X,

where M;,...,Mi are prime modules. So
9

Mi..&.l.vh‘l; -

31 n

P o..P = M GQOM

i 1
1. n 1 r

By Theorem 2,4.11. we have n = r1¥~--+rn, which implies
that each ri= 1. Therefore, each Mi is; a prime module,
Then M ...Mn is a prime factorization of P

1 1

there exists a permutation il""in ofc1tyes.syn such  that

.s+P_. Hence,
a E

Pj = Mi, fOI‘ j = .1,2,.0,n°

. ~ #
Theorem 3.5. Let a ¢ (Jd). If al  can be written in the

form
aId = Ml-oooMn,

_ : M ;
where Ml,...,Mn are prime modules such that iGIMi is not

principal for any nonempty proper subset I of {1,2,.°,n}‘

‘Then a is irreducible in Id

P

Proof. Assume that aId = M ....Mn, where M1

1

are prime modules such that igIMi is not principal for any
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nonempty proper subset I of {1,2,...,n}. Hence aId is a
principal module, so that a # O. Since Ml,..,Mn are

integral modules, then al, is an integral module. i.e.

a
aIdC_;Id. So aéId. Since N(aId) = N(ML)....N(Mn) - i 1

hence by Theorem 2.5.6. al, # Id. Therefore, by Corollary
3.2. a is a nonunit of Id.

Suppose that a = bc, where b,c are nonunits of Id‘

So bId# Id and cId # I,. Then by Theorem 2.4.11, we get
that

bId =P1.-..Pr
and

cl

|

d - Ql.‘l.Qs,
where Pl""’Pr’Ql"""Qs are prime modules, Since
al, = (bId)(cId), so

Mico-omn = Ploa’PrQlooono

By Theorem 2.4.11. we see that the product
7
plucnopr = ieIMi
for some nonempty proper subset I of {1,2,..,n}. This is a

contradiction. Therefore, a is irreducible in Id.

#

When we take n = 1 in Theorem 3.5. we get the

following corollary.

Corollary 3.6. If aId is a prime module, then a is

irreducible in Id'
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Theorem 3,7. Let M be any integral module and aé&Id.

1f M(aId) = bId for some nonzero element b in Id, then
M is principal. Furthermore, if M # 1, and a is nonunit,

then b is reducible in Id.

Proof, Let M be any integral module and a(;Id
such that M(aId) = bl,, for some nonzero elemeat b in I«
Here a .cannot be zero, otherwise we would have b = 0. So

M(aId)(a_ll - (bxd)(a?41d). Therefore, M = (ba ")I,

a)
i.e. M is principal.

If we further assume that. M # Id and a is nonunit,
then N{(M) # 1 and N(aId) # 1. So N(bId)=N(M(aId))% Lo
Therefore, bId # Iyo By Corollary 3.2. b _i;sr'nonunit° Since
M = (bal)I,, it follows Erom Corollary 3.2. that B

; . X : - : -1 5
is nonunit in Id. Since a is nonunit, then b = (ba ")a is

reducible. 3g

Theorem 3.8, Let M = <a,b+cﬁﬁ> be an integral module.

If M = «I,, then \N«x)‘ - iac\ and ac\N(b+cGﬁ).

d'

Proof, Let M = <é,b+c0% be an integral module
such that M = &I ,. Then by Remark 2.3.14, N(M) = N(XIy)
=‘N(a)\, By Theorem 2.5.4, N(M) = \ac\,ﬁ Therefore,
IN(D()‘: \ac\. Since b+c£%éM, SO b+cﬁé =5(X for some “6C-Id.
So N(b+cc%) = N(KB) = N()N(4). Since b+cl), £ and eIy,
thgn N(b+c@%),N(d) and N(¥) are rational integers. SO

N(&)‘N(b-ré&))° Therefore, ac|N(b+cl,).
d d #
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Theorem 3,9, Let M be any integral module in GKJE) of
norm n. Then M is not principal in the following cases:
(i) d=1 (mod4) and \xg—dyg\ = 4n is not solvable
in rational integers.,
. i 2 2 :
(ii) d=2,3 (mod4) and |x -dy = 18 not

solvable in rational integers.

