CHAPTER IV

THE CLASSICAL SEQUENCE SPACES

The classical sequence spaces are listed in Chapter I.In this
chapter, convergence preserving matrix transformations,limit preserving
matrix transformations, summability preserving matrix transformat.ions
and sum preserving matrix transformations from each of the classical
sequence spaces into kw are characterized.

A necessary condition for an infinite matrice A to map a
sequence space X into any sequence space is that each row of A is
in the P-dual of X ( see Chapter I, page 13 ), so we have seen that
the B-duals of sequence spaces play an important role in studying
matrix transformations. The first section of this chapter gives some
properties of the B-duals of the classical sequence spaces which will

be used for the remaining sections.

4.1 SOME PROPERTIES OF PA-DUALS

All of the classical sequence spaces are BK-spaces containing
all finite sequences.The norm of the p-dual of a BK-space which contains
all finite sequences is given in Chapter I. Theorem 1.7 of Chapter I shows

that the B-dual of each of the classical sequence space is one of the



29
classical sequence spaces. We show in this section that if X and Y are
classical sequence spaces such that x° = Y, then Il.le,s is equivalent to
"'“v . In fact, there are some sequence spaces X with l|.||xp = ll.llY :
As a corollary, we give equivalent st,a.t.ément,s for bounded sets in the

B-dual of each of the classical sequence spaces.

Propogition 4.1,1. (1) ¢, =t and Kds ~ 1.1,
o
7 Bl o
(ii) Rp = £q and “'"213 ~ II.IIZ where 1 < p ( =
W i o
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(ix) bs” = by, and .l a~ -0

°

Proof: The first part of each'of (i)=-(ix) follows from Theorem 1.7.

By Theorem 1.1 all of the classical sequence spaces are BK-spaces. By

Theorem 1.4, the sequence spaces C_, kp(1<p(m), L, bv_ and cs have the

AK property. It follows from Theorem 1.8 that (CZ* |I.l|cp ),(QZ'II.IIl,; )
0

o)

8 _ V-] a > 2 o
] ".lllp), v, "'"bvf) and (cs , “.“csp) are BK-spaces. But c L.

B g ! 1 e _ oes e S
lpu lq wheral-)-+a =1, &4 =2 , bvo—bsandcs bv and

" bs,. | and (bv, . ) are
(ty § "i )y (iq, Il-lleq), 2, | ||€w). ( Il Ilbs) I Ilbv

BK-spaces, so we have by Proposition 2.1 that |- “c“~ “°“l. ’ "'"15'” II.IIt,
° P q
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. ‘o~ . . ~ . and . bad . . ence ( ) . ( V .

To prove (vi) and (vii), let X = lm or c. Then x” = 2. Note that

for x) € X, Ixnl < sup kal = II(xk)IIx for all n € N. To show that
k
A (n) o«
H-pr = H-H( » let (y ) ¢ X =2 . For eachn € N, let (z ") _ be

the sequence defined by

Wy #oandi1sksn,
k
(n)

0 othervise.

n> o
€ Xand iz ) | <1. But "(yk)"xp =sup | 2xYy 1,

(n)
Then (z. )
K k=1"X IX[|$1 k=1

k

& (n) o e
so k)l e 21 2z, ¥y Ao Iy Kfarevery n ¢ N. Hence 2yl s
¢ k=1

k=1 k=1

Ity )l e . Since Iyl "= 2 1y,1 , ve bave that 1y ), s Iy )le -

k=1

If (x,) € X is such that u(xk)"x < 1, then kal < 1 for all k ¢ N ,s0

by, = 2yl 2 8 Ix i 2 |2xy| . Hence Iy )l s

k=1 k=1 k=1
=sup | 2 x | < Ity )l . Therefore Iy )l g = NIyl .
P MR R k"TQ Ju Ix® k7Y

To prove (viii), we need the following inequality:
o8 » P
(%) Ikaykl 3 Il(yk)llb%,3 for all (y ) € cs (Cbs = bv ).
To show the inequality (%), for each n € N, let (u:n)):_l be the
sequence defined by

- Mg kgn,

(n)

0 1 KD B
(n) e b d ( ‘“))“ =1
Then for every n ¢ N, (u_ ) _ € bv,and JCu O, 0 =1

b oS (n)
Therefore for (y ) € cs (y)I .= su D% |3 eSale sy |
Y, » Iy, Ibv: i Il“_1 i AL
n
= | 2y, for every n ¢ N which implies that II(yk)llb

k=1

0
el E¥. ).
wf k=1 ]
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Hence (#) holds. From (iv), bvz= bs and there exist a, b > 0 such that
(Kk) al )l € TO) N S bl (x )l for all (x,) ¢ bvi= bs.
We claim that all(yk)llcs < Il(yk)llbvus :Zbll(yk)llcs for all (y ) € bvﬁ = G
Let (y ) € bv” = cs. Since cs is a normed linear subspace of bs, ll(yk)llbs
= II(yk)llcs . Since bvo is a normed linear subspace of bv, we have that

Iyl a2z Iy ) p(see page 12, Chapter I). It then follows from Ck%)
bv bv

that "(yk)“bvp?' Il(yk)llbvpz all(yk)llbs = all(yk)llcs. Next, let (x ) € bv

be such that Il(xk)ll < 1. Since bv = bv_ + <e>, (x ) = (z) +xe for
i bv © k K
some (z ) € bv_ and some scalar x. Then [l (x )l = - bz Yl + x|
k ° k "pv ¥ by

(see page 8, Chapter I). 1t follows from ll(xk)llb < 1 that ll(zk)llb &z
v “

and |x| ¢ 1. Hence

| Sxy, | =~z 30«2, I
k=1 k=1 k=1
s |z i<z v |
k=1 k=1
(y.) t
< Iy, nb%p l%iykl
(y,) + ) (from (%))
s Iy, Hb%p Iy, nb%f
Fl168 ll(yk)_llm“,‘j
< (from (4k)
< 2b Iyl (from (%))
= 2b Iyl g

which implies that ll(yk)ll a s obll(y )l . Therefore we have the claim
bv k cs

and hence ., ~ Il _ -
bv cs
Next we shall prove (ix). We have by Theorem 1.7 that bsﬁ = bv,.
By (v), cs” = bv and there exists a > 0 such that allxllbv < llxllcss for

all x € bv. We claim that all(yk)llbvs Il(yk)llbs,s II(yk)Ilbv for all

(y,) € bsﬁ, which implies that “'“bs"~ ll.IIbV . Since cs is a
o
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normed linear subspace of bs, we have that [(y )| ,< Iy )l for all
k Tcs k' pgf
V]
(y,) € bs . Hence we have that all(yk)llbv° = all(yk)llbv < u(yk)ucaps
M(yk)llb p for all (y) € bs”. Next., let (y,) € bs”. Note that for any
S

sequences (u ), (v ) we have by induction that

n n—1 m n
o BV =0 UL N S B R > u_ v for every n € N.
k=1 m=1 k=1 k=1

which implies that

n n-1 m n .

