CHAPTER I

PRELIMINARIES

Throughout this research our scalar field is either the field of real numbers or the field of complex numbers. Let $\mathbb N$ denote the set of all natural numbers.

Let x be a sequence and A an infinite matrix. For k \in N, the k^{th} term of the sequence x is denoted by x_k , and for n, k \in N, the element of A in the n^{th} row and k^{th} column is denoted by A_{nk} . If $\sum\limits_{k=1}^{\infty}A_{nk}x_k$ converges for every n \in N, we say that Ax exists and let Ax be the sequence with $\sum\limits_{k=1}^{\infty}A_{nk}x_k$ as its n^{th} term for every n \in N, so Ax = $(\sum\limits_{k=1}^{\infty}A_{nk}x_k)_{n=1}^{\infty}$. Let e be the sequence with $e_k = 1$ for every k \in N. For k \in N, let $e^{(k)}$ be the sequence such that

$$e_n^{(k)} = \begin{cases} 1 & \text{if } n = k, \\ \\ \\ 0 & \text{if } n \neq k. \end{cases}$$

If A and B are infinite matrices such that $\sum_{i=1}^{\infty} A_{ni}B_{ik}$ converges for all n,k \in N, then we say that AB exists and it is defined to be the infinite matrix C with $C_{nk} = \sum_{i=1}^{\infty} A_{ni}B_{ik}$ for all n,k \in N.

The series $\sum\limits_{k=1}^{\infty}A_{nk}$ is said to <u>converge uniformly</u> on n = 1,2,3,... if for every $\epsilon>0$, there exists $k_{o}\in\mathbb{N}$ such that $|\sum\limits_{k=k+1}^{k_{o}+p}A_{nk}|<\epsilon$ for every p,n ϵ N.

By the Cesaro matrix we mean the infinite matirx C such that

$$C_{nk} = \begin{cases} \frac{1}{n} & \text{if } 1 \leq k \leq n, \\ \\ 0 & \text{if } k > n, \end{cases}$$

for all n, k & N, that is,

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 & 0 & \ddots & \ddots & \ddots \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & \ddots & \ddots & \ddots \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & \ddots & \ddots & \ddots & \ddots \\ \vdots & \vdots & \ddots \end{bmatrix}.$$

An infinite matrix A is said to be <u>row-bounded</u> if there exists $k_o \in \mathbb{N}$ such that $A_{nk} = 0$ for all $n \in \mathbb{N}$, $k > k_o$. A <u>column-bounded</u> <u>matrix</u> is defined similarly. A <u>finite matrix</u> is an infinite matrix which is both row-bounded and column-bounded. It is clearly seen that if A is the Cesaro matrix or a row-bounded matrix, then $\sum_{k=1}^{\infty} |A_{nk} - A_{n(k+1)}|$ converges uniformly on $n = 1, 2, 3, \ldots$

By the <u>Borel matrix</u> we mean the matrix A such that $A_{nk} = \frac{n^{(k-1)}}{(k-1)!} e^n$ for all n, $k \in \mathbb{N}$. If A is the Borel matrix, then $\lim_{n \to \infty} \sum_{k=1}^{\infty} A_{nk} = 1 = \sup_{n \to \infty} \sum_{k=1}^{\infty} |A_{nk}|$.

A Norlund matrix is an infinite matrix A defined by

$$A_{nk} = \begin{cases} \frac{p_{n-k+1}}{n} & \text{if } 1 \le k \le n, \\ \frac{\sum_{i=1}^{n} p_i}{0} & \text{if } k > n, \end{cases}$$

where (p_n) is a sequence of positive real numbers. Then if A is a Norlund matrix; then $\sum\limits_{k=1}^\infty A_{nk}=1$ for every $n\in\mathbb{N}$.

The space of all sequences is denoted by W and let Φ denote the space of all finite sequences, that is,

 $\Phi = \left\{ (x_k) \mid x_k = 0 \text{ for all but a finite number of } k \right\}.$

The list of all the classical sequence spaces with their norms is as follows:

 ℓ_{∞} = the space of all bounded sequences,

 $\|\mathbf{x}\|_{\ell_{-}} = \sup_{\mathbf{k}} |\mathbf{x}_{\mathbf{k}}|,$

c = the space of all convergent sequences,

 $\|\mathbf{x}\|_{\mathbf{c}} = \sup_{\mathbf{k}} |\mathbf{x}_{\mathbf{k}}|,$

c = the space of all null sequences ,

$$= \left\{ (x_k) \mid \lim_{k \to \infty} x_k = 0 \right\},$$

 $\|\mathbf{x}\|_{\mathbf{c}_{\mathbf{a}}} = \sup_{\mathbf{k}} |\mathbf{x}_{\mathbf{k}}|,$