Proof. Let M be any rjintegral‘quule in . @(j?}_) of
ﬁorm n., We shall show by contfapositive. Suppose thgt M is:
principal. Then M =<x1d for someoieId. Therefore,o(:awbﬁﬁ,
for some a,b& 7. Since N(M) = n and

N(M) = N((a+boa)1d)
-| ngasoep|

2 & .2 / :
=\a +ab&%+ab0%+va%&%\,

SO
/ ;
\a2+abﬁa+abog+b20é&é\ = s PPN B %
5. .
For the case d=1 (mod4), we have (y;= (1+;r‘).

Therefore, the left hand side of (I) is

/ -d, 2
la2+abeh+abog+b20%0%\ = \a2+ab+(14 )b \.

So that (I) becomes a2+ab+(i£g)b2\ = n. Therefore, there

(o

exist a,b{ 7 such that \a2+ab+(12d)b2\ = n, Let x = 2a+b
and y = b. Then clearly,x,ye Z and

l4a2+4ab+b2-db2‘

1;d)b2l

\Xg—dy2

il

4\a2+ab+(
= 4n

Hence, there exis.t x,ye;zz such that \x2—dy2\ = 4n.
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For the case d=2,3 (mod4), we have(g)d fE: So
, 2 7 42 Ge
that \a +abah+ab0%+b 00 \ \a -db \. Let x = a and y = b.

Clearlf, X,y € Z and \xg-dy \ =
#

Lemma 3.,10. Let aé}Id and M be any principal integral

module such that M#Id. If a is irreducible and M\ald,

then M=aId

Proof, Assume that a is irreducible and M‘aId

Since M isaprinc%pal integral module such that M#Id, then

M:bId for some nonzero nonunit b in Id' So bId

a%i=(b1d)Ml for some integral module Ml' By Theorem 3.7,

aId. Thep

Ml is principal. Then MI_CId’ for some nonzero element c

in Id. Therefore, a1d=(b1d)(CId)f By Remark 3.3, a=ubc,

where u is a unit of Id' Since a is irreducible and b 4is
nonunit, we can conclude that ¢ is a unit. By Corollary

362, cId= Therefore, aId=M'

= ' #

be any irreducible elements in

Lemma 3.11. Let al,...,at

Id and P1""’Prbe any prime modules such that

(alld)oivo(atld) =P1.ooopro

If P1 is principal, then there exiSts 11 such. that ai11d=P1¢

Proof. Let Bysecerd be any irreducible elements

t

of Id.

Let Pl""’P be prime modules such that
r

(alId)..v..(a.tId) = ?1'.”}?1‘7 oof.(I)

Suppose that, Pl'is principal, From (I), using Corollary
2.4.10, we get Pl a; ,for some 1$¢l$t. By'Lemma 310,
a. I = Po #



Theorem 3.12. Let CPERRERE be any irreducible elements

t

of I.. Let P

d 1,...,Pn be prime modules such that

(alld).!ooo(atld) = Ploaocpro
if Pl,...,PS,s$r,s$t, are principal, then”theye_exist

il,tn,is SuCh that aiId = Pj (j=1,2’000,8)0

Proof., Since P1 is principal, hence by Lemma 3.11,

there is il such that

Assume that we have found il,...,ik,k<s such that

ai.Id = Pj 3 (j=1,2,ooo,k)
J
Then we have
ta. I, /i P
.,ﬂ’ al d - 100- k k+lo.a rc
J=1
k t k ;
( 47 a; Id)( 77611@’ (fﬂ'Pi)Pk+1’°'pr°
=1 3 =1
_____ 1#11,.,ik
2 .k ‘K
Since .7Tai.1d S .77Pj’
j=1 3 j=1
hence, we have
t 2 L
T
lI = e s o -
joi Bty Fret o r
ifd s endy
Since Pk+1 is. principal, hence by Lemma 3.11. there exists
i1 # 11,...,1ksuch that .
a I = P °
lk+1 9 il
' Hence we can choose il,..,iS such that a; Id = Pj,j=1,..,s