) [Z2uv | g Zauliv -v |+ Zully] for every n e N.
k=1 m=1 k=1 k=1

Let (%1€ bs be such that H(xk)ubs < 1. Then |2 xkl TR L o)

k=1

ull w ¢ N. Hence by (), we huve

n n—g1
k). e xkykl < D lym - ym+1| + lynl for every n ¢ IN.
k=1 m=1
Since (y ) € bv_, Wy Hl/ /P=21y, =X, ,! and lim y = 0. It then
= bvo k=1 k00

follows from (¥%) that | % xkykl £ H(yk)n .This proves that | & x y |
bV° k=1 Rk

k=1
s n(yk)ub%for every (x, ) € bs such that Ix 00, s 1. Thus Iyl s s
[y )l . Hence we have the claim. #
- hy

Corollary 4.1.2. Let S be a nonempty set of sequences. Then:

(i) Sccl and sup Ixl 4< @ if and only if sup & Ix | < w.
xXeS cq xeS k=1

(ii) For 1 < p<w , S C 2: and sup MleB ¢ w if and only if

X xXe¢S P
sup E | x |® ¢ @ where i + i £ 1.,
xeS k=1 ¥ p q
(iii) s ¢ £ and sup “X"tﬂ< w if and only if sup (sup |x |) < .
xXeS XES k

(iv) S C bvz and sup qub p< o if and only if sup (sup| 2 Xkl )

xeS b A xeS n k=1

(v) 8¢ cs” and sup Hxﬂcsp < w if and only if
XeS

| + 1lim |xk| ) < o,

[ R ]

(-]
sup ( 5 1% ~x
h=1

xeS

(k+1)
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(vi) Sc £° and sup Ixl,p ¢ w if and only if sup .S Ix | < =.
" xeS e R it

2 i B : ; <
(vii) S ¢ ¢ and sup llxllc,a ¢ o if and only if sup 2 Ix | < e
xeS xeS k=1

s in e R € ET e bv” , then sup "X”bv” ¢ w if and only if

xXES

n
sup (sup 2 x 1) < o,
xX€eS n k=1

1) If §.c bsﬁ, then sup lxl < = if and only if

xS bs
(=]

sup 2. lxk-xk+1| <" oa,
xeS k=1

Proof: By the fact that if X is a normed linear space and e, and

I, are equivalent norms on X, then the bounded subsets of (X, [.l )

1

coincide with the bounded subsets of X, |I.1,), we have that (i)=-(ix)

<
“

hold respectively by (i)-(ix) of Proposition 4.1.1. #
4.2 CONVERGENCE PRESERVING MATRIX TRANFORMATIONS

As mentioned in Chapter I, all of the nine classical sequence
spaces are BK-spaces containing all finite sequences. Among these
sequence spaces, only C_, lp(; W PIVNR) I Ehs bv° and cs have the AK
property. To characterize a convergence preserving matrix transformation
from each of these five sequence spaces into km, we need the following two

lemmas. The first lemma is used to prove the second one.

Lemma 4.2.1. Let X be a BK-space containing all finite sequences and A

an infinite matrix. Then A:X—>Z% if and only if (Ank):_1 e x° for

every n ¢ N and sup [(A )7

n

Proof: Assume that A : X — 2“. Then (A_)

nk)k=1"xF $oa

% -]
vai€ X for every n € N.
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Since X and {_are BK-spaces, by Theorem 1.9, [All = sup [Ax]

lIxll< 1 ®

Then

sup (sup | 2 A_ x| )

1Al
e S e PR M

sup(sup |12 A x| )
n XIS k=2 °F K

It

sup 1A )0 I s -

n

Hence sup Il CA | g € & .

kk-lx

For the converse, assume that (A_,) € x? for every n € N

«
k k=1

E ™ 2]
s k‘lﬂ < o . Since (A ), _ € X for every n ¢ N,

and sup [l cA

we have that A : X — W. Since for every y = (y ) € X with Hyux < §

TN -

k k=1

and for every m € N, | SA_ ¥y, | s sup | oA
k=1

[Ix]fs k=1 "%

sup Il CA | ¢ o, we have that sup | 2 A |y | < «» for every
n

ok’ kes X P p.

¥y eX such that Hyux < 1. This proves that Ay € 2“ for every

Vi€ X, Hynx < 1. Hence Ay € lw forall ye X, soA:X -— %8 . #

Lewma 4.2.2. Let X be a BK-space having the AK property and A an

infinite matrix. Then A:X——éﬂw and A preserves convergence if and only if

«

s A y 0
(G SRR Y ol b et b for every n € N and sgp "(Ank)k=1"xﬂ < w and

(i) lim A exists for every k € N .
NP0

If this is the case, lim (AX) > (xklim Ko for every

n—re k=1 n-ree

convergent sequence x=(x ) € X.

proof: First, we note that for (x) € ¢, |lim xkl = lim Ix | <
= K=o k-
sup Ix | = H(xk)H6 If follows that (x ) lim x,_ is a cont inuous
Kk k-

linear functional on c¢. Assume that A : X — & and A preserves

convergence. Then (i) holds by Lemma 4.2.1. Since X has the AK property,
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e’ ¢ X for all k € N. Hence (ii) holds by Proposition 2.3(i).

Conversely, assume that (i) and (ii) hold. By Lemma 4.2.1, we

have that A : x-—»tw. Next, let x = (x, ) € X N c. Since X has the AK

n

property, x = lim 2 xke(k) in X. Since X and 2 _ are BK-spaces, by

n- k=1

Theorem 1.9, A is a continuous linear transformation on X.This implies

that Ax = lim % X, ae‘®’ in Ew. By (ii), (A )”=1€ ¢ for every k € N.

nk n
n—w k=1

But Ae‘*’ = (a

n

(k)
for every k e N, so 2 X, Ae ¢ ¢ for every
k=1

)DO
nk n=1
n € N. Since ¢ is a closed linear subspace of lm , it follows that

n m
% k) « = 0
lin 2 xkAe( € c. Henfe Ak ¢ c aad=t(Ax) ) .= lim 2 X (A ))
g mree k=1

nk n=1
n—w k=1

in ¢. Since the map f defined on ¢ by f((xk)) =213 X, is continuous
k—w

linear functional on ¢, we have that

f( ((Ax)n):ti)

= f( lim 2 - SEEY 54 )

nk n=1
m-re k=1

lim (AX)

n-7200

m
= iif kaxkf( A=)

== (xkllm A

m-w k=1 n-—ro
gD (xkllm Adg?
k=1 n—o0 .

These prove that A pteserves convergence and lim (Ax) = 2 (xklim AL

n—w k=1 n-ew

for every convergent sequence x = (x,) € X , as required. #

Theorem 4.2.3. For an infinite watrix A, A:c — tm and A preserves

convergence if and only if
(1) sup Z IA_ | < e and
n k=1 &

(ii) lim A, exists for every k € N.

n—ow

Proof: We have by Corollary 4.1.2(i) that sup 2 IAnkl ¢ w if and

n k=1

.
(T T Sl SO VI . R S
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only if (Ank)

=) «w
o - for every n € N and sup "(Ank)k=1"cp <{ w. Hence

n [

by Lemma 4.2.2, the theorem is proved. #

Theorem 4.2.4. For an infinite matrix A, A : ﬂp —> £ (1 < p < « and
A preserves convergence if and only if

(1) sup 2 |A qu { « where 1 + L 1 and
n k=1 » p q

(i) lim A, exists for every k € N.
n-»0
Proof: By Corollary 4.1.2 (ii), we have that sup 2 IAnklq <o

n k=1
1 1 3 ’
where 5 + g =1 if and-enly if (B — € 2: for every n € N and
sup Il(Ank):=1" p < «@. Hence the theorem is proved by Lemma 4.2.2. #

