CHAPTER IV
THE CLASSICAL SEQUENCE SPACES

The classical séquence spaces are listed in Chapter I.In this
chapter, convergence preserving matrix transformations,limit preserving
matrix transformations, summability preserving matrix transformations
and sum preserving matrix transformations from each of the classical
sequence spaces into &  are characterized.

A necessary condition for an infinite matrix A to map a
sequence space X into any sequence space is that each row of A is
in the B-dual of X ( see Chapter I, page 13 ), so we have seen that
the B-duals of sequence spaces play an important role in studying
mabtrix transformations. The first section of this chapter gives some
properties of the p-duals of the classical sequence spaces which will

be used for the remaining sections.
4.1 SOME PROPERTIES OF A-DUALS

All of the classical sequence spaces are BK-spaces containing
all finite sequences.The norm of the P-dual of a BK-space which contains
all finite sequences is given in Chapter I. Theorem 1.7 of Chapter I shows

that the B-dual of each of the classical sequence space is one of the
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Theorem 5.1.2. For an infinite matrix A, A:Cesp-——>£m (1 < p< = and A

preserves limits if and only if
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Theorem 5.1.3. For an infinite 'matrix A, A:Cesp——ékm (1 < p< o« and A

preserves summability if and only if
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Theorem 5.1.4. For an infinite matrix A, A:Cesp——->2m (1 < p < w)

preserves sums if and only if
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5.2 THE SPACE Ces

Recall that the space Ces is a BK-space containing all finite
sequences but does not. have the AK property.Then Lemma 4.2.2,Lemma 4.3.2,
Lemma 4.4.6 and Lemma 4.5.4 can not be used for the study in this

section. We shall use Lemma 4.2.1 for our study.

Theorem 5.2.1. For an infinite matrix A, A:Cesm—--—ﬂu0 and A preserves

convergence if and only if
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Proof: Assume that A : Ces  -— 2 and A preserves convergence, we have
from Lemma 4.2.1 that the condition (i) holds. Since e ¢ Ces for all
ke Nand e € Ces_ , (ii) and (iii) are obtained by Proposition 2.3(1)
and (iii).
Conversely, assume that (i), (ii), and (iii) hold. It follows
by Lemma 4.2.1 that (i) implies A:Cesm-——ékw. By (i), there exists M > O
such that sup | £ A x| <M for all n € N and all x ¢ Ces_ with leIICes
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therefore sup 2 IAnkl ¢ w. By Theorem 1.13, A(c) C c. Hence A:Ces“—ﬂw
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and A preserves convergence.#
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Theorem 5.2.2. For an infinite matrix A, A : Ces —{ and A preserves

limits if and only if
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Proof: Assume that A : Ces — 2 and A preserves limits. By Lemna
4.2.1, we have that (i) holds. Since e’ € Ces for all k ¢ N and
e € Ces_, it follows from Proposition 2.3 (ii) and (iv) that (ii) and
(iii) hold.

Conversely, assume that (i), (ii) and (iii) hold. By theorem
5.2.1, A : Ces, — 20‘ and A(c) € c. By Theorem 1.13 we have that
sup E |Am<| < w. Hence it follows from Theorem 1.16 that A preserves
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limits on Ces . #

Since cs C Ces_, we have by Theorem 1.14 and Theorem 1.17 that
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Hence by Lemma 4.2.1 and the above facts, we have the following

two Theorems.
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Theorm 5.2.3. For an infinite matrix A, A : Cesm——-ﬂm and A preserves

summability if and only if
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Theorm 5.2.4. For an infinite matrix A, A:Cesw—Mw and A preserves
sums if and only if

P < A 0
(i) (A ), _.€ Ces_ for every n € N and Sl:p "(A"")"“‘HCesﬂ < o

(]

’

) n

n
(ii) sup ZIZAW—ZA“H”I < w and
i=1

n k=1 1i=1

¢i1i) - % AL J 1 for every k € N.
n=1
we end this chapter by giving a remark on the Cesaro matrix C
that if X = Ces_ or Ces_, then C = X — lw and C preserves limits but
does not preserve sumnability. First, we note that for (x ) € X, Il(xn)llx
< 1 implies % S Ix | ¢ 1 for every n € N. Since ( an):=lis a finite
k=1 .

sequence, we have ( an):=1€ x” for all n ¢ N. If (x) € X is such
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=1and 2ZC_ diverges. Hence by Theorem 5.1.2, Theorem 5.1.3,
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Theorem 5.2.2 and Theorem 5.2.3, we have that C:X—>L and C preserves

limits but does not preserve summability.
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