J
#
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Theorem 3.13. Let aé}Id. T aId can be factored into
aId = (alld)(agld)....(anld),

where aild"""anld are prime modules, then

a. = ual-.-.an,
where u is a unit and a; is. irreducible., When this is the
case, the factorization of a into irreducible elements is
unique.
Proof. Let aEId such that aId;(aild)....(anId),
where alld,...,anld are prime modules, By Corollary 3.6,
al,...,an are.lrreduCLb;e in Id. By Remark 3.3, afpal...an,
where u is a unit of Id’
Let bl,...,bm be any irreducible elements of Id
e s B z Ay 3
such that a—bl....bm, So aId = \blld;....(bmld). Therefore,
(blld)too-(bmld)'= (aiId)-o.n(anId) g.fc(l)
For each 1¢k¢n, 1&l¢{m, a, and b, are irreducible. Then a,

k 1

and b, are not associate to 1. By éorollary 3.2, akId # Id

1
and blId # Id.‘By corollary 2.5.6, we have

N(akId) # 1 and N(blId) # 1 RACRPIE RIS (o 45 & |
Suppose that, m{n. Then by Theorem 3.12, there: exist

i,yeeeyi such that b, I, =2a.1,,(j=1,2,..,m). So we cancel
8 i J G o

d

1

J
bide = ade, for j=1,2,..,m in (I). We get
Id = (am+lid)....(an1d).
So ; )

It contradictsto (II).
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Suppose that, md>n., Then by Theorem 3.12, there exist

j =1’2)n¢¢,no SO we .

Ly bd vy such that bide = ade,
cancel bi,Id = ade for 4= 1;8,is 0. A8 {1}, We get
j .
(bn+lId).oon(med) = Id.
So .
1t ‘.. conmtradictsto (I1I).

Thus, we can conclude that m = n. By Theorem 3.12,

there exist iiseeerdy such that bi.Id = ade for j = 1,.,n.

.
ok

By Theorem 3.1, biijaj EOr TN 2 5 « oy Ne #

Theorem 3.14. In any quadratic fields d;(fg). If is a

e

rational prime, then the factorization of p into

irreducible elements of 1. is unique.

d

Proof. Lef q;(fE) be any quadratic field and p be
rational prime.

Case I. Assume that p is inert, Then pId is a prime
module; By Corollary 3.6, p is an irreducible element of Id.

Case II. Assume tﬁat p is not inert. Then p is
ramified or decompqsed. So pId=PPC where P and P,are prime
modules., If P is principal, then by Theorem 3,7, P’is
principal. Hence, by Theorem 3.13, the factorization of p
into irreducible elements of 1 is unique. If P is not
principal, then by Theorem 3.7, P,is not principal. By
Theorem 3.5, p is irreducible.

Hence, the factorization of p into irreducible

elements of Id is unique,

#
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Example 3.15. We shall find all factorizations of 55 in

Q(/-6). Since -6=2 (mod 4), it follows from Remark 2.1.9 .
<1,,/-6> and A, = -24,

(8T J(11X.