Theorem 4.2.5. For an infinite matrix A, A : £ — km and A preserves

convergence if and only if

(i) sup IAM‘I < w and

N k

(ii) lim A exists for all k € N.

n-—s00

Proof: It follows from Corollary 4.1.2(iii) that sup |A_ | < if

n, k

o« 8 o0
. £” for every n € N and sug ||(Ank)k=1II£ < oo,

and only if (A )

Hence the theorem holds from Lemma 4.2.2. #

Theorem 4.2.6. For an infinite matrix A, A : bvo —> Qm and A preserves

convergence if and only if

(i) sup | ZAnkl < w and

m,n k=1

(i) lim AL exists for every k € N.

n—ro0

Proof: We have from Corollary 4.1.2(iv) that sup | A, ] <=

m,n k=1
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oo

I
k=1 B
n b VO

if and only if (Ank):=1€ bvz for every n € N and sup Ica )

< w., By Lemma 4.2.2, the theorem holds. #

To characterize any convergence preserving matrix A : cs — £ ,

we need one more lemma as follows :

Lemma 4.2.7. If A is an infinite matrix such that sup 2 lA_, -A

k
& e nik+1)

< w and (Ank):_ is bounded for every k ¢ N , then

=1

sup ( 2 lAnu'An(ku)' t Sl:plAnkl ) s,

n k=1

| <M for every n € N.

Proof: Let M > 0 be such that § IAnk - A

Be'd ni(k+1)
By assumption, sup IAnkI (' w for every k €¢ N. Let K = sup |An1l'
n n
We claim that kg‘lIAnk— An(k+1)| + sBp |Ank| < 2M + K for every n € N.
For m, n ¢ N, m > 1, we have IAn1 - Anml < r%z'A““ - An(k+1)l <
koé:llAnk - An(k+1)| <M 7s6 IAnmI < M+ IAnll < M+ K for every m,

n € N. Then sup lAnkl < M+ K for every n € N. Hence we have the
k

claim. This implies that sup ( L IAnk - A
[ 5 T 3

k=

n(k+1)| 4 S:p'Ankl o, #

Theorem 4.2.8. For an infinite matrix A, A : cs — lw and A preserves

convergence if and only if

(i) sup 2 lA_, -A | ¢ =« and

= Pt n(k+1)
(ii) lim A exists for every k € N.

n—ro
«

Proof: Recall that bv = {(xk) R ka—xk+1| ( = } with Ihex ol =
k=1
> ka—xkﬂl + lim kal. Assume that A : ¢s — £ and A preserves
k=1 k=00

“

P V2]
convergence. By Lemma 4.2.2, (ii) holds, (A ), _.€cC8 for every n € N
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and sup "(Ank):=1"csu< w . We then have by Corollary 4.1.2(v) that
n
S:p (kgllAnk_An(k+1)| * iiﬂ IAnkl ) < @, lhen Sﬁp k§‘|Ank-An(k+1)| Li89s

Thus (i) holds.

oo

For the converse, assume that (i) and (ii) hold. Then (A ) _ .

¢ bv for every n € N. By (i), (ii) and Lemma 4.2.7, we have that

@

sup ( > 1A _-A | + sup |A_ | ) ¢ o . Therefore
k

k
- P nk n(k+1)

sup ( DA =A .., 1B A L] ) < since lim |A | < sgp A, |

n k=1 K- k-0

¢ » for every n € N. We then have by Corollary 4.1.2(v) that (A )T

- Y
€ cs for every n € N and sup "(Ank)k=1“csp< w. By Lemma 4.2.2 ,
n

At Ccs — km and A preserves convergence. #

By Theorem 1.12 and Theorem 1.13, we have respectively that for
an infinite matrix A, A : lm -— 2“ if and only if sup 2 lAnkI < ™
n k=1

and A : ¢ — ¢ if and only if sup £ lAnkI oo el AL exists for

n k=1 n-so

all k ¢ N and lim 2 A exists. It then follows that A : km - &
n—e k=1
and A(c) C ¢ if and only if A : ¢ —> ¢. It is obvious that A : ¢ — IN

and A preserves convergence if and only if A : ¢ — c. We have the

following theorem.

Theorem 4.2.9. If X is 2_or c, then for an infinite matrix A, A:X——>£m

and A preserves convergence if and only if

(i) sup- % & o K.,

n k=1

(i) lim A exists for every k € N and

n-—oo
o0

(iii) lim 2 A exists.
nk

n—e k=1
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We have characterized convergence preserving infinite matrices

from bv_ into £ in Theorem 4.2.6. To characterize such matrices from
bv into IZN, we use this characterization, the fact that bv = bv° + <e>

and the following lemma.

Lemma 4.2.10. Let X be a sequence space and A an infinite matrix.

o

Then A:X—-)JZN , A preserves convergence on X and lim 2 A . exists

n-e k=1

if and only if A : X#<e> — km and A preserves convergence on X+<e>.

Proof: Assume that A:X—-)iw, A preserves convergence on X and lim 2 A,
n—w k=1

exists. Then ( Z A ) _€c. But Ae= ¢ Z A ) _

, S0 Ae ¢ cCd
kel k=1 g

1
which implies that A : X + <e> — £ . By assumption, A(X Nc) Cc .
Sinceec c, (X+<ad)Nec=(XNc) +<e>. But AXNo) ¢c and
Ae € ¢, so we have A((X + <e>) N¢) = AKX Nec) + <e>) € c. Hence
A X + <e) - kw and A preserves convergence on X + <e>.

The converse follows from the fact that e € ¢ and Ae = ( E: ki E #

nk n=1"
k=1

From Theorem 4.2.6 and Lemma 4.2.10, we have the following

theoremn.

Theorem 4.2.11. For an infinite matrix A, A : bv — £ and A preserves
convergence if and only if

m
(i) sup | ZAnkl { w,

m,n k=1

(i) lim Ao exists for all k € N and

n-w
o«

(i) lime 3 R exists.

n—we k=1
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Recall that the Cesaro matrix, finite matrices, scalar matrices,
the Borel matrix, Norlund matrices, Kojima matrices and Toeplitz matrices
are in the class of K _-matrices and the Cesaro matrix and row-bounded

matrices are in the class of matrices A such that 2 lAnk—A
k=1

n(k+1)|
converges uniformly on n = 1, 2, 3, .... The purpose of the next two
theorems is to characterize an infinite matrix A in these two classes
such that A:bs — iw and A preserves convergence. The general case is

still an open problem. We first give necessary and sufficient conditions

on an infinite matrix A guaranteeing A : bs — kw.

Lemma 4.2.12. For an infinite matrix A, A : bs — QN if and only if

(1) lim A =0 for all n ¢ N and

k=00
(ii) sup 2 lAnk_An(k+1)I 1) (el
n k=1
0 -
Proof: Assume that A : bs -— kw. By Lemna 4.2.1, (A_ ) _. € bs

for all n € N and sup | (A k): 5 < e . Hence (ii) holds by
f i P

Corollary 4.1.2(ix). But bs” = bv° and bv° cc_, SO we have that

(A_)._,€c_ forallneN Hence (i) holds.

