CHAPTER I

~ PRELIMINARIES

Throughout. this research our scalar field is either the field
of real numbers or the field of complex numbers. Let N denote the set
of all natural numbers.

Let x be a sequence and A an infinite matrix. For k € N, the
K" term of the sequence x is denoted by X, » and for n, k ¢ N, the
element. of A in the n“" row and k" column is denoted by A 1f ;} A X,

k=1

converges for every n € N , we say that Ax exists and let Ax be the

F = ~ th
sequence with 2 A_ x, as its n  term for every n € N , SO AX =
k=1
( Z Ankxk)n=

k=1

. Let. e be the sequence with By 5l for every k € N.
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For k ¢ N, let e™’ be the sequence such that

Yilgpidaq v ilp

(k)

g~ if oK.

If A and B are infinite matrices such that £ A_ B, converges
i=1 :

for all n,k € N, then we say that AB exists and it is defined to be

the infinite matrix C with Lam i AnlB‘k for all n,k € N.
i=1
The series 2 Ank is said to converge uniformly on n = 1,2,3,...

e ket P

if for every € > 0 , there exists k° ¢ N such that | & Ankl < €

k=k°+1

for every p,n € N.



By the Cesaro matrix we mean the infinite matirx C such that
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0 ik > n

for all n,k € N, that is ,
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An infinite matrix A is said to be row-bounded if there exists

k_ €N such that A =0 for alln e N, k>k . A column-bounded

matrix is defined similarly. A finite matrix is an infinite matrix
which is both row-bounded and column-bounded. It is clearly seen that

)
if A is the Cesaro matrix or a row-bounded matrix, then IAnk-An(k+l)l
k=1

converges uniformly on n = 12,88 5%
(k—1)
By the Borel matrix we mean the matrix A such that A_ =

(k-1)! e”
for all n, k € N. If A is the Borel matrix, then lim 2 A = 1=

n—«w k=1

sup Z |A |

n k=1

A Norlund matrix is an infinite matrix A defined by




pn—k+l if 1 S k S n,
Ank o AE:J.p‘
0 ifsde > n:g

where (p ) is a sequence of positive real numbers. Then if A is a
Norlund matrix;, then § B =l for every n € N .
k=1
The space of all sequences is denoted by W and let @ denote
the space of all finite sequences, that is,

$ = {(xk) | x, =@ for all but a finite number of k}.

The list of all the classical sequence spaces with their norms is as

follows:

Im = the space of all bounded sequences ,
ixi = sup Ix_ | ,

2, K

¢ = the space of all convergent sequences ,
Il = iy (R

o, = the space of all null sequences ,

= { (x) | lim x_ =0 } ]
kw0 .

lellca i Ix. 1

lp = the space of all sequences x = (X ) such that 3 lxklp < w

k=1
where 1 < p < «,

[ i s P i1/p
b, = (207 )

p k=1 “
L = Lthe space of all sequences X = (X ) such that 2 lxkl < o,
k=1l
Ixi = & Ix_1 ,
l k=1 )
bv = the space of all sequences of bounded variation,

{ (x,) ka - xk’ll ( = } 5

k=1



o
Il , = kgllxk-xk“l + E’E Ix, | »
by =" By &,
o o
o
bl = o I =% 4%
bvo Kei |3 k+1
bs = the space of all sequences x = (x,) such that 2 x
k=1
is a bounded series,
n
Il = sup | 2 X
e np & ¥
w
cs = the space of all sequences X = (X ) such that 2 x_
k=1
is a convergent series,
n
and Ixl_ = sup | x| .

n k=1

The Cesaro sequence spaces are as follows:

Ces = the space of all sequences x = (X ) such that
1= I
' l—lk§1lxkl )“‘1€ ip Y
i I = ( o I | 1 N ) )”p where 1 < p < ®
Cesp n=1 k=1
Ces. = the space of all sequences x = (X ) such that
( & BAndaInTii g1 el
nkwl K n=.1 o0
1 n
X = sup — AP
| IlCes“ nD 0 k§1| \

The following diagram shows the relationships under set

inclusion among the sequence spaces mentioned above:
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Note that the following statements hold :

(¥ - o -i8 & closed normed linear subspace of ¢ and ¢ = c_ + <e>
= { x+xe | x€c ,x€F } where F is the scalar field.

(2) ¢ is a closed normed linear subspace of £_ .

(3) “dw_ is a closed normed linear subspace of bv, bv = bv_ + <e>
= {x +xe | x€bv, xe¢ F} and |Ix + o<ellbv = llxllbv + |x| for all

xebvo,:xeF.

(4) cs is a closed normed linear subspace of bs.