Il

and Remark 2.2.8 that I—6

Observe that 551

-6 6)'

Using Theorem 2.4.17(ii) and Definition 2.4.15, it can be
verified that 5 is decomposed and we have

v
(1) 51 _; = PR

where P1 = <%,2+)~6> and Pi = <%,3+/—6>> are distinct
/

prime modules such that N(P,) = N(P;) = 5 (See Example

2.4.18,) By the same argument we have

4
(2) . T¥ /B PP

. ’
where P2 = <11,4+,/—6> and P2 = <1;L.,7+/-6> are distinct
b, e

prime modules such that N(Pé) = N(Pg) = 11. Therefore,

/ Ve
(3) 55 SR PP, .

v /
Now our problem is to group the productsof Pl’Pl’pQ’p2 to

form principal modules generated by irreducible elements,

4
We claim that Pl,P/ P.,P, are not principal., Observe that

yiadie

each of the equations

1
(3]

x2+6y2‘ =

and

x2+6y2 = 11

does not have any solution in 7 . Hence, by Theorem 3.9,

any integral modules of norm 5 or 11 is not principal.
& " &
)t 1’P2’P2

Therefore, there are 3 cases to be considered:

Hence P, ,P are not principal.

(11) 55I_ = (P P,) (P P))
(TIL) 551_6 ] (PlPQ)(P_lPQ)‘
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Clearly, case (I) gives

z

(1) 55I_ = {BI_,){11I_¢),

For case (II), we first determine the product P1P2. From

Example 2.5.10, we have

P1P2

<§,2+/C§><}1,4+¢C€>.
<%5,37+/C€>.

PP, = 1+3/—6)<§-3/-6,1-2/T§>
= (1+5J—6)<§/—6,1-2/-6>
= (55 )8) <—/-6,1>
= (1+3/-6)I~6
? 4 / s s ’ . ’
Since P P, = (P,P)}, it follows that P,P, = ((1+3/-6)I_¢)
= (1—3/:3)1_6. Then from (II) we get :

Therefore

7 PO
(11) 551 _ = (1+3/-6)I_6(1-3/—6)I_6.

Finally, we consider case (III). By the same argument as
. ¢ /
in this case (II), we have P1P2 = (7+/-6)I_6 and
P1P2 = (7—/—6)1_6. So in this case we get

r

{IXI1) 551_6 = (7+/-6)I_6(7~/-6);_6.

By Theorem 3.5, we can verify that 5,11,1+3 -6,7+ /=6,

7- /=6 are irreducible elements of I _. So using Remark 3.3

60
i / '
to (I),(II),(III), we see that the only factorizationsof

55 into a product of irreducible are

4

(I) 55 = u;.5.11
W4
(I1) 55 = u2(1+3/—6)f1—3/-6)
5
(IIX) 55 = u (7+/-6) (7-/=8),
where ul,u2,u3 are units. In this cases we have u1 = u2 =
u =1o

3
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Example 3.16. We shall find all factorizations of 42 in
Q(/-5). Since -5=3 (mod 4), it follows from Remark2.1.9.
and Remark 2,2.8 that"I_5 = <1,J—€> and Zés = =20,

Observe that, 421_5 = (21’5)(31_5)(71_5).

Using Theorem 2.4.17(i) and Definition 2.4,15, we can

verify that 2 is ramified. i.e. we have
(1) 21 = P

o
where P1 = Pl = <?,1+/-5> isa prime module and N(Pl) = 2
(See Example 2.4.19) By Theorem 244.17(ii) and Definition

2.4.15, we can verify that 3,7 are decomposed, and we have

7
(2) X L) PP

\ /
where_P2 = <?,1+/-5>>and P2 = <?,2+/-5> are distinct prime

/
modules such that N{P2) = N(Pg) = 3, And

#%
(3) I S T

, |
where P = <7,3+/-5> and Py = <7,4+/-5>are distinct prime
£

modules such that N(Ps) = N(PS) =7 Therefore,

P2P P,P P/
-5 1T88T S

]

(4) 421

Now we consider all possible groupingsof the

& /’
productsof P1’P1’P2’P2’P3’P3 to fqrm p?1n01pal modules

generated by irreducible elements.
Using Theorem 3,9, we can verify that Pl,Pg,PQ,P3