For the converse, assume that (i) and (ii) hold. Then by (i),

(Ank)zsle c_ for all n € N. From (ii), we have that (Ank):_le bv for

€ bv_ for all n € N since bv_ = bvNc,.

all n € N. Hence (A_ )

Since bs” = bv_, it follows that (Ank)“=1€ bs’ for all n € N. By (ii)

k

and Corollary 4.1.2(ix), sup [[(A o p ¢ . Hence by Lemma 4.2.1,
x5 s

nk k=1 bs

A : bs — lw. #
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To characterize convergence preserving Kr—mat.rices we need

the following two lemmas.

Lemnma 4.‘2.13. baN.e g Bia
Proof: Let (x ) € bs N ¢. Then ( gjxk)::lis a bounded sequence.
k=1
First, we assume that (x ) is a real sequence. If there exists n, €N
such that X 20 forall N2 norx <0 for all n > n_, then § X, is
i=1

a convergent series which implies that (x ) ¢ c_. For the case that

2= >0 for infinitely many n and x_ < O for infinitely many n, let (x_ )

and (x_, ) be subsequences of (x_) such that x > 0 for all k € N and

X < 0 for all k € N. Since (x ) € ¢, we have that 0 < lim x _ = lim x
mk n nk n
K= N0

= lim x <" 0. HenceAim X =8 .50 (X.N€ C .
mk ? n n o

k-7 n-ro

For the general case, let B W= (y ) + i(zn) where (x ) and
(y) are real sequences. Since (X ) € bs N ¢, we have that (y)) and

(z ) ¢ bs N c. From the above proof (y ), (z ) € c_. and hence (x ) € c_. #
- n n o n o

Lemma 4.2.14. Let X be a linear subspace of 2“ and A a K_ matrix.
Then the following statements hold:

(i) A : X — ﬂm and

(ii) A is continuos on (X,|l.l) where |.ll is the restriction of

II.II( to X.

@ o0
Proof: Since A is a Kr—matrix, sup 2 IAnkl ¢ e For x = (X ) € X,
n k=1

we have that 2 |A_ x | < & 18 sup|x, | < = for every n € N. Hence
k=1 k=1 k

for each x = (x,) € X, % A_ X  converges for all n € N, sO AX exists
k=1
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for every x € X. It follows from the above inequality that for x =
(xk) € X,

(%) P Ankxkl < (sup 2 IAmkI) Il for all n € N.

k=1 m k=1

Since for x = ()8 X, BX5= ( boss W D)

nk'k n=1?

“w

the inequality (¥) yields
that Ax ¢ Qw for every x € X. Hence A : X — Im. It follows from (%)

that HAx“l < (sup 2 lAnkI) x|l which implies that A is continuous on X.#

@ n k=1

Theorem 4.2.15. Let A be a K_ matrix.Then the following statements hold.
(1) A2 bs -——> 2» and

(ii) A preserves convergence if and only if lim A exists

n—re

for every k € N.

Proof: By Lemma 4.2.14, we have (1).

To prove (ii), assume that A preserves convergence on bs. Since

e‘®’ ¢ bs for every k € N, by Proposition 2.3(i), lim A__ exists for

n-

every k € N.

Conversely, assume that lim Mg exists for every k € N. To show

n-—oeo

that A preserves convergence, let (x,) € bs N ¢. By Lemma 4.2.13, bs N c

cc,. Let ||.]] be the restriction of H.Hc to bs N ¢. Since c, has the AK
property and ¢ bs N ¢, it follows that (bs N c, |.l) has the AK property.

n

Then tx J= lim 2 xke(k> in (bs N ¢, |l.I). By Lemna 4.2.14, A is

n— k=1

n
Fe €k,
continuous on (bs N ¢, [.1). Then A((x)) = lim 2 X, Ae in Qm.

nw k=1

0 (k)
(A ) for every k € N, s0 Ae € C

nk n=1

But lim A , exists and Ae‘®’

n—oo

for every k ¢ N which implies that 3 xkAe(k) € c for allne N.

k=1
Since ¢ is a closed linear subspace of IN, it follows that lim 2 xkAe(k)
nw k=1



43

€ c. Hence A((x)) € c, as required. #

The following lemma is required t.o characterize a convergence

0
preserving matrix transformation A : bs — & _ where > lAnk—AMRH)I
k=1

converges uniformly onn =1, 2, 3, ...

Lemma 4.2.16. If (x ) € bs and £y, ) € bv, , then 2 4 and
k=1
) k 00

St x‘)(yk-yk“) converge and 2 XY,

k

b (- NP L),

k=1 1i=1 k=1 k=1 i=1

n
Proof: Since (x,) ¢ bs, there exists K > 0 such that e %, |.<K
i=1
for all n € N. Since (y ) € bv_, we have that 2 ly -y, ,,! < = and
k=1
) k o
lim y, = 0. It follows that Z ICZ x)y -y )l <K &1y .. ue
k-0 o 5 k=1 i=1 :SI
and then % ( 2 x )y, -¥,,,) converges. We know that 2 ¥ =
k=1 1=1 k=1
n—-1 k n n
St 5 %)y = PPN o/ XDy, for every n € N. Since ( 2 ¥ S

k=1 i=1 i=1 i=1

is a bounded sequence and lin y, =0, ve have that 1lim ( 2} x)y, =0,

n-io —: b n-w i=1
0 n -
Then 2 xy. = ¥ lin AV s RS0 X Y YL,
.2 k:l n-—re k=1 n- k=1 1i=1
b SRS T N LTk
k=1 1i=1

Theorem 4.2.17. Let A be an infinite matrix such that > IAnk—An(k“)l

k=1

converges uniformly on n = 1,2,3,.... Then A:bs—-—)!w and A preserves
convergence if and only if

(i) il A =0 for every n ¢ N and
PN

(ii) lim A exists for every k € IN.

n-— e

Proof: If A : bs — Qm and A preserves convergence, then (i) and (ii)

hold respectively by Lemma 4.2.12 and Proposition 2.3(i).
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For the converse, assume that (i) and (ii) hold. We shall

show that sgp > IAnk-An(k+1)| < =, Since % |A_ -A

k=1 k=1

h(k“)l converges

uniformly on n = 1, 2, 3, ..., there exists k_e¢ N, ko > 1 such that

L]

T 1A -A | <1 for all n € N. By (ii), (A ) _ is bounded for

nk n(k+1
k=k, ¢ 2 nk

all k ¢ N. Then there exists M > 0 such that IAnkl ¢ M for all n ¢ N

and k € 108 =30 % s ko}. Hence for each n € N,

o Krl o
kgllAnk—An(k+1) I S kgllAnk_An(k+1)| :‘E, IAnk—An(k+1)
< 24k A1
]

S0 sup 2 fA_ A {8 m.‘By Leioma 4.2.12, A : bs—-étm.

n k=1

n(k+1)

To show that A preserves convergence, let x = (x, ) € bs N c.