For k ¢ N , by the k”h coordinate mapping we mean the mapping
p, defined by p, (x) = x,_ for each x ¢ W. A topological sequence space

X is said to be a K-space if each coordinate mapping is cont.inuous on

X. By a BK-space we mean a Banach sequence space which is a K-space.
It is easy to see that if X is one of the classical sequence spaces
and the Cesaro sequence spaces, then for each k € N , there exists
x >0 such that kal e “k"XH for every x € X. Therefore all of
the classical sequence spaces and the Cesaro sequence spaces are
K-spaces. It is known that all of the classical sequence spaces are

Banach spaces. Hence we have the following theorem.

Theorem 1.1. The sequence spaces 2“ v Cy 29(1 < pisim), R, by,

bvo, bs and cs are BK-spaces.

A proof that the Cesaro sequence spaces are Banach spaces
has been given by Leibowitz in (81. Therefore the following theorem

is obtained.

Theorem 1.2. The sequence spaces Cesp(l <p<ow and Ces_ are

BK-spaces.

A metric d on a vector space X is said to be invariant if
d(x,y) = dix=y, 0 for all x, y ¢ X. A topological vector space X is

said to be an F-space if its topology is induced by a complete

9
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invariant metric. By an FK-space we mean a topological sequence space
which is both an F-space and a K-space. Hence every BK-spuce is an FK-
space. Therefore, by Theorem 1.1 and Theorem 1.2, all of the classical
sequence spaces and the Cesaro sequence spaces are FK-spaces.

The following theorem of FK-spaces is known.

Theorem 1.3. (C101) Let X and Y be FK-spaces. If X is a subset of Y,

then the inclusion mapping from X into Y is continuous.

A topological sequence space X is said to have the AK property

n

viih N o 9 y (k)
if X contains all finite sequences and for each x € X, x = lim 2 X e
n—w k=1
in X, that is, l_i)m (X5 X s enns Xy 0, 0, 0, ...) = (X, X5 X;p «0o)y
n-7r«w
n
a & (k) e
or equivalently lim (x - Zxk e )= lim (0,0,0,...,X_, . » X_ .9 -+

n-—ro k=1 n-—reo

= (040405 &iaids
Therefore a normed sequence space X has the AK property if and
: : = (k)
only if & ¢ X and lim |Ix - Z x, @ IIx o1 0.
n=ro k=1
Not. all of the classical sequence spaces have the AK property.

It is known that c_, A Qp (1-24,. 0Kl o0)., bvo and cs have the AK property

and it will be shown that the rest of them do not have the AK property.

Theorem 1.4. The sequence spaces C_, ) kp(l <p<w , bv_ and cs

have AK property.
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n

It is easily seen that for every n € N, le - 2% e(k)lll e
n n k=1 -
je -5 e™*’l and Je=-Ze™l =2. It follows that & _, ¢
k=1 (> k=1 bv Lol

and bv do not have the AK property. Since ((--1)“)::‘=1 ¢ bs and

: n. o ® K (k)
Jit=1). ) - S (-1) e IlIDs = 1 for every m € N , we have that bs
k=1

does not have the AK property.
Let. X be a Hausdorff topological vector space. A sequence (x)

in X is said to form a basis of X if for each y € X there is a unique

0

n
sequence (A ) of scalars such that y = lim 2 e g Y A0 T | B
e nw k=1 Nat %0

The following theorem has been proved by Kwang in [71.

Theorem 1.5. (L71) The sequence (e(k))‘:=1 forms a basis of Cesp

where 1 < p < o,

If a Hausdorff K-space X has (e‘k)):_las a basis then for
each x € X , x = lin 2 X, e(“ which implies that X has the AK
nw k=1

property. Since Ces (1 < p < w) is a K-space, the following theorem

is obtained by Theorem 1.5.

Theorem 1.6. The sequence space Cesp(l < p < =) has the AK property.

The B-dual of a sequence space X is defined to be

e { (y ) | Z x.y, converges for all (x ) € X}
k=1
A

Observe that x” is a subspace of W, § C x", $ = W and W= g,

In general if Y is a subspace of X, then Xﬁ (- ¥ .
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The following theorem is known.

Theorem 1.7. (1)

2)
(3)
(4)
(5)
(8)
(7)
(8)

(9)

1]

lq where 1 < p < o« and

|
&
i
1}
==Y
-

cs ,

bv and

B

If X is a BK-space containing all finite sequences, then Xﬁ is

a normed sequence space with a norm defined by

Iy e =

sup{ | Zxy LA x) X, IOl < 1}

k=1

It is clearly seen that if X and Y are BK-spaces containing

all finite sequences and Y is a normed linear subspace of X, then x”

is a vector subspace of Ypand H.pr > ".“Yp on X since for ky,) € Xﬁ,

ORI

v

sup { Ikélxkykl | (x,)€X, Il(xk)llx <1 }

sup { Ikg xy | | x)ey, “(xk)"x <) }
;1

sup { Ikglxkykl | (x )eY, H(xk)llY & }

Iyl e

Having the AK property is a sufficient condition for a BK-space

to have its B-dual be a BK-space.
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Theorem 1.8.(C101) If X is a BK-space with AK property, then x° is a

BK-space.

