CHAPTER IV

PRIME SEMIFIELDS

Definition 4.1 Let K be a semifield and $L \subseteq K$. Then L is said to be a subsemifield of K iff L forms a semifield with respect to the same operations on K.

Theorem 4.2 Let K be a semifield. If K is of type I w.r.t.a then there exists a smallest subsemifield contained in K and it is also a semifields of type I w.r.t.a. If K is of type II w.r.t.a they there exists a smallest subsemifield contained in K and it is also a semifield of type II w.r.t.a. If K is of type III then there exists a smallest subsemifield contained in K and it is also a semifield of type III.

Proof Let a εK be such that $(K \backslash\{a\}, \cdot)$ is a group and let e be the identity of $(K \backslash\{a\}, \cdot)$. Let $L \subseteq K$ be a subsemifield.

First, we shall show that $a \varepsilon L$ and L is a semifield of the same type as K w.r.t.a.

Case $1 \quad K$ is a semifield of type I w.r.t.a.
Then a and e are the only multiplicative idempotents of K. By Theorem 3.15 and Theorem 3.18, L must be a semifield of type I or II. Then L contains exactly two multiplicative idempotents. Thus $\{a, e\} \subseteq$. Since a is multiplicative zero of K, we get that a is also multiplicative zero of L. Thus L is a semifield of type I w.r.t.a.

Case 2 K is a semifield of type II w.r.t.a.

Then a and e are the only multiplicative idempotents of K.
By Theorem 3.14 and Theorem 3.15 , L must be a semifield of type I or II. Then L contains exactly two multiplicative idempotents. Thus $\{a, e\} \subseteq L . \quad$ Since a is multiplicative identity of K, we get that a is also multiplicative identity of L. Thus L is a semifield of type II w.r.t.a.

Case 3 K is a semifield of type III.

Then e is the only multiplicative idempotent of K. By
Theorem 3.18, L must be a semifield of type III. Then L contains exactly one multiplicative idempotent so e ε L. Let $b \varepsilon$ L be such that $(L \backslash\{b\},$.$) is a group. If b \neq a$, then $b=b e, a$ contradiction. Hence $b=a$. Therefore L is a semifield of type III and a is the element in L such that (L〉\{a\}, \cdot) is a group.

Let $\left\{L_{\alpha}\right\}_{\alpha \in I}$ be the set of all subsemifields of K. By the first part of this proof, we get that a εL_{α} and L_{α} is a semifield of the same types as K w.r.t.a. Let $M=\bigcap_{\alpha \in I} L_{\alpha}$ Cleary M is a subsemiring of K and $a \varepsilon M$. Now $M \backslash\{a\}=\left(\bigcap_{\alpha \in I} L_{\alpha}\right) \backslash\{a\}=\bigcap_{\alpha \in I}\left(L_{\alpha} \backslash\{a\}\right)$. Thus ($M \backslash\{a\}, \cdot$) is a group. Hence M is a subsemifield of K. By the first part of this proof, we get that M is a semifield of the same type as K w.r.t.a. Clearly M is the smallest subsemifield of K. So we obtain that M is the smallest subsemifield of K and M is a semifield of the same type as K w.r.t.a.

Definition 4.3 Let K be a semifield. Then the prime semifield of K is the smallest subsemifield of K (Which exists by Theorem 4.2).

Remark 4.4 Let Q^{+}with the usual addition and multiplication. Then $\left(Q^{+},+, \cdot\right)$ is a ratio semiring. Let a be a symbol not representing any element of Q^{+}. Extend + and . from Q^{+}to $Q^{+} v$ \{a\} by $a \cdot x=x \cdot a=x$ $\forall x \in \mathbb{Q}^{+} \cup\{a\}, a+x=x+a=1+x \forall x \in \mathbb{Q}^{+}$and $a+a=1+1$. Then by Theorem 2.39 we obtain that $\mathscr{Q}^{+} \cup\{a\}$ is a semifield of type II.

Theorem 4.5 Let K be a semifield of type II w.r.t. a and K^{\prime} the prime semifield of K. Then $K^{\prime} \cong\{a, 1\}$ with $a^{2}=a, a \cdot 1=1 \cdot a=1$, $1 \cdot 1=1$ and + defined by
(1)

+	a	1
a	a	a
1	a	1

or
(2)

+	a	1
a	a	1
1	1	1

or
(3)

+	a	1	or	(4)	+	a
a	1	a	1			
1	a	1				

Proof
Let 1 be the identity of $(K \backslash\{a\}, \cdot)$.
By Theorem 2.29, $K \backslash\{a\}$ is a ratio semiring. Let D^{\prime} be the smallest ratio subsemiring of $K \backslash\{a\}$. By Proposition $1.18, D^{\prime} \cong\{1\}$ with $1 \cdot 1=1$ and $1+1=1$ or $D^{\prime} \cong Q^{+}$with the usual addition and multiplication.

Suppose that $D^{\prime} \cong\{1\}$. Then $1+1=1$. By Theorem 2.30, $a+a=a$ or $a+a=1+1=1$ and $a+1=a$ or $a+1=1+1=1$. Therefore we have four cases to consider. They are (1),(2),(3) and (4) above. It is easy to check that they are all semifields. Thus $K^{\prime} \cong(1)$ or $K^{\prime} \cong(2)$ or $K^{\prime} \cong(3)$ or $K^{\prime} \cong(4)$.