Then Ax = ( £ A _x)° € IN. To show that Ax € ¢, it suffices

nk k n=1
k=1

to show that ( $ A x )" _ is a Cauchy sequence. Let € > O be given.

nk k n=1
k=1

Since (x,) € bs, there exists K > 0 such that | 2 x,| < K for all

i=1

n € N. Since 2 lAnk—A
k=1

n(k+1)| converges uniformly on n = 1,2,3,...,

there exists k° €N, ko ol !

oo

€ 1
(%) > IAnk—An(k+1)l < K for all n € N.
k=k°
SlncekgllAnk—An(k+1)l converges and 312 aoH 0 for every n € N, we have
00 k
LT S e - bv_ for every n € N. By Lemma 4.2.16, kgl(’glx‘)(Ank-An(k+l)
converges and
) oo Kk
koK) 5 Aox = 3¢ 3 x’)(Ank—An(k+1)) for every n € N.
k=1 k=1 1=1
By (ii), there exists n_ € N such that
€
' - -iie—— for allm, n 2 n_and
Gk ) IAnk Amkl < AKK-D for a & 2 n_ an

all k ¢ 1,2,3,..., ko)

we have from (k%) that for m, n € N,
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k

k oo
s> o S w -
1(s§ )‘ HA nk An(k+1)) z P> ‘\1)(Amk Aln(k-0~1))l

k=1 k=1
o«
% o Z

k= i

1 k

™
>
X

i

M

>
Ed

1

I| [\02

>
k
S x,) (A -A ) = (A ~A M |

1 nik+1) mk m(k+1)

Then for m, n 2 n_, we obtain the following inequality :

Ik§1Anka —kE:lAkakl s kz-:x n(k+1)) i (A“‘k ' Am(k+1))|
g k-1 Foek
< K(;gxlA“k | +k§1|An(k+1) = Aucusis!

2 lAnk'An(k+x)l 1% 'Amu_Am(u-nal )

. (ko—l)e (k-1)€ e € )
: l‘( Kk-D ' IKEK-D ' K ' K
(from (%) and CkkK))
= €.

This proves that ( 2 Amxk):_‘is a Cauchy sequence and hence Ax € c. #
k=1

4.3 LIMIT PRESERVING MATRIX TRANFORMATIONS

Due to the fact that a limit preserving matrix transformat ion
between sequence spaces is convergence preserving, our main tools in this
section are the results of Section 4.2. Also the following two lemmas

are required.

Lemna 4.3.1. Let X be an FK-space having the AK property. 1f Lhere

exists a matrix transformation of X into & which preserves linits ,
then XNc < cg.

Proof: let A : X — QN be such that A preserves limits. Then 1im A

n—re0

=0 for every kK ¢ N by Proposition 2.3 (ii), so a®) = )" _ec

nk n=1 o

nk

for all k € N. Let x = (X ) € X N c. Then limn (AX) = lim X - Since

n-—w n—e
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n
k)

X has the AK property, x = lim 2 X, e in X. Since X and 2“ are

n—e k=1

n
FK-spaces, A is continuous on X by Theorem 1.9, so Ax = lim 2 X, ae‘™’

n—ee k=1
in £ . But ae‘™’ ¢ c_for all k € N and ¢_ is a closed linear subspace
of Qw, $0 AX € c_ which implies that lim'xn = 0. This proves that
n—-w

X Nve g C_. #

It follows from Lemma 4.3.1 that if X is a BK-space having the
AK property such that X N ¢ C c¢_, then there is no infinite matrix

mapping X into lm which preserves limits.

Lemma 4.3.2. Let X be a BK-space having the AK property such that
XNec C c and A an infinite matrix. Then A:X——-)l°° and A preserves

limits if and only if

k

«

& y .
.6 X for every n € N and bﬁp "(Ank)k-luxp < = and

(1) A )

(i1) lim A =0 for every k € N.

n-w

Proof: Assume that A : X —> 2_and A preserves limits. Then (i) and
(ii) hold by Lemma 4.2.1 and Proposition 2.3 (ii), respectively.
Conversely, assume that (i) and (ii) hold. By Leumma 4.2.1 ,

A: X — km. Let x = (x ) € XN c. Since X Nc C c, lim x_ = 0.

n-—o

By Lemma 4.2.2, AX € ¢ and lim (Ax) = > (xklim A ). Since

n-—»o k=1 n-ow

lim A _ = 0 for every k € N, we have that lim (AX) = 0 = lim x .

n—roeo n—oo n—w

Hence A preserves limits. #

Theorem 4.3.3. For an infinite matrix A, A:co—-—->£°° and A prewerves
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limits if and only if
(i) sup Z A, | < = and

n k=1

(ii) lim A %0 for every k € N.
n—rew

Froogs 3t A ' ¢ == ﬁw and A preserves limits, then (i) holds by
Theorem 4.2.3 and (ii) holds by Lemma 4.3.2.

For the converse, assume that (i) and (ii) hold. By Corollary
4.1.2 (i), we have (Ank):_lc c: for every n € N and s:p "(Ank):-xucf <00,

Since ¢_ is a subspace of ¢, we have ¢, N ¢ = c_. Hence by Lemma 4.3.2,

we have that A : ¢, — 2“ and A preserves limits. #

Theorem 4.3.4. For an infinite matrix A, A:Qp—-élm(l < p < « and A
preserves limits if and only if

(1) sup 2 -|A qu { o where } = 1 and
n k=1 b p
N

S

(ii) lim A w 0 for every k ¢
Proof: If A : kp — lw and A preserves limits, then (i) holds by
Theorem 4.2.4 and (ii) holds by Lemma 4.3.2.

For the converse, assume that (i) and (ii) hold. By Corollary

4.1.2(ii), we have that (Ank):,le 2: for every n € N and

sup u(Ank):aluiﬁ < . Since & is a subspace of c_ and c_ is a
n

subspace of c, we have kp Neg= kp C c_. Hence by Lemma 4.3.2, A:Qp-——)k°°

and A preserves limits. #

Theorem 4.3.5. For an infinite matrix A, A:f—2 and A preserves limits

if and only if
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C1yVsup.chA

n, k

(ii) lim A= 0 for all k € N.

n—oo

nk I < e and

Proof: If A £ — Im and A preserves limits, then (i) and (ii)

hold respectively by Theorem 4.2.5 and Lemma 4.3.2.

Conversely, assume that (i) and (ii) hold. It follows by

©«

Corollary 4.1.2 (iii) (A ) _, € 2? for every n € N and

L

sup (A )

nk kmil
n

a subspace of ¢, £ Nc=2C c_. Then by Lemma 4.3.2 we have that

“lp < w. Since £ is a subspace of c¢_ and c_ is
A:Q— kw and A preserves limits. #

Theorem 4.3.6. For an infinite matrix A, A:bvo-—->£°° and A preserves

limits if and only if

(1) sup | TA_ | ¢ o and

m,n k=1

¢i1)  FHm A N=T0 for every k € N.

n-w

Proof: By Theorem 4.2.6 and Lemna 4.3.2, we have that if A : ..~ R
and A preserves limits, then (i) and (ii) hold.
For the converse, assume that (i) and (ii) hold. By Corollary

m=le bvz and sup || (A < oo,

4.1.2 (iv), we have that (A )

i -
3 nk k=1 bVOB

From bv_ € c_ Cc, we have that bv_ N c = bv_ C c_. Hence by Lemnma 4.3.2,

3N _oop QN and A preserves limits. #

Theorem 4.3.7. For an infinite matrix A, A:cs——>2“ and A preserves

limits if and only if

1) np 2 |A | ¢ o« and

n k=l

)ls—An(l\O )
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(i) lim A =0 for every k € N.

n—w

Proof: If A : cs —— £_ and A preserves limits, then (i) and (ii) hold
respect.ively by Theorem 4.2.8 and Lemma 4.3.2.
Conversely, assume that (i) and (ii) hold. We have by (i) that

(Ank):=1€ bv for every n € N, SO (AM):=1 ¢ c for every n € N. It

follows from Lemma 4.2.7 that sup ( R P N R B g | IAM_I) < o,

n k=1 k-0

00 B o0
By Corollary 4.1.2(v), (A ) _ € cS for every n € N and sup II(Ank)k=1l|cs,,

n

< w, Since cs Nc = ¢s C c_, by Lemma 4.3.2 , we have that. A : cs — &

.and A preserves limits. #

It is nown from Theorem 1.12 that for an infinite matrix A
and for X = £_orc, A : X — 2“ if and only if sup E} IAnkl £ . edy
n k=1
Also from Theorem 1.16, A 3 ¢ — ¢ and A preserves limits if and only
if sup § lAnkl < anlim A E0 for every k ¢ N and lim EAM = 1.
n k=1 n-»0 n—w k=1

Then for X = im or C,hd s X-—>2w and A preserves limits if and only if

Aic——>c and A preserves limits. Hence we have the following two theorems.

