

CHAPTER IV

DISCUSSION

The residue from the petroleum ether extract of dried whole plant of <u>Eupatorium adenophorum</u> Spreng. was seperated into three pure components by column chromatography as described in the experimental chapter.

first component "EA-1" was obtained as a white powder, its IR spectrum (Fig. 3.6) revealed the presence hydroxy and olefinic functional groups. The electron mass spectrum (EIMS, Fig. 3.8) exhibited a weak parent at m/z 414, corresponding to molecular formula C29H50O the intense M-H2O (m/z 396) peak indicated a characteristic of Δ^5 -3- β -sterol type of compound (142). The proposed 94. The fragmentation pattern (143,144) was shown on page ¹H-NMR spectrum (Fig. 3.7) was identical to those from a sample of β-sitosterol, which had been isolated from Typha elephantina, and also were in accord with (141)previous published data for this sterol (145). Thus, first component "EA-1" is β-sitosterol.

The second component "EA-2" was obtained as a white feather-like crystal. Mass spectrometric analysis of this compound indicated a molecular ion at m/z 234 (Fig. 3.20), corresponding to an elemental composition of ${\rm C}_{15}{\rm H}_{22}{\rm O}_2$. Intense absorptions in the UV (MeOH) spectrum at $\lambda_{\rm max}$ 242

nm (log ϵ 3.86, Fig. 3.9) and in the IR (KBr) spectrum at $\nu_{\rm max}$ 1725, 1710, 1650 cm⁻¹ (Fig. 3.11) suggested the presence of both saturated and α , β -unsaturated ketonic groups. The $^{1}{\rm H}$ NMR spectrum of EA-2, obtained in CDCl₃ (Table 5., Fig.3.12), indicated the presence of an olefinic hydrogen (δ 6.35, d, $\underline{\rm J}$ = 1.5 Hz), both allylic (δ 1.73, d, $\underline{\rm J}$ = 1.5 Hz) and aliphatic (δ 1.02, d, $\underline{\rm J}$ = 6.4 Hz) methyl group, and an isopropyl group (δ 0.88, d, $\underline{\rm J}$ = 6.1 Hz; 1.08, d, $\underline{\rm J}$ = 6.1 Hz; 2.00, m). Two geminally coupled methylene groups (δ 2.08, 2.20, $\underline{\rm J}_{\rm gem}$ = 8.8 Hz; and δ 2.54, 2.81, $\underline{\rm J}_{\rm gem}$ = 16.6 Hz) were also observed in the molecule.

13_{C-NMR} spectrum ofEA-2 (Table 5.) substantiated these structural implications addition, showed resonances for a saturated cycloheptenone (δ 212.87), an α - substituted cycloheptenone (δ 198.10) and six methine carbon signals including a vinylic CH (δ 146.89) and an isopropyl methine (δ 31.78). From the structural elements presented and the coupling pattern of the homonuclear COSY spectrum (Fig. 3.14-3.16) azulene skeleton were suggested for unsaturated $^{1}\text{H}-^{1}\text{H}$ COSY spectrum (Fig. The indicated a long-range coupling between the allylic methyl protons (δ 1.73) and the vinyl hydrogen 1-H (δ 6.35), the coupling of the latter with the anellated methine, 2-H (δ 3.22). From the relatively small (>4 Hz) coupling between 2-H and 6-H (δ 2.28) a cis junction between the five and seven-membered rings was indicated. An additional

small coupling (>1 Hz), observed only in the COSY spectrum for the 2-H signal with 3-H at δ 2.05, indicated the near 90 torsion angle between these two hydrogens. Consequently, the orientation of the methyl group at C-3 was deduced to be the same as that of the hydrogens at anellation positions (2-H and 6-H). The 8-H₂ methylene protons showed a characteristic coupling pattern; the signal at δ 2.03 was a doublet of doublets, while the geminally coupled signal at 2.20 was a doublet, since only one of these two signals shows coupling with 7-H (δ 2.05). The dd pair of 5-H₂ at 2.54 and 2.81, however, shows strong geminal coupling, and both signals are coupled with the resonance for 6-H at 2.28.