If $D^{\prime} \cong Q^{+}$with the usual addition and multiplication, then up to isomorphism we can consider $Q^{+} \subseteq K \backslash\{a\}$. Let $D=K \backslash\{a\}$ and $S=\{x \in D \mid a+x=a\}$, by Theorem 2.31, $S \subseteq I_{D}(1)$. Claim that $Q^{+} \cap S$ $=\Phi$. Let $x \in Q^{+}$and $x \in S$, then $x \in I_{D}(1)$. So $x+1=1$, a contradiction. So we have the claim. Thus $Q^{+} \subseteq D \backslash s$, so $a+x=1+x \quad \forall x \in Q^{+}$. By Theorem $2.30(1)$ and (2) we obtain that $a+a=1+1$. Since $\Phi^{+} u\{a\} \subseteq K, \quad a x=x \quad \forall x \in \Phi^{+} v\{a\}$. By Theorem 2.39, $Q^{+} \cup\{a\}$ is a semifield. So up to isomorphism, $K^{\prime} \subseteq \mathbb{Q}^{+} \cup\{a\}$. By Theorem 2.29, $K^{\prime} \backslash\{a\}$ is a ratio semiring. Then $K^{\prime} \backslash\{a\}$ is a ratio subsemiring of $K \backslash\{a\}$. Since Q^{+}with the usual addition and multiplication is the smallest ratio subsemiring of $K \backslash\{a\}$, we obtain that $\mathbb{Q}^{+} K^{\prime} \backslash\{a\}$. Thus $\mathbb{Q}^{+} \cup\{a\} \subseteq K^{\prime}$. Hence $K^{\prime} \cong \mathbb{Q}^{+} \cup\{a\}$ as in remark 4.4.

Theorem 4.6 Let K be a semifield of type III and a $\varepsilon K, d \varepsilon K \backslash\{a\}$ be such that $(K \backslash\{a\}, \cdot)$ is a group and $a \cdot x=d \cdot x$ for all $x \in K$. Let $A=\left\{\sum_{i<\infty} n_{i} d^{m} \mid m_{i}, n_{i} \in \mathbb{Z}^{+}\right\}$and K^{\prime} the prime semifield of K. Then A is is a multiplicatively cancellative semiring and $K^{\prime} \cong$ (the quotient ratio semiring of $A) U\{a\}$.

Proof Let e be the identity of $(K \backslash\{a\}, \cdot), D=K \backslash\{a\}$ and $S=\{x \in D \mid a+x=a\}$.

By Theorem 4.2, we have that a,e εK, so $d=a \cdot e \varepsilon K^{\prime}$. Thus $d \varepsilon K^{\prime} \backslash\{a\}$. Since $K^{\prime} \backslash\{a\}$ is a ratio semiring (by Theorem 2.41), we get that $A \subseteq K^{\prime} \backslash\{a\}$. Clearly A is a semiring. Since $A \subseteq K^{\prime} \backslash\{a\}$ which is a group under multiplication so A is M.C. Let B be the quotient ratio semiring of A. Then we get that $B \subseteq K^{\prime} \backslash\{a\}$ (since B is the smallest ratio semiring containing A).

Let $S^{\prime}=B \cap S . \quad$ Claim that
(1) $S^{\prime}=\Phi$ or S^{\prime} is an additive subsemigroup of $I_{B}(d)$.
(2) $B \backslash S^{\prime}=\Phi$ or $B \backslash S^{\prime}$ is an ideal of $(B,+)$
(3) If $B \backslash S^{\prime}=\Phi$ then $|B|=1$.

To show (1), we assume that $S \neq \Phi$. Let $x \in S^{\prime}$, then $x \in B$ and $x \varepsilon S$. Since $S \subseteq I_{D}(d)$ (by Theorem 2.50), $\quad x \in I_{D}(d)$. So $x+d=d$. Thus $x \in I_{B}(d)$. Hence $S^{\prime} \subseteq I_{B}(d)$. Let $x, y \in S^{\prime}$. Then $x, y \in B$ and x, $y \in S$. Since B is a ratio semiring and S is an additive subsemigroup of $I_{D}(d), \quad x+y \in B$ and $x+y \in S$. Thus $x+y \in S^{\prime}$. So we have (1). To show (2), we assume that $B \backslash S^{\prime} \neq \Phi$. Let $x \in B \backslash S^{\prime}$ and $y \in B$. Since $B \backslash S^{\prime}=B \cap S^{\prime C}=B \cap(B \cap S)^{C}=B \cap\left(B^{C} \cup S^{C}\right)=\left(B \cap B^{C}\right) \cup\left(B \cap S^{C}\right)=B \cap S^{C}$ $=B \backslash S \subseteq D \backslash S, B \backslash S^{\prime}=B \backslash S \subseteq D \backslash S$. So we get that $x \in D \backslash S$. Since $D \backslash S$ is an ideal of $(D,+)$ (by Theorem 2.50), $x+y \in D \backslash S$. Since $x, y \in B$, $x+y \in B . \quad T h u s x+y \in B \backslash S$ and hence $x+y \in B \backslash S^{\prime}\left(\right.$ since $B \backslash S^{\prime}=B \backslash S:$. So we have (2).

To show (3), we assume that $B \backslash S^{\prime}=\Phi$. Then $B=S^{\prime}$. Since $S^{\prime} \sqsubseteq I_{B}(d)$, we get that $B=I_{B}(d)$. Then $d+x=d \forall x \in B$. Thus d is an additive zero of B, then by Theorem 1.13 and Proposition 1.15, $|B|=1$. So we have (3)

Since $S^{\prime} \sqsubseteq S$ and $B \backslash S^{\prime} \subseteq D \backslash S, \quad a+x=a \quad \forall x \varepsilon S^{\prime}$ and $a+x=d+x \quad \forall x \in B \backslash s^{\prime} . \quad$ By Theorem 2.43, $\quad a+a=a$ or $a+a=d+d$. Since $B \cup\{a\} \subseteq K, a x=d x \quad \forall x \in B \cup\{a\}$. By Theorem 2.51 we obtain that $B \cup\{a\}$ is a semifield of type III. Hence $K^{\prime} \subseteq B \cup\{a\}$. Since $B \subseteq K^{\prime} \backslash\{a\}, \quad B \cup\{a\} \subseteq K^{\prime}$. Therefore $K^{\prime} \cong B \cup\{a\}$ so we have the Theorem.