/
P3 are not principal

/
First, we consider the groupingsof the Pi’Pi in the

factorization (4) in which each group contains two modules.
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There are 15 cases:

£ R (pi)(ng;)(p3p;);
(1I) a21__ = (Pi)(PQPs)(P;P;)'
(II1)  421__ = (pi)(pgpg)(pgps)
/7 7
(IV) 42T g = (P P,)(P,F,)(P.P,)
r a4
(V) 42I_g = (P P,) (P, P;)(PyFy)
> ¢ ”~
(VI)  421__ = (P B,) (P P;)(P,Py)
Vo 7
(VII)  421_¢ = (P,B}) (P, P,) (P;Fy)
/7 7/
(VIII) 421 = (P P,)(P,P,)(P,P,)
7 7
(IX)  42I_ = (P P))(P,Py)(PyP,)
(X)  42X_g = (B B.) (P, P,)(P,Py)
(XI)  421_g = (P P )(P P,)(P,P,)
J ’
(XII)  421_g = (P, P.)(P,F})(P,P,)
(RIII)  421_g = (B B )(P,P,)(P,P,)
(XIv) 421 = (P1P;)(P1P;)(P2P3)
F o
(XV)  42I_g = (P P[) (P P (P,P,).

Note that we have
(i) P, = 21

By using Theorem 2.5.8, we have

(ii) PP, = <?,1+J:§><§,1+J:§> =<§,1+f:§> = (1+/-5)1_¢
FELRIS % Sy <2,1+/:3><?,5+/:5> =<}4,3ff:%> = (3+/78)I_,
(iv) PP, = (@,1+J:§><%,3+f:§> =<?1,10+f3§>=(1—2/:3)1_5

(v) P; 5 = <§,2+/?§><%,5+f:§> =<%1,-4f[:§>= (d=f=5)% ¢

It follows that

(vi) gipg = (PyPy) = (1-/7B)I_g
(vii) Pi?; by (P1P3X’= (3-/-5)1_,

(viii) PP = (PyP;) = (1+2j:§)1_5
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/ # 7
(ix). PP, = (PoPr) = (4#/-B)I ¢

¥ /
So  we can see that any product of two modules. from Pi’P

i’
i=1,2,3, is principal with irreducible .generator. The
fact that the generator is irreducible follows from Theorem
3.5,

From the above results, we see that every product
of any four modules from Pi,P;,i =1,2,3, is; also principal,
However, its generator will not be an irreducible element,
We now consider the productsof three or five modules from
Pi,P;, i =1,2,3. Suppose that there exists a product of
three of these modules which dis: principal. For example,

r's 7 e
suppose that P P,P, is principal. Since P P, = (4-/-5)I_

1723 273
/
it follows that P1(4—/—5){5= P1P2P3 is principal. So by

5’

Theorem 3.7, it follows that P, must be principal. This is

1
7/
a contradiction. So that the product P1P2P3 is not principal;

By the same argument we see that any productsof three or

A 7/
five of Pl’Pl’PQ’PQ’PS’Ps‘ cannot.be principal.

Therefore, all possible groupingsof the productsof
P ’ ’
1’P1’P2’P2’P3’P3

irreducible elements are as listed in cases(I) through (XV).

to form principal modules generated by

By substituting (1) g (33} (REL),(dv) ,{v),({vi) {vil),{viii}

in the case(I) through (XV), we get that

(1) 42I_5 = (2I_g)(3I_g)(71I_g)
(11) 42I_g = (2I_g)(1-2/=5)I_g(1+2/=5)I_¢
(11i3_ 421 g = (2I_g)(4+/-5)I_g(4-/-5)I_¢

it

(IV3 421_ (1+/:§)1_5(1-/-5)1_5(71_5)