The relative stereochemistry of the substituents well as certain conformational features of EA-2 were further established by NOE experiments. Irradiation of δ 3.22 enhanced the C-3 methyl and 6-H methine signals, thereby supporting the cis orientation of these three substituents. Irradiation of 1-H at δ 6.35 resulted δ 2.05 (3-H) and δ 1.73 (10-CH₃). area increases at effect was observed between 1-H and 3-CH3. Seperate irradiations of the two dd signals of 5-H $_2$ established the stereotopical nature of the two non-equivalent hydrogens. irradiation of the signal at 62.81 resulted in Thus, increase for the isopropyl methyl groups, but irradiation of the signal at δ 2.54 did not result in NOE effect being observed.

Further evidence for the unusual carbon framework substitution pattern of EA-2 came from selective INEPT (Fig. δ 3.19) experiments which also permitted the unambiguous assignment of the ¹³C NMR spectrum. APT spectrum of EA-2 showed four methyl (δ 15.45, 19.97, 20.28 20.93), two methylene (δ 41.04, 42.18), six methine (δ 28.10, 31.78, 39.24, 42.18, 63.90 and 146.89) and three quaternary carbons (δ 136.00, 198.10, and 212.87), of which the latter two could be assigned as carbonyl carbons. Irradiation of 10-CH₃ resulted in enhancements of δ 198.10 and 146.89 which could be assigned as C-9 and C-1, respectively, and irradiation of the isopropyl methyl group enhanced the aliphatic methine (C-7) at Magnetization transfer via irradiation of 2-H confirmed of the position of the carbonyl function in the five-membered ring leading to enhancement at $\delta 212.87$ (C-4), $\delta 136.00$ (C-10), δ 41.04 (C-5) and δ 28.10 (C-7). Finally, irradiation of 1-H enhanced C-9 at δ 198.10, thereby, confirming the carbonyl placement in the seven-membered ring, C-3 at 63.90, C-6 at δ 39.24 and C-15 at δ 15,45 (Fig. 3.19, 146). The assignments for the protonated carbons obtained from the selective INEPT experiments were in agreement with the HETCOR spectrum (Fig. 3.17-3.18) of EA-2, and the complete assignments are shown in Table 5.

Unlike saturated ketone or isolated olefins, α , β - unsaturated ketones are regarded as a class of inherently dissymmetric chromophores, consequently no sector rules were

the determination of absolute for the applicable configuration of the chiral center of EA-2. The sign of 220-260 $n-\tilde{\pi}*$ (R-band, 320-350 nm) and $\pi-\pi*$ (K-band, transitions of trans-enones, however, have been correlated with the sence of helicity for this dissymetric type chromophore. Thus, the R-band is positive and the K-band negative in the case where the helicity of the chromophore is skewed in a left-handed helix; and they are opposite when chromophore helicity is right-handed. Since EA-2 the exhibited a CD spectrum characteristic for the presence of a right-handed helicity of the trans-enone chromophore, absolute configuration of the attached C-2 chirality center established at S. Experimentally, the CD values methanol were $[\theta]$ +2150 and -840 at 248 and respectively. On this basis, and according to the prior determination of the relative steric positions of 2-H, 6-H, 3-CH3 and 7-CH3, the absolute configurations of the stereo centers of EA-2 are proposed as 2S, 3S, 6S, and 7R.

Biogenetically, EA-2 ,named "EUPATORENONE", represents a new class of sesquiterpenoids in which the C-4 methyl group has apparently migrated to C-3. One may envisage this to occur from a <u>cis,-trans</u>-germacradiene such as A at the time of cyclisation.

Eupatorenone was evaluated for cytotoxic in the KB and P-388 test systems according to established protocols, but was inactive.

Eupatorenone

A

The third component "EA 3" was obtained as semisolid substance with characteristic odour. The ¹H-NMR spectrum of EA-3 revealed the presence of many CH₃ and CH₂ groups of triterpene (Fig. 3.21). Since its structure is not inspired, the further structure elucidation is not performed.