From now on we shall compute the prime semifields of semifields of type III.

Remark 4.7 Let $K=\{a, 1\}$. Define + and - on K as the following tables :
(1)

\cdot	a	1
a	1	1
1	1	1

and

+	a	1
a	a	a
1	a	1

(2)

\cdot	a	1
a	1	1
1	1	1

and

+	a	1
a	a	1
1	1	1

(3)

\cdot	a	1
a	1	1
1	1	1

and

+	a	1
a	1	a
1	a	1

(4)

By Theorem 2.51 we get that (1),(2),(3) and (4) are all semifields of type III.

Remark 4.8 Let \mathbb{Q}^{+}have the usual addition and multiplication. Then $\left(\Phi^{+},+,^{+}\right)$is a ratio semiring. Let $d \varepsilon \mathbb{Q}^{+}$and a symbol not representing any element in Q^{+}. Extend + and . from Q^{+}to $Q^{+} U\{a\}$ by $a x=x a=d x$ $\forall x \in Q^{+}, a^{2}=d^{2}, a+x=x+a=d+x \forall x \in Q^{+}$and $a+a=d+d$. Then by Theorem 2.51, we obtain that $Q^{+} U\{a\}$ is a semifield of type III.

Remark 4.9 Let $\langle d\rangle$ be notation for the set of symbols $\left\{d^{n} \mid n \in \mathbb{Z}\right\}$. Define + and - on $\langle d\rangle$ by $d^{m}+d^{n}=d^{n}$ where $k=\min \{m, n\}$ and $d^{m} \cdot d^{n}$ $=d^{m+n}$. We shall show that $(\langle d\rangle,+, \cdot)$ is a ratio semiring. Clearly, $(\langle d\rangle,+, \cdot)$ is a commutative group. For $\ell, m, n \in \mathbb{Z}$.

$$
\left(d^{\ell}+d^{m}\right)+d^{n}=d^{k}=d^{\ell}+\left(d^{m}+d^{n}\right) \text { where } k=\min \{\ell, m, n\}
$$

and we get that

$$
\begin{aligned}
& \left(d^{\ell}+d^{m}\right) \cdot d^{n}=d^{k} \cdot d^{n}=d^{k+n} \text { where } k=\min \{\ell, m\} \text { and } \\
& d^{\ell} \cdot d^{n}+d^{m} \cdot d^{n}=d^{\ell+n}+d^{m+n}=d^{r} \quad \text { where } r=\min \{\ell+n, m+n\} .
\end{aligned}
$$

Since $k=\min \{\ell, m\}$, we get that $k+n=\min \{\ell+n, m+n\}$. Thus $r=k+n$. Hence $\left(d^{l}+d^{m} \cdot d^{n}=d^{l} \cdot d^{n}+d^{m} \cdot d^{n}\right.$.

Therefore $(\langle d\rangle,+, \cdot)$ is a ratio semiring. Let a be a symbol not representing any element in $\langle\alpha\rangle$ and $n_{0} \varepsilon \mathbb{Z}^{+}$be fixed. Let $S_{1}=\left\{d^{n} \mid n \in \mathbb{Z}, n \geqslant n_{0}\right\}$, then $\langle d\rangle \backslash S_{1}=\left\{d^{n} \mid n \in \mathbb{Z}, n<n_{0}\right\}$. Clearly, $I_{\langle d\rangle}(d)=\left\{d^{n} \mid n \in \mathbb{Z}, n \geqslant 1\right\}$. It is easy to show that s_{1} is an additive subsemigroup of $I_{\langle d\rangle}(d)$ and $\langle d\rangle \backslash S_{1}$ is an ideal of ($\langle d\rangle,+$). Extend + and \cdot from $\langle d\rangle$ to $K=\langle d\rangle \cup\{a\}$ as follows ;
(1) $a x=x a=d x$ for all $x \&\left\langle d>\right.$ and $a^{2}=d^{2}$,
(2) $a+x=x+a=a$ for all $x \in S_{1}$ and $a+x=x+a=d+x \quad$ for all $x \in<d>\backslash S_{1}$,
(3) $a+a=a$ or d.

Then by Theorem 2.51, we obtain that $\langle d\rangle U\{a\}$ is a semifield of type III.

Remark 4.10 Let $(\langle d\rangle,+, \cdot)$ be the ratio semiring given in Remark 4.9. Let a be a symbol not representing any element in $\langle\alpha\rangle$. Extend + and - from $\langle d\rangle$ to $\langle d\rangle \cup\{a\}$ by $a x=x a=d x \quad \forall x \varepsilon\langle d\rangle, a^{2}=d^{2}, a+x=x+a$ $=d+x \forall x \varepsilon\langle d\rangle$ and $a+a=a$ or d. By Theorem 2.51, we obtain that <d> U \{a\} is a semifield of type III.