(V) 421__ = (1+/-5)I__(3+/-5)I_,(1+2/-5)1_,

(VI) 421__ = (1tJ:§)1_5(3-/13)1_5(47/13)1_5
(vxi} 421_5 y (1~/:§)1_5(1+/:§)1;5(71_5)
(VIII) 421_, = (1-/:%)1_5(3+/i§)1_5(4+/i3)1_5

(1X) 421_ = (1-/23)1_5(3—/:€)1_5(1-2/:§)1_5

¥

(%) 421I__ = (3+/:%)1_5(1+f:§)1_5(1+2/:§)1_5

(XI) 421__ = (3+ji§)1_5(1—/:§)1_5(4+/:§)1_5
(x113 42I_, = (3+[=5)I__(3-/-5)I_,(3I_)

(x11i3 42I__ = (3-]13)1_5(1f/:§)1_5(45/:§)1_5

7 2
(XIV) 421__ = (3=[=5)1__(1=/-B)1__(1-2 [-B)I_,

(XV)

(5-j:§)1_5(3+j?§)1_5(31_5).

Observe that some of these factorizationsare the

Ve /
same, for example (IV) and (VII). The only distinct

' 2 ’ / 7 ’ ’ ’ s
factorizationsare (I) ATEISCELEY), (IV),(V),(VI),(VIII),(IX),

7 .
(XII). From these distinct factorizations,using Remark 3.3,

we obtain all the distinct factorizations of 42 into

irreducible factors as follows:

V4
(1), 42 A5G0

1
(If% 43 = %52(1-2/:3)(1+2/I§)
/, s
(I11) 42 = g§2(4+j:§)(4-f:§)
(IV) 42 = u,(1+/75)(1-[=5).7

(V3 42 = u5(1+j23)(3+j:€)(1;2fi§)

(vf) 42 = u6(1+/:3)(3—f:§)(4—fi§)
(VIZT) 42 = ug(1-[75) (3+/75) (44[5)

4

(IX 42 = uy(1-/=5)(3-[75) (1-2/75)

(XII) 42 = u,,(3+/=5)(3-[-5).3,
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where ul,uz,us,,u4,u5,u6,u8,u9,u12 are units, In these

case we have u1=u2=u3=u4= 6=u8=u12=1 and u5=u9=—1.
i#
Theorem 3.17. Let erand M2 be any spg-modules, Then
A ,
M1A/M2 if and only if M_M_, is a principal module,

12

Proof.  Using Remark 2.3.22, we have
M~ Mg(=9[1ﬂ ] =[M ]

<=>[M M } [M J[M ] [MQ][M'Q] =[MzM/2]=[I o]

N 4 M1M2 is principal

¢
if and only if M1M is a principal module,

Therefore, vaM 9

2

Theorem J3.18. Let @gjﬁ} be any quadratic field with £d =
2. Then the product of any two spg-modules, which are not

principal, is principal.
Proof, Let Mland M2 be any spg-modules which are

not principal. So thiat [Mﬂ #[%£[’[M-]#[Id]' Since%d =2

hence[Mi}:[Mg]. Therefore, M Mze[ }[ ] [Mﬂ [ '} : -8e
M1M2 is prinecipdal,

#

- Example 3.19. We shall find all factorizations of 6510 in

(X/-31). Since -31==1 (mod 4), it follows from Remark
2.,1.9. and Remark 2.2,8, that 1_31= <}, éi§:§%>and £{31=-31.

In the Table 3 of [i], we see that sy 3.

