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APPENDIX I

We shall review concept in Eﬂ to verify that in
any quadratic fields, the concepts of the fractional ideals

and that spg-modules are the same,

An ideal is a nonemty subset I of a ring R such
that if r,s €¢I, then r-s €¢1; and if r ¢R, s €¢I then rs ¢ 1.

The fraction ideals of I, are subsets of ()([d) of the form

c—ll, where I is an ideal of Id and ¢ is a nonzero element

d

Theorem A, Let M(;@(fa) and M # {O}. Then M is an integral

module if and only if M is an ideal of Ido

Proof. Let MC ()(Jd) and M # {o}.
First, we assume that M is an integral module. So M<§Id.
It is clear that if r,s ¢M, then r-s ¢M. Let x¢&M and aeId.‘
Then ax ¢ I M =M. Hence,.M is an ideal of I,.
To prove the converse, we assume that M is an ideal of Id°
It is clear that, MCI;, MI;, = M and M is a Z-module.
Let r be any nonzero element in M. So {r,roh} is a 5asis

of q;(ja) and is contained in M, Therefore, M is an

integral module. Pt

Theorem B. Let M C @(‘E) and M ,J:{O}. Then M is an spg-

module if and only if M is a fractional ideal of Ido

Proof. Let MCQ(Jd) and M # {o}.

F;rst, we assume that M is an spg—module; Then there
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exists a positive rational integer k such that kMt;Id.
So kM is an integral module. By Theorem A, kM is an ideal

of I,. Since k€I, we conclude that M = kKl (kM) is a

fractional ideal of Id.

To prove the converse, we assume that M is a fractional

ideal of Id' Then M = c_lB, where B is an ideal of Id and

¢ isanonzero element in Id° By Theorem A, B is an integral

module. So B is an spg-module. Since c_lld is an spg-module,

then M = (c~11d)B = ¢1B is an spg-module.
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APPENDIX IIX

We shall review the concepts of congruences and

some results on quadratic congruences,

Definition 1., Let n be a positive rational integer and X,y

be rational integers. We say that x and y are congruent
modulo n ; written x=y (mod n),provided that x-y is
divisible by n. If x is not‘congruent to y modulo n, we

write xé;y (mod n).

Theorem 2. ([1] , proposition 3.2.1.) Let a,b,c be rational

integers. Then the followings hold:
(i). a==a (mod n).
(ii)s If a=b (mod n), then b=a (mod n),
(iii). if a=b (mod n), and b=c (mod n), then

a=c (mod n).

Remark 3, Let f(x) =0 (mod n) be a polynomial congruence
We see that x is a solution to the congruence, then any y

such that x =y (mod n) is also a solution.

Definition 4, Let x and y be any two solutionsof f(x)=0

(mod n). We say that x and y are different if x3gy (mod n).

: a; a, a,
Theorem 5. ([L],Theorem 3.4.1.) Let n = Py Pg weenhy be

any positive rational integer, where pl,...pt are distinct
rational primes. A rational integer x is a solution of the
congruence f(x)==0 (mod n) if and only if x satisfies a

system of congruences
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T
xssb1 (mod P, ) A

*e9 00

At
x==bt (mod P ¥ 5

where b is a solution of the congruence
a.
i :
f(X)EO (mOd pi ))’- (l = L,Q"an,t)

Theorem 6. ([1] , Theorem 3.4.2.(Chinese Remainder Theorem)).

Suppose that the rational positive integers ml,...,mt are

ralatively prime in pairs, Let b b, be arbitrary

1"" t

rational integers. Then the congruences

o

»
=

(mod ml),

et

(=2

»
<t

(moé mt)
have a solution., Moreover, the solution is unique modulo
m....m.

1 t

Definition 7. Let p be a rational prime and a be any

rational integer such that p*a. We say that a is quadratic
residue modulo p provided that xgssa (mod p) has. a
solution. Otherwise, we say that a is a quadratic

nonresidue modulo p.

Theorem 8 (1] , Lemma 4.2,3.) Suppose that p is an odd

rational prime and a is a quadratic residue modulo p, p*a.~
Then the congruence xzsaa (mod p) has exactly two distinct

solutions.

Theorem 9. (1], Proposition 4.2.4.) Let p be an odd

rational prime and a be any rational integer such that p* °

Then a is a quadratic residue modulo p if and only 4if .a ds
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congruenct to one of 12,22,....,(g%£)2modulo Pe

Example 10. We shall verify that x255—31 (mod 12) has no

solution. By Theorem 5 and Theorem 6, we know that x255-31
(mod 12) is solvable if and only. 4t X%E'-Sl (mod 4) and
x255—31 (mod 3) are solvable. By Theorem 9, we can verify

that x%Ef2 (mod 3) is not solvable. Since ~31=2 (mod 3),

we conclude that x255-31 (mod 3) is not solvable. Therefore,

xges-Sl (mod 12) is not solvable. #

Bxample 11. We shall find all solutions of x2EE~24 (mod 20).
By lheorem 5 and Theorem 6, we can conclude that x2EE—24

(mod 20) is solvable if and only if x2§=—24 (mod 5) and
x2EE—24 (mod 4) are solvable. By Theorem 8, dif x252-24

(mod 5) is solvable, then it has exactly twordistinct
solutions. Therefore, x255—24 (mod 20) has at most two
distinct solutions,.Using Theorem 9, we can verify that

+4 are distinct solutions of X%EE—24 (mod 5). It is clear
that +4 are also solutions of x255—24 (mod 4). By Theorem

5, we can conclude that ¥4 are soﬂgions of x2EE—24 (mod 20).

Therefore, the set %4+20n\né;22}is the set of all solutions

of X2EE—24 (mod 20).,
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