Theorem 4.3.8. If X is 200 or ¢, then for an infinite matrix A, A:X-——Mw

and A preserves limits if and only if

(1) sup Z 1A, ]l < =,

n k=1

(ii) 1lim A = O for every k ¢ N and
e nk

(iii) lim 2 A = i

nk
n-w k=1
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The following lemma will be used to characterize an infinite

matrix A:bv — Qm and A preserves limits. Recall that bv = bv_ + <e>.

Lemma 4.3.9. Let X be a sequence space an A an infinite matrix. Then

A:X—>*& , A preserves limits and lim 2 A =1 if and only if
nw k=1

A:X+<e>-——-)£°° and A preserves limits.

Proof: Assume that A : X — £ , A preserves limits and lin §Ank = 1
n-w k=1

By Lemma 4.2.10, A : X + {e> — Qm and A preserves convergence. To

show that A preserves limits in X + <e>, let y = (y ) € (X + <e>) N c.

Since (X + <ed) N¢c =X Nc)+<ed, y=%X+ xe for some X = (xn) eXnNe

apd some scalar x. Then Yl for all n € N. Since A preserves

limits in X, lim (AX) #= lim x . Then for every n € N, (Ay) =

n-7e N0
o

(AX) + x(Ae) = (AX)  + ol and hence
n n n g nk

I

lim (Ay) lim (Ax) + lim 2 A,

n-—w n—e now k=1

= b TRX + &
n

n—rw

=hifgl i Y3

n-ree

Therefore A preserves limits in x + <e>.

The converse follows from the fact that Ae = ( S A )"

nk n=1
k=1

and lim e = 1 -

n-—«
Theorem 4.3.10. For an infinite matrix A, A:bv-——-)lo° and A preserves
limits if and only if
(1) -sup FE Al < =,

m,n k=1

(1) LM AL = 0 for all k e N and

n—w



51

113 Lhan> R o =¥

n-o k=1

Proof: This follows from Theorem 4.3.6, Lemma 4.3.9 and the fact

that bv = bvo + <e>. #

In Section 4.2, we have characterized a convergence preserving

matrix transformation A : bs — kw which A is in the class of K-

o0

matrices or when 3 IAnk—A
k=1

(xs1, | converges uniformly on n = 1,2,3,...

In the next two theorems we characterize such a matrix A when it also

preserves limits.

Theorem 4.3.11. Let A be a K_ matrix. Then the following statements

hold:
(i) A : bs — km and

(ii) A preserves limits if and only if lim R 0 for every

n—oe

k € N.
Proof: By Lemma 4.2.14, we have (1i).
To prove (ii), assume that A preserves limits. Since e’ ¢ bs

for every k € N, by Proposition 2.3 (ii), lim A =0 for every k € N.

n—w

For the converse, assume that lim A, = 0 for all k € N.

n—w

By Theorem 4.2.15 (ii), A(bs N ¢) C c. To show A preserves limits,

let x = (x) € bs N c. By Lemna 4.2.13, bs Nccec,. Then lim x_ = O.

k-0

Let ||. ]l be the restriction of H.Mc to bs N c. Since ¢ has the AK

property, (bs N c, |I.I) has the AK property. Then x = lim 2 xke(k)

n-e k=1

in (bs N ¢, ||.I). By Lemma 4.2.14, A : bs N ¢c — kw is continuous on
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(bs Ne, I.1). Then Ax = lim 2 xkAe(“ in ¢. Since the linear functional

n— k=1

f on ¢ definded by f((y_))

lim y is continuous on ¢, it follows that

n-—o0
n
3 (k) h ’
fax) = lin S x fae ™). But feae'™’) = lim 4e'*’) =1lima_ =0
now k=1 n-e e sl
for every k ¢ N, so f(Ax) = 0. Since f(Ax) = lim (AX) , we then have

NP0

that lim (Ax) =0 = lim x_. #

n-ro n—w

Theorem 4.3.12. Let A be an infinite matrix such that 3 IAnk-An(H”l

k=1

converges uniformly on n = 1,2,3,.... Then A:bs—)!m and A preserves
limits if and only if

(1) lim AL 8 for every n € N and

k—w

(§57 Lim A =3 for every k € N.

n—rw

Proof: If A : bs — Iw and A preserves limits, then (i) and (ii)> hold
respectively by Lemma 4.2.12 and Proposition 2.3 G110

For the converse, assume that (i) and (ii) hold. By Theorem 4.2.17,
A: bs — 2“ and A(bs N ¢) C c. To show A preserves limits, let X =

(x.) € bs N c. Since bs Nc Cc_, lim x, = 0. To show lim (Ax) = 0,

k- n-xo

n
let ¢ > 0 be given. Since (x) ¢ bs there exists K > 0 such that | & X, |

k=1

< K for all n € N. Since % IAnk—An(kH)I converges uniformly on n =
k=1
. o €
1, 2, 3, ..., there exists k_ € N such that 2 IAnk—AMkH)I < 5K

k=k
k1 .
for all n ¢ N. By (ii), lim 2 IAnk—An(k“)l = 0 , so there exists

n-e k=1
n_ €N such that 2 IAnk—A | < oK

k=1

for all n > n . We have that
n(k+1) o

(A Vo ek bv_ for all n € N since .E:,IA""_A"“‘“’l converges for all

nenNand limA =0 for all n € N. By Lemna 4.2.16, 2 A X =

K00 k=1
0 k

k21(‘2':1x1)(Ank— An(k“)) for all n € N. Then forn z2n_,
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0 9 k
lng“kxkl = Ikgl(tgxxt)(Ank-AN(k-&l)l
k-1 o
< K(kgllAnk-An(k-tl)l +k§kIAnk-An(k+1)l )
€ €
CoXlemit o) &
%K * oK "

Hence lim (Ax) =0 = lin x_ , as required. #

n-—7»o n—ro0

4.4 SUMMABILITY PRESERVING MATRIX TRANSFORMATIONS

All of the classical sequence spaces which contain cs are 2“,
c, C_, bs and c¢s. Then for an infinite matrix A and for X = lw, C, C_,

csor bs, A:X-— Qm and A preserves summability if and only if

A: X — Im and A : cs — ¢s. By Theorem 1.12, if X = kw, corc,,
A:X — iw if and only if sup 2 |A | < =. By Lemma 4.2:12;
n k=1
A: bs — kw if and only if lim A=y, =0 for every n € N and
k-0
sup 2 IAnk-Ank(k+1)| ¢ w . Also by Theorem 1.14, A : ¢cs —> CS
n k=1
if and only if sup Z | 2 A Z A’(k+1>| < « and Z A, converges for
n k=1 1=1 n=1
all k ¢ N. The condit.ion that sup 2 | Z ag - 2 Ai(k+1)l < o implies
n k=1 i=1 i=1
that sup kZIIAnk-AMH”I ¢ o since for every m € N,
) » i o0 m m m—1 m— 1

kzllAlnk-Am(k+1)l = k§1|(‘§1Atk _1§1A1(k+1)) B (E:‘A & Z Al(k+1) I

L) m m m—1 m-l

¢TI B R EBLES, ~ Dkl
k=1 i=1 i=1 k=1 1i=1 i=1
00 n n
<2suwp Z|2 A~ 2 At(k+1)"
n k=1 1i=1 i=1

Hence, from these facts, the following three theorems are obtained.