Remark 4.11 Let $\langle\alpha\rangle$ be notation for the set of symbol $\left\{d^{n} \mid n \in \mathbb{Z}\right\}$. Define + and - on $\langle d\rangle$ by $d^{m}+d^{n}=d^{k}$ where $k=\max .\{m, n\}$ and $d^{m} \cdot d^{n}=d^{m+n}$. Similarly as remark 4.9, we can show that ($\left.\langle d\rangle,+, \cdot\right)$ is a ratio semiring. Let a be a symbol not representing any element in $\langle d\rangle$ and $n_{0} \varepsilon \mathbb{Z}, n_{0} \leqslant 1$. Let $S_{1}=\left\{a^{n} \mid n \varepsilon \mathbb{Z}, n \leqslant n_{0}\right\}$, then $\langle d\rangle \backslash S_{1}$ $=\left\{\mathrm{d}^{\mathrm{n}} \mid \mathrm{n} \varepsilon \mathbb{Z}, \mathrm{n}>\mathrm{n}_{0}\right\}$. Clearly, $\mathrm{I}_{\langle\mathrm{d}\rangle}(\mathrm{d})=\left\{\mathrm{d}^{\mathrm{n}} \mid \mathrm{n} \varepsilon \mathbb{Z}, \mathrm{n} \leqslant 1\right\}$. It is easy to show that S_{1} is an additive subsemigroup of $I_{<d\rangle}(d)$ and
$\langle d\rangle \backslash S_{1}$ is an ideal of $(\langle d\rangle,+)$. Extend + and from $\left.<d\right\rangle$ to $\left.<d\right\rangle U\{a\}$ as follows ;
(1) $a x=x a=d x$ for all $x \in\langle d\rangle$ and $a^{2}=d^{2}$,
(2) $a+x=x+a=a$ for all $x \in S_{1}$ and $a+x=x+a=d+x$ for all $x \varepsilon<d>\backslash S_{1}$,
(3) $a+a=a$ or d.

Then by Theorem 2.51 we obtain that $\langle d\rangle U\{a\}$ is a semifield of type III.

Remark 4.12 Let $\left(\langle\alpha\rangle,+,^{\circ}\right)$ be the ratio semiring given in Remark 4.11. Let a be a symbol not representing any element in $<d\rangle$. Extend + and - from $\langle d\rangle$ to $\langle d\rangle U\{a\}$ by $a x=x a=d x \quad \forall x \varepsilon<d\rangle, a^{2}=d^{2}, a+x=$ $x+a=d+x \quad \forall x \in<d>$ and $a+a=a$ or d. By Theorem 2.51, we get that <d> $U\{a\}$ is a semifield of type III.

Remark 4.13 Let Φ^{+}have the usual addition and multiplication. Let $Q^{+} \cdot\langle\alpha\rangle$ be notation for the set of symbols $\left\{{x d^{n}}^{n} \mid x \in Q^{+}\right.$and $\left.n \varepsilon \mathbb{Z}\right\}$ Define \oplus and O on $\Phi^{+} \cdot\langle d\rangle$ as follows ;

$$
x d^{m} \oplus y d^{n}= \begin{cases}x d^{m} & \text { if } m<n \\ (x+y) d^{m} & \text { if } m=n \\ y d^{n} & \text { if } n<m\end{cases}
$$

and $x d^{m} \odot y d^{n}=(x y) d^{m+n}$.

Claim that $\left(\Phi^{+} \cdot\langle\alpha\rangle, \oplus, 0\right)$ is a ratio semiring.
Clearly $\left(Q^{+} \cdot\langle d\rangle, 0\right)$ is a commutative group. Let $x, y, z \varepsilon Q^{+}$ and $\ell, m, n \in \mathbb{Z}$. We shall show that
(1) $\quad\left(x d^{\ell} \oplus y d^{m}\right) \oplus z d^{n}=x d^{\ell} \oplus\left(y d^{m} \oplus z d^{n}\right)$. and
(2) $\left(x d^{l} \oplus y d^{m}\right) \odot z d^{n}=x d^{l} \odot z d^{n} \oplus y d^{m} \odot z d^{n}$

To show (1), we will consider the following cases :
Case $1 \quad \ell=m=n$.
$\left(x d^{l} \oplus y d^{m}\right) \oplus z d^{n}=(x+y) d^{l} \oplus z d^{n}=((x+y)+z) d^{l}=(x+(y+z)) d^{l}=x d^{l} \oplus(y+z) d^{l}$ $=x d^{l} \oplus\left(y d^{l} \oplus z d^{l}\right)=x d^{l} \oplus\left(y d^{m} \oplus z d^{n}\right)$.

Case $2 \quad \ell=m \neq n$.

Subcase $2.1 \mathrm{~m}<\mathrm{n}$. Then $\ell<\mathrm{n}$.
$\left(x d^{l} \oplus y d^{m}\right) \oplus z d^{n}=(x+y) d^{l} \oplus z d^{n}=(x+y) d^{l}$. $\left(x d^{\ell} \oplus\left(y d^{m} \oplus z d^{n}\right)=x d^{l} \oplus y d^{m}=(x+y) d^{\ell}\right.$

Subcase $2.2 m>n$. Then $\ell>n$.

$$
\left(x d^{l} \oplus y d^{m}\right) \oplus z d^{n}=(x+y) d^{l} \oplus z d^{n}=z d^{n}
$$

$$
l
$$

$$
x d^{l} \oplus\left(y d^{m} \oplus z d^{n}\right)=x d^{l} \oplus z d^{n}=z d^{n}
$$

Case $3 \quad \ell=n \neq m$.