An infinite matrix A is said to map a sequence space X into
a sequence space Y, written as A : X — Y if Ax exists and Ax € Y
for all x ¢ X, that is, for every x = (x.) € X, > A X, converges for

k=1

all ne Nand ¢ 3 A X, ):“e Y. Then for any sequence space X and
k=1

for any infinite matrix A, A : X —> W if and only if each row of A

o«

belongs to Xﬁ, that is, A= )0 € x” for all n € N.
In general, matrix transformations between topological sequence
spaces need not, be continuous. It is well-known that matrix trans-

formations between FK-spaces are always continuous.

Theorem 1.9.(L101) Let X and Y be topological sequence spaces and
A an infinite matrix such t,hatf A:X — Y. If X and Y are FK-spaces,
then A is continuous on X.

In particular, if X and Y are BK-spaces, then A is a continuous
linear transformation, or equivalently,

Al = sup{ IleIIY . xe X, IIXIIX < 1} < oo,

The following known characterizations of infinite matrices
mapping between some sequence spaces ment.ioned previously will be

referred in this research.
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Theorem 1.10.([21) For an infinite matrix A, A : W —> iw if and only if

(i) A is row-bounded and

(i) sup |A_, | < w for every kK ¢ N .
n

Theorem 1.11.([21) For an infinite matrix A, A : W — ¢ if and only if
(i) A is row-bounded and
(ii) lim A exists for every k € N.
n—7c
Theorem 1.12.(C101) Let X = 2“, corec, and A an infinite matrix.Then
A: X — 1" if and only if sup 2 |A | < =.

n k=1

Theorem 1.13.(Kojima - Schur Theorem, [101) For an infinite matrix A,

A:c—>c¢ if and only if

(1) sup 2 IAnkl (e,

n k=1

(ii) lim A exists for every k ¢ N and

n-’0
00

(1ii1) lim X4 ) exists .
now k=1 4 Z

An infinite matrix A which satisfies the condition (i) of Theoren

1.13 is called a K - matrix, while if A satisfies the conditions (i), (ii)

and (iii) of Theorem 1.13, A is called a Kojima matrix. Then a Kojima
matrix is a Kr-matrix. Note that all finite matrices, all scalar matrices,
the Cesaro matrix and the Borel matrix are Kojima matrices, so all of
them are K_-matrices. A Norlund matrix is a K_-matrix but it is not

necessarily a Kojima matrix.
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Theorem 1.14.(C101) For an infinite matrix A, A : cs —> cs if and

only if
o0 n n
(i) sgp kgxlsng‘k -‘§1Ai(k+l)l < o and
Gay 2 A_, converges for all k € N .
n=1
Theorem 1.15.(CL101) For an infinite matrix A, A : £ — cs if and
only if

n
(i) sw)IZAm|<co and

n,k i=1

(ii) X A, converges for every k € N.

n=1

Let X and Y be sequence spaces and let A be an infinite matrix
such that A : X — Y. The matrix A is said to

(1) preserve convergence if for x = (X)) € X, (x_ ) converges
implies Ax ( = ((AX)n):=1) converges ,

(2) preserve limits if for x = (X)) € X, (x_) converges

implies Ax converges and lim (AX) = lim x_ ,

n—rn0 n—eo
o

(3) preserve summability if forx=1(x) € X, & x_ converges

n=1

implies Z (Ax) ~ converges and

n=1
[

(4) preserve sums if for x = (x ) € Xy X converges
k=1

implies & (Ax)  converges and. 2 (AW) . = Sam

n=1 n=1 n=1

The following two theorems of limit preserving matrix trans-
formations and sum preserving matrix transformations between some

certain classical sequence spaces are well-known.

018829
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Theorem 1.16. (Silverman - Toeplitz Theorem, [101) If A is an infinite
matrix, then A : ¢ — ¢ and A preserves limits if and only if

(i) sup 2 |A_ | < =,

n k=1

(ii) « Xim A = .0 for every k € N and
n-—o0

(11D . Jins 2 R &

now k=1

An infinite matrix A which satisfies the conditions (i), (ii)
and (iii) of Theorem 1.16 is called a Toeplitz matrix. Then every
Toeplitz matrix is a Kojima matrix, so it is a K_-matrix. The Cesaro
matrix and the Borel matrix are also Toeplitz matrices. However,

a finite matrix cannot be a Toeplitz matrix. The identity matrix is

the only scalar matrix which is a Toeplitz matrix.

Theorem 1.17. (C101) If A is an infinite matrix, then A : cs8 —> Ccs
and A preserves sums if and only if

o0 n n
(i) sup 2 h b Al = A‘(R+1)I < w and
i=1

n k=1 1=1

(i) 2 &HULALS for all ke N .

n=1
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