Theorem 4.4.1. If X is 2“, corc,, then for an infinite matrix A,

A:X —>% and A preserves summability if and only if
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LSk Tl

5 1A,

(i) sup
n 1

k
o n

n
il -agp Bl XA - R K
i=1

n k=1 1=1

i(k+1)| ¢ o« and

¢iii) 2 A_, converges for all:k e N .

n=1

Theorem 4.4.2. For an infinite matrix A, A:cs ——9£m and A preserves

summability if and only if

n

(ijmup Z.| 24, - A

n k=1 1=1 i=1

1(k+1)| ¢ = and

(ii» X A converges for all ke N .

n=1

Theorem 4.4.3. For an infinite matrix A, A : bs — IW and A preserves

summability if and only if

(1) lim A . "0 for all n ¢ N ,
K-« i
] n n
(ii) sup 3 | Z Aoy Al < = and
n k=1 1=1 i=1

(iii) ¥ A, « converges for all k eN .
n=1
Since £ ¢ cs, we have that for an infinite matrix A, A : L — lw
and A preserves summability if and only if A : £ — cs. A characterization
of A: £ — cs has been given in Theorem 1.15 as follows: A:{-—>cs
if and only if sup | 2 A‘kl ¢ wand 2 A, converges for every k € N.
i=1

n, k n=1

Hence we have the following theorem.

Theorem 4.4.4. For an infinite matrix A, A:l-—%lN and A preserves
summability if and only if

n
Gi) - spt R Aikl < o and

n, k i=1
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(ii) § A_, converges for all k€ N .
n=1
Next, we shall characterize summability preserving matrix
transformations A : X — £ where X = 2p(1<p<m) or bv_. The spaces
2p(1<p<m) and bv_ are BK-spaces having the AK property. We first
generally characterize summability presserving matrix transformations
A X — tm where X is any BK-space with AK property. The following

two lemmas are required for this characterization.

Lemma 4.4.5. Let X be a BK-space” having the AK property and A an
infinite matrix. Then A : X — cs if and only if

n n
(i) (Z a5 € X for every n ¢ N and sup ¢ T A, )7 I p< @ and
i=1

ik k=1 ik k=1
n i=1

(1) e A, converges for every k € N.

n=1

Proof: Let B be the infinite matrix defined by

R | (1 i o 01 T < 0 5

=
i

nk

0 if k > n.

Then (BA)nk =

2

K for all n, k € N, sO { CUBRD . e o |l n € N } =

i=1

w0

{ ( § Ay X | neN }. By the definition of bs, we have that
i=1
B:bs ~—> ¥,
Assume that A : X —> cs. Then (ii) holds by Proposition 2.3(v).
Since ¢s C bs, we have that for every x € X, B(AX) exists and for n € N,
(B(AX))n= ;Bnk(AX)k= %(Ax)k = §(§Ak’x’)= g:( §Ak‘xl)

k=1 k=1 k=1 1i=1 i=1 k=1

= S (BA) X, we have that (BA)x = B(Ax) for every x € X. Hence
i=1
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BA : X — £_. By Lemma 4.2.1, ((BA) »® ¢ X° for every n ¢ N and

nk k=1

sup ¢ (BA) ) | B < w, Hence (i) holds.

nk k=1
n

Conversely, assume that (i) and (ii) hold. By (i), we have

that ((BA) )~ ¢ X° for every n € N and sup | ((BA)

nk k=1 )k=1"x9 K. o

nk
n

By Lemma 4.2.1, BA:X——ékm. To show that A : X—>cs, let x = (x) € X.

o0 ] n
Then (BA)X € 2 . But (BA)x = ( % (BA) kxk)k Rl el A %) ) L
- k=1 k=11=1
(2% A, X)) ). _., 80 we have that Ax = ( 5 i 10 € s,
i=1 k=1 k=1

This shows that A : X——>bs. By Theorem 1.9, A ¢ X — bs is continuous.

Since X has the AK property, x = lim 2 xke(k) in X. Then Ax =

n-0 k=1
n

lin £ xAe’"’ in bs. Since Ae'" = (A_)7_ for all k ¢ N, we have
N0 k=1

from (ii) that ae'™’ ¢ cs for all k ¢ N. Since cs is a closed subspace

of bs, it follows that Ax € cs. Hence A : X —> cs, as required. #

Lemma 4.4.6. Let X be a BK-space having the AK property .Then for an

infinite matrix A , A:X—-—)Jl°° and A preserves summability if and only if

; w0 ]

(1) )3 wadkinfen every n € N and sgp I A, k=1"xp < oo,
n

(11) Z b : L€ XN cs)? for every n € N and

sup | (Z A k=1" 8 ¢ w where the norm of X N cs is

n 1=1 (Xncs)

max € .| s ¥ } and

X cs

11D -2 A_, converges for every k € N .
n=1
Proof: Since cs is a BK-space with AK property, by Proposition 2.2,
X N ¢s with norm max (H.Hx 5 N.Hcs} is a BK-space with AK property.

By Lemma 4.2.1, A : X —> £ if and only if (i) holds. Also,by Lemma

4.4.5, A : X Necs — cs if and only if (ii) and (iii) hold. Hence
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A: X — Qm and A(X N cs) C ¢s if and only if (i), (ii) and (iii) hold.

Therefore the lemma is proved. #

Theorem 4.4.7. For an infinite matrix A, A:bvo——ék°° and A preserves

summability if and only if

m
(D sup | ZA, | ¢ » ,
m.nn k=1 ¥

(11) .4 ZA“‘ )

¥-]
N - (bv0 n cs) for every n ¢ N and
i=1

n
sup lCZA, 0 < w where Lhe norm of bv, 1 cs is
n 1= 1 (bvon cs’)
max { [l.|l s bl .} ané
bv, cs

(iii) X A, converges for every k € N .

n=1
Proof: By Corollary 4.1.2(iv), we have that sup | & A | <

m,n k=1

nk

€ bvz for every n € N and sup [ (A

n

if and only if (A_ )7

)W
=1 K k=1"bvﬁ
]

¢ w, Hence by Lemma 4,4.6, the theorem holds. #

Theorem 4.4.8. For an infinite matrix A, A:kp——%km and A preserves

summability if and only if
1

(i) sup Z 1A 17 ¢ e« where =+

n k=1

n
(1) ( X A
1=1

=1'

Qe

)N

-]
wlway € (& N cs) for every n € N and

n
sup ¢ oA AT ( o where the norm of £ N cs is
np i el (!.pﬁcs)fj P
mm{nml,lhhs}mﬂ
p o«
(iii) X A, converges for every k € N.
n=1

Proof: It follows by Corollary 4.1.2(ii) that sup 2 IA“klq < ®

n k=1

= 1 if and only if (A )} € 2: for every n € N and

1
where 5 + el o

L=

sup (A )" | g < e . Then by Lemma 4.4.6, the theorem holds. #

k k=1
. n = lp
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The next. theorem gives a characterization of summability
preserving matrix transformations A : bv — 2 _. To obtain this,
we use the characterization of such A where A : bv_ -— 2 and the fact

that bv = bvo + <ed.