Subcase $3.1 \quad n<m$. Then $\ell<m$.

$$
\left(x d^{l} \oplus y d^{m}\right) \oplus z d^{n}=x d^{l} \oplus z d^{n}=(x+z) d^{l}
$$

$$
x d^{l} \oplus\left(y d^{m} \oplus z d^{n}\right)=x d^{l} \oplus z d^{n}=(x+z) d^{l}
$$

Subcase $3.2 n>m$. Then $\ell>m$.

$$
\begin{aligned}
& \left(x d^{l} \oplus y d^{m}\right) \oplus z d^{n}=y d^{m} \oplus z d^{n}=y d^{m} \\
& x d^{l} \oplus\left(y d^{m} \oplus z d^{n}\right)=x d^{l} \oplus y d^{m}=y d^{m}
\end{aligned}
$$

Case $4 \quad n=m \neq \ell$. Then

$$
\left(x d^{l} \oplus y d^{m}\right) \oplus z d^{n}=\left(y d^{m} \oplus x d^{l}\right) \oplus z d^{n}=y d^{m} \oplus\left(x d^{l} \oplus z d^{n}\right) \quad(b y
$$

case 3) $=y d^{m} \oplus\left(z d^{n} \oplus x d^{\ell}\right)=\left(y d^{m} \oplus z d^{n}\right) \oplus x d^{l} \quad$ (by case 2)
$=x d^{\ell} \oplus\left(y d^{m} \oplus z d^{n}\right)$.
Case $5 \ell, m, n$ are all distinct. Let $k=\min \{\ell, m, n\}$, then

$$
\left(x d^{l} \oplus y d^{m}\right) \oplus z d^{n}=x d^{l} \oplus\left(y d^{m} \oplus z d^{n}\right)= \begin{cases}x d^{l} & \text { if } k=\ell \\ y d^{m} & \text { if } k=m \\ z d^{n} & \text { if } k=n\end{cases}
$$

To show (2), we will consider the following cases :

Case $1 \quad \ell=m$.

$\left(x d^{l} \oplus y d^{m}\right) \odot z d^{n}=(x+y) d^{l} \odot z d^{n}=((x+y) z) d^{l+n}=(x z+y z) d^{l+n}$
$=(x z) d^{\ell+n} \oplus(y z) d^{\ell+n}=x d^{\ell} \odot z d^{n} \oplus y d^{\ell} \odot z d^{n}$.

Case $2 \quad \ell \neq \mathrm{m}$.

Subcase $2.1 \quad \ell<m$. Then $\ell+n<m+n$.
$\left(x d^{\ell} \oplus y d^{m}\right) \odot z d^{n}=x d^{l} \odot z d^{n}=(x z) d^{l+n}$
$x d^{l} \odot z d^{n} \oplus y d^{m} \odot z d^{n}=(x z) d^{l+n} \oplus(y z) d^{m+n}=(x z) d^{l+n}$.

Subcase 2.2 $\quad \ell>\mathrm{m}$.

$\left(x d^{l} \oplus y d^{m}\right) \odot z d^{n}=\left(y d^{m} \oplus x d^{l}\right) \odot z d^{n}=y d^{m} \odot z d^{n} \oplus x d^{l} \odot z d^{n} \quad$ (by Subcase 2.1) $=x d^{l} \odot z d^{n} \oplus y d^{m} \odot z d^{n}$

Therefore $\left(Q^{+},\langle d\rangle, \oplus, 0\right)$ is a ratio semiring.
Let $n_{0} \in \mathbb{Z}, n_{0} \geqslant 2$ and $S_{1}=\left\{x d^{n} \mid \times \varepsilon Q^{+}\right.$and $\left.n \varepsilon \mathbb{Z}, n \geqslant n_{0}\right\}$. Then $Q^{+} \cdot\langle d\rangle S_{1}=\left\{x d^{n} \mid x \in Q^{+}\right.$and $\left.n \varepsilon \mathbb{Z}, n<n_{0}\right\}$. Clearly, I $(1 d)=\left\{x d^{n} \mid \times \varepsilon Q^{+}\right.$and $\left.n \varepsilon \mathbb{Z}, n \geqslant 2\right\}$. It is easy to show that Q^{+}<d> S_{1} is an additive subsemigroup of $I_{\left.Q^{+}<d\right\rangle}^{(1 d)}$ and $Q^{+}\langle d\rangle \backslash S_{1}$ is an ideal of $\left(\Phi^{+}\langle d\rangle, \oplus\right)$. Let a be a symbol not representing any element in $\Phi^{+}<d>$. Extend + and \cdot from $\left.\Phi^{+}<d\right\rangle$ to $\left.\Phi^{+}<d\right\rangle U$ $\{a\}$ as follows;
(1) $a \in z=z \odot a=1 d \odot z$ for all $z \varepsilon Q^{+} \cdot\langle d\rangle$ and $a \odot a=1 d \odot 1 d$,
(2) $a \oplus z=z \oplus a=a$ for all $z \varepsilon S_{1}$ and
$a \oplus z=z \oplus a=1 d \oplus z$ for all $z \varepsilon Q^{+} \cdot\langle d\rangle \backslash S_{1}$,
(3) $a \oplus a=1 d \oplus 1 d$.

Then by Theorem 2.51 we obtain that $Q^{+} \cdot<d>U\{a\}$ is a semifield of type III.

Remark 4.14 Let $\left(Q^{+} \cdot\langle\Phi, \oplus, \odot)\right.$ be the ratio semiring given in remark 4.13. Let a be a symbol not representing any element of $Q^{+} \cdot\langle d$. Extend \oplus and \odot from $Q^{+} \cdot\langle d\rangle$ to $Q^{+} \cdot\langle d\rangle U\{a\}$ by $a \odot z=z \odot a=1 d O z$ for all $z \varepsilon \Phi^{+} \cdot\langle d\rangle, a \odot a=1 d \odot 1 d, a \oplus z=z \oplus a=1 d \oplus z$ for all $z \varepsilon$ $\mathbb{Q}^{+} \cdot\langle d\rangle$ and $a \oplus a=1 d \oplus 1 d$. By Theorem 2.51 , we obtain that $Q^{+} \cdot\langle d\rangle u\{a\}$ is a semifield of type III.