 $\ell_{\mathbf{p}}$ = the space of all sequences $\mathbf{x} = (\mathbf{x}_{\mathbf{k}})$ such that $\sum_{k=1}^{\infty} |\mathbf{x}_{\mathbf{k}}|^{\mathbf{p}} < \infty$ where $1 < \mathbf{p} < \infty$,

 $\|\mathbf{x}\|_{\ell_{\mathbf{D}}} = \left(\sum_{k=1}^{\infty} |\mathbf{x}_{k}|^{\mathbf{p}}\right)^{1/\mathbf{p}}$,

 ℓ = the space of all sequences $x = (x_k)$ such that $\sum_{k=1}^{\infty} |x_k| < \infty$,

 $\|\mathbf{x}\|_{\ell} = \sum_{k=1}^{\infty} |\mathbf{x}_k|,$

by = the space of all sequences of bounded variation,

$$= \left\{ (x_k) \mid \sum_{k=1}^{\infty} |x_k - x_{k+1}| < \infty \right\},\,$$

$$\|x\|_{bv} = \sum_{k=1}^{\infty} |x_{k} - x_{k+1}| + \lim_{k \to \infty} |x_{k}|,$$

$$bv_{o} = bv \cap c_{o},$$

$$\|x\|_{bv_{o}} = \sum_{k=1}^{\infty} |x_{k} - x_{k+1}|,$$

bs = the space of all sequences $x = (x_k)$ such that $\sum_{k=1}^{\infty} x_k$ is a bounded series,

$$\|x\|_{bs} = \sup_{n} |\sum_{k=1}^{n} x_{k}|,$$
 $cs = \text{the space of all sequences } x = (x_{k}) \text{ such that } \sum_{k=1}^{\infty} x_{k}$

is a convergent series,

and
$$\|x\|_{cs} = \sup_{n} |\sum_{k=1}^{n} x_k|$$
.

The Cesaro sequence spaces are as follows:

 $\begin{aligned} \operatorname{Ces}_{\mathbf{p}} &= & \operatorname{the \ space \ of \ all \ sequences \ x = (x_{\mathbf{k}}) \ such \ that } \\ & (\frac{1}{n} \sum_{k=1}^{n} |x_{\mathbf{k}}|)_{n=1}^{\infty} \varepsilon \ \ell_{\mathbf{p}} \ , \\ \|\mathbf{x}\|_{\operatorname{Ces}_{\mathbf{p}}} &= & \left(\sum_{n=1}^{\infty} (\frac{1}{n} \sum_{k=1}^{n} |x_{\mathbf{k}}|)^{\mathbf{p}} \right)^{1/\mathbf{p}} \ \text{where } 1 < \mathbf{p} < \infty \\ \operatorname{Ces}_{\infty} &= & \operatorname{the \ space \ of \ all \ sequences \ x = (x_{\mathbf{k}}) \ such \ that } \\ & (\frac{1}{n} \sum_{k=1}^{n} |x_{\mathbf{k}}|)_{n=1}^{\infty} \varepsilon \ \ell_{\infty} \ \text{and} \\ \|\mathbf{x}\|_{\operatorname{Ces}_{\infty}} &= & \sup_{n} \ \frac{1}{n} \sum_{k=1}^{n} |x_{\mathbf{k}}| \ . \end{aligned}$

The following diagram shows the relationships under set inclusion among the sequence spaces mentioned above:

Note that the following statements hold:

- (1) c_o is a closed normed linear subspace of c and $c = c_o + \langle e \rangle$ $= \left\{ x + \alpha e \mid x \in c_o, \alpha \in F \right\} \text{ where F is the scalar field.}$
 - (2) c is a closed normed linear subspace of ℓ_{∞} .
- (3) by is a closed normed linear subspace of by, by = by + $\langle e \rangle$ $= \left\{ x + \alpha e \mid x \in bv_o, \alpha \in F \right\} \text{ and } \|x + \alpha e\|_{bv} = \|x\|_{bv_o} + |\alpha| \text{ for all }$ $x \in bv_o, \alpha \in F.$
 - (4) cs is a closed normed linear subspace of bs.

