REFERENCES

- 1. Adams, W.W. and Goldstein, L.J., <u>Introduction to</u>

 <u>Number Theory</u>, New Jersey, Prentice-Hall, 1976.
- Stewort, I.N. and Tall, D.O., Algebraic Number Theory,
 New York, Johnwiley&Sons, 1979.
- 3. Fraleigh, J.B., A First Course in Abstract Algebra,

 Massachusetts, Addison-Wesley Publishing Co,

 1976.

APPENDIX I

We shall review concept in [2] to verify that in any quadratic fields, the concepts of the fractional ideals and that spg-modules are the same.

An ideal is a nonemty subset I of a ring R such that if $r,s \in I$, then $r-s \in I$; and if $r \in R$, $s \in I$ then $rs \in I$. The fraction ideals of I_d are subsets of $O(\sqrt{d})$ of the form $c^{-1}I$, where I is an ideal of I_d and c is a nonzero element of Id.

Theorem A. Let $M \subseteq \mathbb{Q}(\sqrt{d})$ and $M \neq \{0\}$. Then M is an integral module if and only if M is an ideal of Id.

Proof. Let $M \subseteq \mathbb{Q}(\sqrt{d})$ and $M \neq \{0\}$. First, we assume that M is an integral module. So M \subseteq I_d. It is clear that if $r, s \in M$, then $r-s \in M$. Let $x \in M$ and $a \in I_d$. Then $ax \in I_dM = M$. Hence, M is an ideal of I_d . To prove the converse, we assume that M is an ideal of Id. It is clear that, $M \subseteq I_d$, $MI_d = M$ and M is a \mathbb{Z} -module. Let r be any nonzero element in M. So $\left\{ \mathbf{r},\mathbf{r}\omega_{\mathbf{d}}\right\}$ is a basis of $\mathbb{Q}(\sqrt{d})$ and is contained in M. Therefore, M is an integral module.

Theorem B. Let M $\subseteq \mathbb{Q}(\sqrt{d})$ and M $\neq \{0\}$. Then M is an spgmodule if and only if M is a fractional ideal of Id.

Proof. Let $M \subset \mathbb{Q}(\sqrt{d})$ and $M \neq \{0\}$.

First, we assume that M is an spg-module. Then there

exists a positive rational integer k such that $kM \subseteq I_d$. So kM is an integral module. By Theorem A, kM is an ideal of I_d . Since $k \in I_d$, we conclude that $M = k^{-1}(kM)$ is a fractional ideal of I_d .

To prove the converse, we assume that M is a fractional ideal of I_d . Then M = $c^{-1}B$, where B is an ideal of I_d and c isanonzero element in I_d . By Theorem A, B is an integral module. So B is an spg-module. Since $c^{-1}I_d$ is an spg-module, then M = $(c^{-1}I_d)B = c^{-1}B$ is an spg-module.

#

APPENDIX II

We shall review the concepts of congruences and some results on quadratic congruences.

<u>Definition 1</u>. Let n be a positive rational integer and x,y be rational integers. We say that x and y are congruent modulo n, written $x \equiv y \pmod{n}$, provided that x-y is divisible by n. If x is not congruent to y modulo n, we write $x \not\equiv y \pmod{n}$.

Theorem 2. ([1], proposition 3.2.1.) Let a,b,c be rational integers. Then the followings hold:

- (i). $a \equiv a \pmod{n}$.
- (ii). If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$.
- (iii). if $a \equiv b \pmod{n}$, and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Remark 3. Let $f(x) \equiv 0 \pmod{n}$ be a polynomial congruence. We see that x is a solution to the congruence, then any y such that $x \equiv y \pmod{n}$ is also a solution.