Remark 4.15 Let Φ^{+}have the usual addition and multiplication. Let $\mathbb{Q}^{+} \cdot\langle\mathrm{d}\rangle$ be notation for the set of symbols $\left\{x d^{n} \mid x \in Q^{+}\right.$and $\left.n \varepsilon \mathbb{Z}\right\}$. Define \oplus and \odot on $\Phi^{+} \cdot\langle\alpha\rangle$ as follows;

$$
\text { and } x d^{m} \circ y d^{n}=(x y) d^{m+n}
$$

Similarly as Remark 4.13, we can show that $\left.\left(\mathbb{Q}^{+}<\alpha\right\rangle, \oplus, \odot\right)$ is a ratio semiring. Let $n_{0} \varepsilon \mathbb{Z}, n_{0}<1$ and $S_{1}=\left\{x d^{n} \mid x \in \mathbb{Q}^{+}\right.$and $\left.n \varepsilon \mathbb{Z}, n \leqslant n_{0}\right\}$. Then we get that $\Phi^{+} \cdot\langle d\rangle \quad S_{1}=\left\{x d^{n} \mid x \in \Phi^{+}\right.$and $\left.n \varepsilon \mathbb{Z}, n \geqslant n_{0}\right\}$. Clearly $I_{\left.\Phi^{+}<d\right\rangle}^{(1 d)}=\left\{x d^{n} \mid x \varepsilon Q^{+}\right.$and $\left.n \varepsilon \mathbb{Z}, n<1\right\}$. It is easy to show that S_{1} is an additive subsemigroup of $I_{Q_{0}^{+}\langle\alpha\rangle}^{(1 d)}$ and $\left.\Phi^{+}<\alpha\right\rangle \backslash S_{1}$ is an ideal of $Q^{+} \cdot\langle d\rangle$ $\left.\left(\mathbb{Q}^{+}<\mathrm{d}\right\rangle, \oplus\right)$. Let a be a symbol not representing any element of $\mathbb{Q}^{+}<d>$. Extend \oplus and \odot from $Q^{+}\langle d\rangle$ to $Q_{:}^{+}\langle d\rangle U\{a\}$ as follows;
(1) $a \bigcirc p=z \odot a=1 d \odot z$ for all $z \varepsilon \mathbb{Q}^{+} \cdot\langle d\rangle$ and $a \odot a=1 d 01 d$,
(2) $a \oplus z=z \oplus a=a$ for all $z \varepsilon S_{1}$ and

```
    a }\oplus\textrm{z}=\textrm{z}\oplusa=1d\oplusz for all z & Q + .<d>\S
(3) a }\oplus\textrm{a}=1d\oplus1d
```

Then by Theorem 2.51, we obtain that $Q^{+}\langle d\rangle U\{a\}$ is a semifield of type III.

Remark 4.16 Let $\left(Q^{+}\langle d\rangle, \oplus, \mathcal{O}\right)$ be the ratio semiring given in Remark 4.15. Let a be a symbol not representing any element of $Q^{+}<d \gg$. Extend \oplus and \odot from $Q^{+}\langle d\rangle$ to $Q^{+}\langle d\rangle U\{a\}$ by a $\odot z=z 0 a=1 d \odot z$ $\forall z \in Q^{+}\langle d\rangle, a \oplus a=1 d \odot 1 d, a \oplus z=z \oplus a=1 d \oplus z \forall z \varepsilon Q^{+} \cdot\langle d\rangle$ and $a \oplus a=1 d \oplus 1 d$. By Theorem 2.51, $Q^{+} \cdot\langle d\rangle v\{a\}$ is a semifield of type III.

Remark 4.17 Let $\langle x, y\rangle$ be notation for the set of symbols $\left\{x^{m} y^{n}\right\}$ $m, n \in \mathbb{Z}$.$\} . Define + and \cdot$ on $\langle x, y\rangle$ as follows ;

$$
\begin{aligned}
& x^{k} y^{\ell}+x^{m} y^{n}=x^{r} y^{s} \text { where } r=\max \{k, m\} \text { and } s=\min \{\ell, n\} \\
& \text { and } x^{k} y^{\ell} \cdot x^{m} y^{n}=x^{k+m} y^{\ell+n} \text {. }
\end{aligned}
$$

Claim that ($\langle x, y\rangle,+, \cdot)$ is a ratio semiring.
Clearly ($\langle x, y\rangle$, .) is a commutative group. To show the claim
we need only to show that for $m_{1}, m_{2}, m_{3}, n_{1}, n_{2}, n_{3} \varepsilon \mathbb{Z}$
(1) $\left(x^{m_{1}} y^{n_{1}}+x^{m_{2}} y^{n_{2}}\right)+x^{m_{3}} y^{n_{3}}=x^{m_{1}} y^{n_{1}}+\left(x^{m_{2}} y^{n_{2}}+x^{m_{3}} y^{n_{3}}\right)$
and
(2) $\left(x^{m_{1}} y^{n_{1}}+x^{m_{2}} y^{n_{2}}\right) \cdot x^{m_{3}} y^{n_{3}}=x^{m_{1}} y^{n_{1}} \cdot x^{m_{3}} y^{n_{3}}+x^{m_{2}} y^{n_{2}} \cdot x^{m_{3}} y^{n_{3}}$ First we shall show (1). Let $m_{1}, m_{2}, m_{3}, n_{1}, n_{2}$ and $n_{3} \varepsilon \mathbb{Z}$. By definition of + , we get that

$$
\left(x^{m_{1}} y^{n_{1}}+x^{m_{2}} y^{n_{2}}\right)+x^{m_{3}} y^{n_{3}}=x^{r} y^{s}=x^{m_{1}} y^{n_{1}}+\left(x^{m} y^{n_{2}}+x^{m_{3}} y^{n_{3}}\right)
$$