Theorem 4.4.9. For an infinite matrix A, A : bv — £ and A preserves
summability if and only if

(1) .8up~ 13 Ankl <\ea/ )y

m,n k=1

4 L
ETT A

¥l
- (bvo Nes) for every n € N and
i=1

n
sup 1€ 2 A, )0l p ¢ w where the norm of bv, N cs is
n 1m1 (bv,nes)

s o4 )
max{ | IIbv‘ vidh Ilmi ’

(BEL)-n) A, converges for overy k ¢ N and

n=1

(iv)y - % A_, converges for every n € N .
k=1

Proof: Assume that A:bv -—— lw and A(bv N ¢s) C c¢s. Then A:bvo—->£w

and A(bv_ N cs) C cs. By Theorem 4.4.7, (i), (ii) and (iii) hold.

Since e € bv, Ae exists. But Ae = ( 2 Ank):-x' s0 (iv) holds.
¥ k=1

Conversely, assume that (i)-(iv) hold. The conditions (1),

(ii) and (iii) imply by Theorem 4.4.7 that A:bvo——->£°° and ACbv_ N cs)

o«
«w

C ¢s. From (iv), we have that Ae exists. But Ae = ( Z Py S and
k=1
m m o
w> sup | ZA | =sup(sup | A |)2 sup | SA | ,soh € L.

m, n [ § n m k=1 n k=1

Hence A : bv — Qm since bv = bvo + <e>. Since cs C c, and bv N c_
= bv_, we have that bv N cs = bv_ N cs, so A(bv N ¢s) C cs. Hence the

theorem is proved. #
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4.5 SUM PRESERVING MATRIX TRANSFORMATIONS

By Theorem 1.17, we have that for a sequence space X containing

cs, A: X — lm and A preserves sums if and only if A : X — Qw,
gop . LR A= BA
i=1

ik
n k=1 i=1

| <"oa —ande. 2 W for every k € N.

n=1

2CK+1)

Hence the following theorems are obtained respectively from Theorem 4.4.1 -

Theorem 4.4.3.

Theorem 4.5.1. If X is QN, corc, then for an infinite matrix A ,
A: X — Qw and A preserves sums if and only if

(i) sup 2 1A/ K/®y
n k=1 nn

(ii) sup T |L.ZA, -ZA
i=1

n k=1 1=1

| < w and

1(k+1)

[ 15 L ) o o], for all k € N.

n=1

Theorem 4.5.2. For an infinite matrix A, A : ¢cs — 2“ and A preserves

sums if and only if
(1) sufUBULBLA)NCr RN, LN | < w and
n k=1 i=1 1=1

(11) ) wp A # 1 for all k € N.

n=1

Theorem 4.5.3. For an infinite matrix A, A : bs — £ and A preserves
sums if and only if

(1) lim A =0 forall ne N,

P nk
L n n
(& FRYERE T I i T S A pesy | C 2 and
n hwl =1 1=1

T s A, =1 for all k € N.

n=1
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lin 8 x_ fae'"). since fae'"" = £ (A_)"_ ) =T aA_ =1 for
n=1

nk n=1
nsw k=1

o )
all k € N, we have that ¥ (Ax) =2 X, . Hence A preserves sums, as required.
n=1 k=1

Theorem 4.5.5. For an infinite matrix A, A : £ — & and A preserves
sums if and only if

n
(1) “"sup | 2 Ay | ¢~ and

n;ok i=1
(i) Z A =1 forall k ¢ n.
n=1
Proof: Since & C cs, & N.cs'=/4,/ Jet .|l = max {"'"1 : lI.Ilcs} on £.
By Proposition 2.2 (£, |l.lI) is a BK-space. By Proposition 2.1, ||.|| ~ II.II¢ .
This implies that |.| ACRNS g on t°
, 1) (1, Il.lll)
Assume that A ¢ 2 — !2 and A preserves sums.By Lemma 4.5.4,
(ii) holds and ( Z A“( : G 2% for every n ¢ N and sup II(‘Z‘A‘k k_Illu "")
< w ., But .| ~ i B, SO sup |« 2 I
o, P (2,04, it el i, )P

{ @ , By Corollary 4.1.2 (iii), we have that sup | 2 A | < =« .

n,k i=1

1k

Hence (i) holds.

Conversely, assume that (i) and (ii) hold. By Corollary 4.1.2

n n
s o o ) B
(iii, (E,A“‘)" hoy 2" for every n € N and s:p II(EIIA“( e 1lllp { oa.
Then sup |l ( 2 A l|| < w. Since for n,k e N, A =
n te 1 e ks (2,0 ) b
n n*s n
SR RN, Syp Al s 2sup | £A | < By Corollary 4.1.2(iii),
i=1 ik i=1 Wk n, k i=1
(Ank)k_l ¢ £° for every n € N and sgp l((Ank)kHIILf, < w. Hence

by Lemma 4.5.4, A : £ —> 2 _and A preserves suus. #

Theorem 4.5.6. For an infinite matrix A, A : bvo - Qm and A preserves

sums if and only if
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il -mup . A A kA

m,n k=1
n
Cladde £C22) A;k):-1€ (bv_ N cs)” for every n € N and
1i=1
sup Il € Z A p < w» where the norm of bv N cs is
i =1 (bvncs) o

max {Il.lle° : II.Ilcs) and

i1 3 IR | for every k € N.

n=1

Proof: It follows directly from Lemma 4.5.4 and Corollary 4.1.2(iv). #

Theorem 4.5.7. For an infinite matrix A, A : kp — lw and A preserves

sums if and only if

(i) sup 2 |A_ |q ¢ w  uhere - + L 1
n k=1
(1 )i Z A’k 8 (zp nes)’ for every n € N and
i=1
; ( < ere t N cs is
S&p I § A ) “’Jul r‘cs) » where the norm of kp cs i
wax{ -1, Il.llcs} and
p o0
ey D, IPG for every k € N.
n=1

Proof: It follows directly from Lemma 4.5.4 and Proposition A e2(11) 4%

Theorem 4.5.8. For an infinite matrix A, A : bv — 2" and A preserves
sums if and only if

m
(1) “supt | =2 A k| ( o

m,n k=1

i B
(ii) 2 ) o € by, 0O c8) for every n € N and

sup || ( Z A < w where the norm of bv_ N cs is

l
o “ u< k=1 (bv, nCS)P

umx{HJ%%. HJ%S}.

CI8iY b A . =8 for every k € N and
n=1

Cdv)i...2, A_, converges for every n € N.
k=1
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Proof: If A : bv — Qw and A preserves sums, then (i) - (iv) hold
by Theorem 4.4.9 and Proposition 2.3 (vi).
For the converse assume that (i) - (iv) hold. Then A : bv — £

and A(bv N ¢s) C ¢s by Theorem 4.4.9. By Theorem 4.5.6, A preserves

sums on bvo. But bvo N es = bv N ¢cs, so A preserves sums on bv. #



	Chapter IV The Classical Sequence Spaces