Observe that 65101 #a {31 ) (311 {2z ) (51 )
-31 -31 -31 -31 -31

(71_54)
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Using Theorem 2.4.17(ii) and Definition 2.4.15,
we can verify that 3 is imert, (See Example 2.4.19),
i.e. we have

51_31

is a prime module. By Theorem 2.4.,17(i) and Definition

2.4.15, we can see that 31 is raﬁified. i.e., we have

’

2
311 5, = P

where P = <§1,-:§éi§:§¥> is a prime module. By Theorem
2.4.17(ii) and Definition 2.4.15, we can verify that 2,5,7

are decomposed. i.e. we have

&
() LT —

7/
where P1 = <?,1+(93%>, P1 =<?,ng¥> are distinct prime
7/
modules such that N(Pl) = N(Pl) =2,

) 7/
(J.J-’) ) 51_31 = P2P2’

5
where P§<§,3+Glsé>, Py = <§,1+0231> are distinct prime
7
modules such that N(PQ) = N(Pg) = B,
w

(iid) 71_nq = P5Pq,

5 .
where P, =<?,2+0g3¥>, P, =<?,4+C931> are distinct prime

modules such that N(P3) = N(P;) = Therefore,

’ ’ /
- (31_31)P2P1P PR PP

(iv) 5 65101 15 a 5T

31

Now we consider all possible groupingsof the

/ '

/
productsof (31_31),P,P,Pl,Pl,Pz,PQ,P3,P3 to form principal

modules with irreducible generator. Clearly, 31 31 is

principal and its generator 3 is irreducible. So we consider
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(v) 4

i

<31 o -51>

’ 2

(D) (T, T
(W)(l,ﬁéi%

(/=31)1_5,

Therefore, P is a principal module with irreducible

]

]

4
generator. Using Theorem 3.9, we can verify that P Pl’P

b o2 27

p ’
Pg,P3,P3 are not principal.

Next we consider the groupings of the prime modules
on the right hand side of(iV), By Theorem 3.7, each of the

prime module 31 P cannot be grouped among themself or

-31’
7/

with any other modules Pi,Pi,i=1,2,3, to form a principal

module with irreducible generator. So, we need to consider

7 ’
P_,P_. So we know that

. /
only the groupings of Pl’Pl’P2’p2’ 3P

£31= 3. So we may assume that the class group of 1_31 is

{5 ’ /
{[1_3]] ,[P1] ,[Pl‘\} S thateaer bW, P,, Py, Py
o Vs -
belong to[Pllor[Pi]. By using Theorem 2,5.7, it can be

verified that

(vi) P;P2 - <2,CQ3]><5,‘3+ @31>
' - <10,-2+ @31>
(-2+ @) 24 G35 1,0
(=2+ @501 54

The detail calculation of this result is shown in Example

2.5.9. By the same method we have

(vii) P;Pg = <2’ @31><7’2+0-)-31>
<14,2+ @31>

= (2+ @31)<2+ @31,1>
(2+ @31)1_3

I

s
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4 L 2k
By Theorem 3.17, we conclude that Pl,PQ,P3 are similar .

V4 7 o "
So P2,P3€[PJ. Then P2,Pgé{?ﬂ. Then we see that the product
of two modules from Pi,Pi,(i=1,2,3) is principal if and
only if each module is in the distinct class. This can

happen in the following 6 cases:

(1) (P,B,) (PyFy) (P5Fy)
(X1} - (PP} (PyPR) (P )
(111) (PlP;)(P;PQ)(PSP;)
(IV) (P, P}) (P P5) (P,PY)
(V) (P, F) (PyPy) (PyPy)
(VI) (PlP;)(P;P3)(P2P;)

Observe that the grouping in to a group of three:

s’

(VII) (P P, P 4P

L

1P2P3)

also givesprincipal modules, It can be verified that every:
other grouping of three modules does not give principal

factors,

Next, observe that any grouping of the product of
at least four modules from Pi’P; (i=1,2,3) must contain a
product of two modules from different élasses. It follows
from Theorem 3.7 that if the product of such a grouping
is principal, then its generator will not be irreducible.
So only éases(I) through (VII) are possible. Thus all

7

7/
possible groupings of the productsof 31_31,P,P,PrP1,P2,P2,

7 4
P3,P3 which give principal modules with irreducible

generators are the following 7 possibilities:



(1)
(11)
(111)
(V)
(V)
(VI)

(VII)

By using Theorem 2.