where $r=\max .\left\{m_{1}, m_{2}, m_{3}\right\}$ and $s=\min .\left\{n_{1}, n_{2}, n_{3}\right\}$. To show (2), let $m_{1}, m_{2}, m_{3}, n_{1}, n_{2}$ and $n_{3} \varepsilon \mathbb{Z}$. Then

$$
\left(x^{m_{1}} y^{n_{1}}+x^{m_{2}} y^{n_{2}}\right) \cdot x^{m_{3}} y^{n_{3}}=x^{r} y^{s} \cdot x^{m_{3}} y^{n_{3}}=x^{r+m_{3}} y^{s+n_{3}}
$$

where $r=\max \left\{m_{1}, m_{2}\right\}$ and $s=\min \left\{n_{1}, n_{2}\right\}$ and

$$
x^{m_{1}} y^{n_{1}} \cdot x^{m_{3}} y^{n_{3}}+x^{m_{2}} y^{n_{2}} \cdot x^{m_{3}} y^{n_{3}}=x^{m_{1}+m_{3}} y^{n_{1}+n_{3}}+x^{m_{2}+m_{3}} y^{n_{2}+n_{3}}
$$

$=x^{p} y^{q}$ where $p=\max \left\{m_{1}+m_{3}, m_{2}+m_{3}\right\}$ and $q=\min \left\{n_{1}+n_{3}, n_{2}+n_{3}\right\}$.
Since $r=\max \left\{m_{1}, m_{2}\right\}, \quad r+m_{3}=\max \left\{m_{1}+m_{3}, m_{2}+m_{3}\right\}$ and since $s=\min \left\{n_{1}, n_{2}\right\}, s+n_{3}=\min \left\{n_{1}+n_{3}, n_{2}+n_{3}\right\}$. Thus $r+m_{3}=p$ and $s+n_{3}=q$, so we have (2). So we have the claim i.e. $(\langle x, y\rangle,+$, , is a ratio semiring.

Clearly $I_{\langle x, y\rangle}(x y)=\left\{x^{m} y^{n} \mid m, n \in \mathbb{Z}, m \leqslant 1 \leqslant n\right\}$. Let $m_{0}, n_{0} \in \mathbb{Z}$ be such that $m_{0} \leqslant 1 \leqslant n_{0}$. Define $s_{1}=\left\{x^{m} y^{n} \mid m \leqslant m_{0}\right.$ and $\left.n \geqslant n_{0}\right\}$. Then $\left\langle x, y>\backslash S_{1}=\left\{x^{m} y^{n} \mid m>m_{0}\right.\right.$ or $\left.n<n_{0}\right\}$. Clearly S_{1} is an additive subsemigroup of $I_{\langle x, y\rangle}(x y)$. Claim that $\langle x, y\rangle \backslash S_{1}$ is an ideal of $(\langle x, y\rangle,+)$. Let $z \varepsilon\langle x, y\rangle \backslash S_{1}$ and $w \varepsilon\langle x, y\rangle$. Then $z=x^{m} y^{n}$ where $m>m_{0}$ or $n<n_{0}$ and $w=x^{k} y^{\ell}$ for some k, $\ell \in \mathbb{Z}$. Consider $z+w=$ $x^{m} y^{n}+x^{k} y$. We get that

$$
z+w=x^{m} y^{n}+x^{k} y^{\ell}=\left\{\begin{array}{cc}
x^{m} y^{n} & \text { if } k \leqslant m \\
x^{m} y^{\ell} & \text { if } k \leqslant m \\
x^{k} y^{n} & \text { and } n \leqslant \ell, \\
x^{k} y^{\ell} & \text { if } m<k
\end{array} \quad \text { and } n \leqslant \ell,\right.
$$

In all cases we see that $\mathrm{z}+\mathrm{w} \varepsilon\langle\mathrm{x}, \mathrm{y}\rangle \backslash \mathrm{S}_{1}$. So we have the claim i.e. $\langle x, y\rangle \backslash S_{1}$ is an ideal of $(\langle x, y\rangle,+)$.

Let a be a symbol not representing any element of $\langle x, y\rangle$.
Extend + and - from <x,y> to $\langle x, y\rangle \cup\{a\}$ as follows ;
(1) $a \cdot w=w \cdot a=x y \cdot w$ for all $w \varepsilon\langle x, y\rangle$ and $a \cdot a=x y \cdot x y$,
(2) $a+w=w+a=a$ for all $w \varepsilon S_{1}$ and

$$
a+w=w+a=x y+w \text { for all } w \varepsilon\langle x, y\rangle \backslash S_{1} \text {, }
$$

(3) $a+a=a$ or $x y$.

Then by Theorem 2.51 we obtain that $\langle x, y\rangle u\{a\}$ is a semifield of type III.

Remark 4.18 Let $(\langle x, y\rangle,+$, ,) be the ratio semiring given in Remark 4.17. Let a be a symbol not representing any element of $\langle x, y\rangle$. Extend + and \cdot from $\langle x, y\rangle$ to $\langle x, y\rangle \cup\{a\}$ by $a \cdot w=w \cdot a=x y \cdot w$ $\forall w \in\langle x, y\rangle, a \cdot a=x y \cdot x y, a+w=w+a \forall w \quad \varepsilon\langle x, y\rangle$ and $a+a=a$ or $x y$. Then by Theorem 2.51 we obtain that $\langle x, y\rangle \cup\{a\}$ is a semifield of type III.