For k \in N , by the kth coordinate mapping we mean the mapping p_k defined by $p_k(x) = x_k$ for each $x \in W$. A topological sequence space X is said to be a K-space if each coordinate mapping is continuous on X. By a BK-space we mean a Banach sequence space which is a K-space. It is easy to see that if X is one of the classical sequence spaces and the Cesaro sequence spaces, then for each $k \in N$, there exists $a_k > 0$ such that $|x_k| \le a_k |x|$ for every $x \in X$. Therefore all of the classical sequence spaces and the Cesaro sequence spaces are K-spaces. It is known that all of the classical sequence spaces are Banach spaces. Hence we have the following theorem.

Theorem 1.1. The sequence spaces ℓ_{∞} , c, c_o, ℓ_{p} (1 \infty), ℓ , bv, bv_o, bs and cs are BK-spaces.

A proof that the Cesaro sequence spaces are Banach spaces has been given by Leibowitz in [8]. Therefore the following theorem is obtained.

Theorem 1.2. The sequence spaces $\operatorname{Ces}_{\mathbf{p}}(1 < \mathbf{p} < \infty)$ and $\operatorname{Ces}_{\infty}$ are BK-spaces.

A metric d on a vector space X is said to be <u>invariant</u> if d(x,y) = d(x=y, 0) for all x, y \in X. A topological vector space X is said to be an <u>F-space</u> if its topology is induced by a complete

invariant metric. By an FK-space we mean a topological sequence space which is both an F-space and a K-space. Hence every BK-space is an FK-space. Therefore, by Theorem 1.1 and Theorem 1.2, all of the classical sequence spaces and the Cesaro sequence spaces are FK-spaces.

The following theorem of FK-spaces is known.

Theorem 1.3. ([10]) Let X and Y be FK-spaces. If X is a subset of Y, then the inclusion mapping from X into Y is continuous.

A topological sequence space X is said to have the AK property if X contains all finite sequences and for each $x \in X$, $x = \lim_{n \to \infty} \sum_{k=1}^{n} x_k e^{(k)}$ in X, that is, $\lim_{n \to \infty} (x_1, x_2, \dots, x_n, 0, 0, 0, \dots) = (x_1, x_2, x_3, \dots)$, or equivalently $\lim_{n \to \infty} (x - \sum_{k=1}^{n} x_k e^{(k)}) = \lim_{n \to \infty} (0,0,0,\dots,x_{n+1}, x_{n+2},\dots)$ = $(0,0,0,\dots)$.

Therefore a normed sequence space X has the AK property if and only if $\Phi \subseteq X$ and $\lim_{n\to\infty} \|x - \sum_{k=1}^n x_k e^{(k)}\|_{X} = 0$.

Not all of the classical sequence spaces have the AK property. It is known that c_o , ℓ , ℓ_p (1 \infty), bv and cs have the AK property and it will be shown that the rest of them do not have the AK property.

Theorem 1.4. The sequence spaces c_o , l, $l_p(1 , by and cs have AK property.$

It is easily seen that for every $n \in \mathbb{N}$, $\|e - \sum_{k=1}^{n} e^{(k)}\|_{\omega} = 1 = \|e - \sum_{k=1}^{n} e^{(k)}\|_{c}$ and $\|e - \sum_{k=1}^{n} e^{(k)}\|_{bv} = 2$. It follows that ℓ_{∞} , c and by do not have the AK property. Since $((-1)^n)_{n=1}^{\infty} \in bs$ and $\|((-1)^n)_{n=1}^{\infty} - \sum_{k=1}^{m} (-1)^k e^{(k)}\|_{bs} = 1$ for every $m \in \mathbb{N}$, we have that bs does not have the AK property.

Let X be a Hausdorff topological vector space. A sequence (x_n) in X is said to form a <u>basis</u> of X if for each $y \in X$ there is a unique sequence (λ_n) of scalars such that $y = \lim_{n \to \infty} \sum_{k=1}^n \lambda_k x_k = \sum_{k=1}^\infty \lambda_k x_k$ in X. The following theorem has been proved by Kwang in [7].

Theorem 1.5. ([7]) The sequence $(e^{\binom{k}{k}})_{k=1}^{\infty}$ forms a basis of Ces_p where 1 .

If a Hausdorff K-space X has $(e^{\binom{k}{k}})_{k=1}^{\infty}$ as a basis then for each $x \in X$, $x = \lim_{n \to \infty} \sum_{k=1}^{n} x_k e^{\binom{k}{k}}$ which implies that X has the AK property. Since Ces_p (1 is a K-space, the following theorem is obtained by Theorem 1.5.