Definition 4. Let x and y be any two solutions of $f(x) \equiv 0$ (mod n). We say that x and y are different if $x \not\equiv y$ (mod n). Theorem 5. ([1], Theorem 3.4.1.) Let $n = p_1^{a_1} p_2^{a_2} \cdots p_t^{a_t}$ be any positive rational integer, where $p_1, \cdots p_t$ are distinct rational primes. A rational integer x is a solution of the congruence $f(x) \equiv 0 \pmod{n}$ if and only if x satisfies a system of congruences

$$x \equiv b_{1} \pmod{p_{1}^{a_{1}}},$$

$$\vdots$$

$$x \equiv b_{t} \pmod{p_{t}^{a_{t}}},$$

where b is a solution of the congruence

$$f(x) \equiv 0 \pmod{p_i^{a_i}}$$
. $(i = 1, 2, ..., t)$

Theorem 6. ([1], Theorem 3.4.2.(Chinese Remainder Theorem)). Suppose that the rational positive integers m_1, \ldots, m_t are ralatively prime in pairs. Let b_1, \ldots, b_t be arbitrary rational integers. Then the congruences

$$x \equiv b_{1} \pmod{m_{1}},$$

$$\vdots$$

$$x \equiv b_{t} \pmod{m_{t}}$$

have a solution. Moreover, the solution is unique modulo $^m1^{\cdots m}t^{\bullet}$

<u>Definition 7.</u> Let p be a rational prime and a be any rational integer such that $p \setminus a$. We say that a is quadratic residue modulo p provided that $x^2 \equiv a \pmod{p}$ has a solution. Otherwise, we say that a is a quadratic nonresidue modulo p.

Theorem 8 ([1], Lemma 4.2.3.) Suppose that p is an odd rational prime and a is a quadratic residue modulo p, p\\alpha. Then the congruence $x^2 = a \pmod{p}$ has exactly two distinct solutions.

Theorem 9. ([1], Proposition 4.2.4.) Let p be an odd rational prime and a be any rational integer such that p\a. Then a is a quadratic residue modulo p if and only if a is

congruenct to one of $1^2, 2^2, \ldots, (\frac{p-1}{2})^2$ modulo p.

Example 10. We shall verify that $x^2 \equiv -31 \pmod{12}$ has no solution. By Theorem 5 and Theorem 6, we know that $x^2 \equiv -31 \pmod{12}$ is solvable if and only if $x^2 \equiv -31 \pmod{4}$ and $x^2 \equiv -31 \pmod{3}$ are solvable. By Theorem 9, we can verify that $x^2 \equiv 2 \pmod{3}$ is not solvable. Since $-31 \equiv 2 \pmod{3}$, we conclude that $x^2 \equiv -31 \pmod{3}$ is not solvable. Therefore, $x^2 \equiv -31 \pmod{12}$ is not solvable.

Bxample 11. We shall find all solutions of $x^2 = -24 \pmod{20}$. By Theorem 5 and Theorem 6, we can conclude that $x^2 = -24$ (mod 20) is solvable if and only if $x^2 = -24 \pmod{5}$ and $x^2 = -24 \pmod{4}$ are solvable. By Theorem 8, if $x^2 = -24 \pmod{5}$ is solvable, then it has exactly two distinct solutions. Therefore, $x^2 = -24 \pmod{20}$ has at most two distinct solutions. Using Theorem 9, we can verify that ± 4 are distinct solutions of $x^2 = -24 \pmod{5}$. It is clear that ± 4 are also solutions of $x^2 = -24 \pmod{4}$. By Theorem 5, we can conclude that ± 4 are solutions of $x^2 = -24 \pmod{4}$. By Theorem 5, we can conclude that ± 4 are solutions of $x^2 = -24 \pmod{4}$. Therefore, the set $\{\pm 4 + 20n \mid n \in \mathbb{Z}\}$ is the set of all solutions of $x^2 = -24 \pmod{20}$.

VITA

Name : Mr. Somchit Chotchaisthit

Degree : B.Sc. (Education), 1979.

Chiengmai University.

Scholarship: University Development Commission (U.D.C),

Thai Government.