(viii)

and:

(ix)

65101 _
65101 _
65101 _
65101 _
65101 _
65101 _

65101 _

31

31

31

31

31

31

31

PEPS

PlP

2

It follows that

(x)
(xi)
fxid)

{xiii)

P

P

\ =

P

7
Plp

e

OO\ N
W\

P

~

P

[ BN ]

2

P

P
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(3I_g ) (P) (P)(P,P)) (P, P,) (P P])
(3I_,) (P)(P) (P, P]) (PyPy) (P,P;)
(5I_g,) (P) (P) (P, P,) (P;Py) (P5Py)
(31_,) (P) (P) (P P}) (P} P5) (P,Py)
(5I_g,) (P) (P) (P, P,) (P;Py) (P,Py)
(3I_g,) (P) (P) (P, P}) (P{P,) (P,P,)

”

(31_g JAPY{PY(P, PyPy) (P PyPy)

.7, we get

<5 = (”-31><7 e (931> ,
<§5,18+Qg3;>

(142 @5,) #2641+ @31>
(1+2 @31)1_.31

<2,1.+@3,7>é;3+ @3><7',2+w_31>
<1o,3+a_>31>.<7,2+ @31>
<5o,25+qQ31> | '
('1+36931’<§l*369;1’CQ;%>

(F1#9°605; 51

p o vy g A
(PiPy) = (=24 (g, )T 54
7 4 7 o
(PyPs) = (24 (g M 54
> F 3
(P,P.) = (142 Qg )T 54

7~ 7
(P, P,Ps) = (=143 (5,) T 54

By substituting (ii), (Eid)s (V) o (vi) s (vid) ,(vidi), (ix) ,(x),

7

&
(xi),(xii) 4(xiii) in case (I) through case (VII), we get

that
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(1/)/_ 65101_ (3;1_31)(/471_31)2(21_51)(51_31)
(2L 500" |
(Ifs 65101_,, = (31_31)(/5311_31)2(21_31)(1*2;931)1_31
(1+20 )1
(III)  65101__ = (SI_g ) (/=B1T_g ) (-2+C )T g,
(=3+0g I 54 7T 54}

Y 2 ’
(Iv). 65101 . = (31_51)(/-511_51) (=2+ g )1 oy

: (24 @y VI 5, (14205 )T 5,
74 ‘ 2 7
(V) 65101_, = (3I_, ) (/=8iI_g )" (2+(ug )T 5
(=240, )T 5 (142 W5y )T gy
V4 2 b
(VI)  65101__ = (31 5 ){/=311_; )% (2+ Qi )T g
(24 Q) g0 )T _5, (51 54)
V4 :
(VII) 65101 = (3I_  )(/B11_5,) (1435 )T g,

(-1+30Q31)I;31

Using Theorem 3,5 and Corollary 3.6 we can check that the

generator of any principal modules in the right hand side

v — %
of case (I) through case (VII) are irreducible elements.

2 %
Using Remark 3.3 to case (I; through case (VII1) we obtain

all the factoriztions of 6510. They are as follows:

A
(1) 6510

I

u1.3( /"31)2-20597

(1{7 6510 = u2.3L/-3I)2.2(1+2(931)(1+2(g;1)

(III) 6510 = uy.3(/=31) % (=24 @ ) (=24 Wg,) -7

(If? 6510 = u,.3(/=51) *(~2+ @) (2+ Gy, ) (142 Gug )

(fz 6510 = us.z(/:31)2;2+cggl)(-2+@g31)(1+2cg;1)
(v%; 6510 = u6.3(/I§1)2(2+cg;1)(2+0931).5

(VII) 6510 = u7.3(/:§i)2(-1f34931)(f1*3c251),



where Uy ally,Ua,U,,Ug,ug,0, are units. In this cases, we

BEVE UEUR RN R tgtty B T
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