Theorem 1.6. The sequence space $Ces_p(1 has the AK property.$

The β -dual of a sequence space X is defined to be $X^{\beta} = \left\{ \begin{array}{l} (y_k) \mid \sum\limits_{k=1}^{\infty} x_k y_k \quad \text{converges for all } (x_k) \in X \end{array} \right\}$ Observe that X^{β} is a subspace of W, $\Phi \subseteq X^{\beta}$, $\Phi^{\beta} = W$ and $W^{\beta} = \Phi$. In general if Y is a subspace of X, then $X^{\beta} \subseteq Y^{\beta}$.

The following theorem is known.

Theorem 1.7. (1)
$$\ell_{\infty}^{\beta} = \ell$$
,

(3)
$$c_0^{\beta} = \ell$$
,

(4)
$$\ell_p^\beta = \ell_q$$
 where $1 and $\frac{1}{p} + \frac{1}{q} = 1$,$

(5)
$$\ell^{\beta} = \ell_{\infty}$$
,

(6)
$$bv^{\theta} = cs$$
,

(7)
$$bv_o^{\theta} = bs$$
,

(8)
$$bs^{\theta} = bv$$
 and

(9)
$$cs^{\theta} = bv$$
.

If X is a BK-space containing all finite sequences, then X^β is a normed sequence space with a norm defined by

$$\|(y_k)\|_{X^{\beta}} = \sup \left\{ \left\| \sum_{k=1}^{\infty} x_k y_k \right\| + (x_k) \in X, \|(x_k)\|_{X} \le 1 \right\}$$

It is clearly seen that if X and Y are BK-spaces containing all finite sequences and Y is a normed linear subspace of X, then X^{β} is a vector subspace of Y^{β} and $\|.\|_{X^{\beta}} \geq \|.\|_{Y^{\beta}}$ on X since for $(y_k) \in X^{\beta}$,

$$\| (y_{k}) \|_{X^{\theta}} = \sup \left\{ \left\| \sum_{\substack{k=1 \ \infty}}^{\infty} x_{k} y_{k} \right\| + (x_{k}) \varepsilon X, \| (x_{k}) \|_{X} \le 1 \right\}$$

$$\ge \sup \left\{ \left\| \sum_{\substack{k=1 \ \infty}}^{\infty} x_{k} y_{k} \right\| + (x_{k}) \varepsilon Y, \| (x_{k}) \|_{X} \le 1 \right\}$$

$$= \sup \left\{ \left\| \sum_{\substack{k=1 \ \infty}}^{\infty} x_{k} y_{k} \right\| + (x_{k}) \varepsilon Y, \| (x_{k}) \|_{Y} \le 1 \right\}$$

$$= \| (y_{k}) \|_{Y^{\theta}} .$$

Having the AK property is a sufficient condition for a BK-space to have its β -dual be a BK-space.

Theorem 1.8.([10]) If X is a BK-space with AK property, then X^{β} is a BK-space.

An infinite matrix A is said to map a sequence space X into a sequence space Y, written as A: X \longrightarrow Y if Ax exists and Ax ε Y for all x ε X, that is, for every x = (x_k) ε X, $\sum_{k=1}^{\infty} A_{nk} x_k$ converges for all n ε N and $(\sum_{k=1}^{\infty} A_{nk} x_k)_{n=1}^{\infty} \varepsilon$ Y. Then for any sequence space X and for any infinite matrix A, A: X \longrightarrow W if and only if each row of A belongs to X^{\varepsilon}, that is, $(A_{nk})_{k=1}^{\infty} \varepsilon$ X^{\varepsilon} for all n ε N.

In general, matrix transformations between topological sequence spaces need not be continuous. It is well-known that matrix transformations between FK-spaces are always continuous.

Theorem 1.9.([10]) Let X and Y be topological sequence spaces and A an infinite matrix such that $A : X \longrightarrow Y$. If X and Y are FK-spaces, then A is continuous on X.

In particular, if X and Y are BK-spaces, then A is a continuous linear transformation, or equivalently,

$$\|A\| = \sup \left\{ \|Ax\|_{Y} \mid x \in X, \|x\|_{X} \le 1 \right\} < \infty.$$

The following known characterizations of infinite matrices mapping between some sequence spaces mentioned previously will be referred in this research.

Theorem 1.10.([2]) For an infinite matrix A, A: W $\longrightarrow \ell_{\infty}$ if and only if

- (i) A is row-bounded and
- (ii) sup |Ank| < ∞ for every k ∈ N .

Theorem 1.11.([2]) For an infinite matrix A, A: W \longrightarrow c if and only if

- (i) A is row-bounded and
- (ii) $\lim_{n\to\infty} A_{nk}$ exists for every $k \in \mathbb{N}$.

Theorem 1.12.([10]) Let $X = \ell_{\infty}$, c or c and A an infinite matrix. Then $A : X \longrightarrow \ell_{\infty}$ if and only if $\sup_{n} \sum_{k=1}^{\infty} |A_{nk}| < \infty$.

Theorem 1.13. (Kojima - Schur Theorem, [10]) For an infinite matrix A, $A: c \longrightarrow c$ if and only if

- (i) $\sup_{n} \sum_{k=1}^{\infty} |A_{nk}| < \infty,$
- (ii) $\lim_{n\to\infty} A_{nk}$ exists for every $k\in\mathbb{N}$ and
- (iii) $\lim_{n\to\infty} \sum_{k=1}^{n} A_{nk}$ exists.

An infinite matrix A which satisfies the condition (i) of Theorem 1.13 is called a \underline{K}_r - matrix, while if A satisfies the conditions (i), (ii) and (iii) of Theorem 1.13, A is called a <u>Kojima matrix</u>. Then a Kojima matrix is a \underline{K}_r -matrix. Note that all finite matrices, all scalar matrices, the Cesaro matrix and the Borel matrix are Kojima matrices, so all of them are \underline{K}_r -matrices. A Norlund matrix is a \underline{K}_r -matrix but it is not necessarily a Kojima matrix.

Theorem 1.14.([10]) For an infinite matrix A, A: cs → cs if and only if

- (i) $\sup_{\substack{n \\ \infty}} \sum_{k=1}^{\infty} |\sum_{i=1}^{n} A_{ik} \sum_{i=1}^{n} A_{i(k+1)}| < \infty \text{ and}$
- (ii) $\sum_{n=1}^{\infty} A_{nk}$ converges for all $k \in \mathbb{N}$.

Theorem 1.15.([10]) For an infinite matrix A, A : $\ell \longrightarrow$ cs if and only if

- (i) $\sup_{\substack{n,k\\ \infty}} |\sum_{i=1}^{n} A_{ik}| < \infty$ and
- (ii) $\sum_{n=1}^{\infty} A_{nk}$ converges for every $k \in \mathbb{N}$.

Let X and Y be sequence spaces and let A be an infinite matrix such that $A: X \longrightarrow Y$. The matrix A is said to

- (1) <u>preserve convergence</u> if for $x = (x_n) \in X$, (x_n) converges implies $Ax = ((Ax)_n)_{n=1}^{\infty}$ converges,
- (2) <u>preserve limits</u> if for $x = (x_n) \in X$, (x_n) converges implies Ax converges and $\lim_{n \to \infty} (Ax)_n = \lim_{n \to \infty} x_n$,
- (3) preserve summability if for $x = (x_n) \in X$, $\sum_{n=1}^{\infty} x_n$ converges implies $\sum_{n=1}^{\infty} (Ax)_n$ converges and
- implies $\sum_{n=1}^{\infty} (Ax)_n$ converges and $\sum_{n=1}^{\infty} (Ax)_n = \sum_{n=1}^{\infty} x_n$.

The following two theorems of limit preserving matrix transformations and sum preserving matrix transformations between some certain classical sequence spaces are well-known. Theorem 1.16. (Silverman - Toeplitz Theorem, [10]) If A is an infinite matrix, then A: $c \longrightarrow c$ and A preserves limits if and only if

- (i) $\sup_{n} \sum_{k=1}^{\infty} |A_{nk}| < \infty,$
- (ii) $\lim_{n\to\infty} A_{nk} = 0$ for every $k \in \mathbb{N}$ and
- (iii) $\lim_{n\to\infty} \sum_{k=1}^{n} A_{nk} = 1$.

An infinite matrix A which satisfies the conditions (i), (ii) and (iii) of Theorem 1.16 is called a <u>Toeplitz matrix</u>. Then every Toeplitz matrix is a Kojima matrix, so it is a K_r-matrix. The Cesaro matrix and the Borel matrix are also Toeplitz matrices. However, a finite matrix cannot be a Toeplitz matrix. The identity matrix is the only scalar matrix which is a Toeplitz matrix.

Theorem 1.17. ([10]) If A is an infinite matrix, then A: $cs \longrightarrow cs$ and A preserves sums if and only if

(i)
$$\sup_{n} \sum_{k=1}^{\infty} \left| \sum_{i=1}^{n} A_{ik} - \sum_{i=1}^{n} A_{i(k+1)} \right| < \infty \text{ and}$$

(ii)
$$\sum_{n=1}^{\infty} A_{nk} = 1$$
 for all $k \in \mathbb{N}$.