Definition 4.19 Let D be a ratio semiring and let 0 be a symbol not representing any element of D. We have shown in Theorem 3.5 that we can extend the binary operations of D to $D U\{0\}$ making $D U\{0\}$ into a 0 -semifield. Let $(\operatorname{DU}\{0\})[x]$ be the set of all polynomials coefficient in $D U\{0\}$. Define $D[x]=(D U\{0\})[x] \backslash\{0\}$. Then $D[x]$ is a semiring. If $D[x]$ is M.C. then define $D(x)$ to be the quotient ratio semiring of $D[x]$.
$\underline{\text { Remark }} 4.20$ Let $D=\{1\}$ be a ratio semiring. Then D is A.C. but we see that $D \cup\{0\}$ the 0 -semifield of definition 4.19 is not A.C. because $1+1=1+0$.

The next proposition will show that $D U\{0\}$ is also A.C. if D is A.C. and infinite.

Proposition 4.21 Let D be an infinite ratio semiring and $D U\{0\}$ the 0 -semifield of definition 4.19. Then $D U\{0\}$ is $A . C$. iff D is A.C.

Proof Assume that $D \cup\{0\}$ is A.C. Let $a, b, c \in D$ be such that $a+b=a+c$. Since $a, b, c \in D \cup\{0\}$ and $D \cup\{0\}$ is A.c., $b=c$. Thus D is A.C..

Conversely assume that D is $A . C$. Let $a, b, c \in D \cup\{a\}$ be such that $a+b=a+c$. We must show that $b=c$. If $a=0$, then $b=c$. Suppose that $a \neq 0$. Consider b and c.

Case 1 Both of them are 0. Then $b=c$.

Case 2 Both of them are not 0 . Then $a, b, c \in D$ are such that $a+b=$ $\mathrm{a}+\mathrm{c}$. Thus $\mathrm{b}=\mathrm{c}$ since D is $\mathrm{A} . \mathrm{C}$.

Case 3 One is 0 the other is not. We may assume that $\mathrm{b}=0$ and $c \neq 0$. Then $a=a+c$, so $1=1+a^{-1} c$. Let $x=a^{-1} c$, then $1+x=1$. By induction, we obtain that $1+x^{n}=1 \quad \forall n \in \mathbb{Z}^{+}$. Let $m, n \in \mathbb{Z}, m<n$. Then $x^{m}+x^{n}=x^{m}\left(1+x^{n-m}\right)=x^{m} 1=x^{m}$. Thus $x^{m}+x^{n}=x^{m}$ for all $m, n \in \mathbb{Z}$, $m<n$. Then $x+x^{2}=x+x^{3}$. Since D is $A . C ., x^{2}=x^{3}$. Hence $x=1$ So we get that $1+1=1$. Let $z \varepsilon D \backslash\{1\}$. If $1+z=1$, then $1+z=1+1$. Since D is A.C., $z=1$ which is a contradiction. Thus $1+z \neq 1$. Now $1+z=(1+1)+z=1+(1+z)$. Then $1+z=1+(1+z)$, so $1=1+(1+z)^{-1}$. Thus $1+(1+z)^{-1}=1+1$. Since D is A.C., $(1+z)^{-1}=1$. Hence $1+z=1$ which is a contradiction. Thus this case cannot occur.

Therefore we get that $D \cup\{0\}$ is A.C.. \#

Remark 4.22 Let $D=\{1\}$ be a ratio semiring. Then clearly D is $A . C$. Consider D [x].

Let $f(x)=1+x, g(x)=1+x+x^{2}$ and $h(x)=1+x^{2}$. We see that $f(x) g(x)=(1+x)\left(1+x+x^{2}\right)=1+x+x^{2}+x^{3}$ and $f(x) h(x)=(1+x)\left(1+x^{2}\right)=1+x+x^{2}+x^{3}$

So we have that $f(x) g(x)=f(x) h(x)$ and $g(x) \neq h(x)$. Thus $D[x]$ is not M.C.

The next theorem will show that if D is A.C. and D is infinite then $D[x]$ is M.C. .

Theorem 4.23 Let D be an infinite ratio semiring. Then $D[x]$ is M.C. iff D is A.C. .

Proof Assume that $D[x]$ is M.C. Let $a, b, c \in D$ be such that $a+b=a+c$. Let $f(x)=1+x, g(x)=a+b x+a x^{2}$ and $h(x)=a+c x+a x^{2}$. Consider $f(x)$. $g(x)$ and $f(x) \cdot h(x)$.

$$
\begin{aligned}
& f(x) \cdot g(x)=(1+x)\left(a+b x+a x^{2}\right)=a+(a+b) x+(a+b) x^{2}+a x^{3} \\
& f(x) \cdot h(x)=(1+x)\left(a+c x+a x^{2}\right)=a+(a+c) x+(a+c) x^{2}+a x^{3}
\end{aligned}
$$

Since $a+b=a+c$, we get that $f(x) g(x)=f(x) h(x)$. Since $D[x]$ is M.C., we get that $g(x)=h(x)$. Hence $b=c$. Therefore D is A.C.

Conversely, assume that D is A.C. Let $f(x), g(x)$ and $h(x) \varepsilon$ $D[x]$ be such that $f(x) g(x)=f(x) h(x)$.

$$
\text { Suppose that } f(x)=\sum_{i=0}^{k} a_{i} x^{i}, g(x)=\sum_{i=0}^{\ell} b_{i} x^{i} \text { and }
$$

$h(x)=\sum_{i=0}^{m} c_{i} x^{i}$ where $a_{k}, b_{\ell}, c_{m} \neq 0$. Then $f(x) g(x)=\sum_{i=0}^{k+\ell} a_{i} x^{i}$ where $d_{i}=\sum_{j=0}^{i} a_{i-j} b_{j}, i=0,1, \ldots, k+\ell$ and $f(x) h(x)=\sum_{i=0}^{k+m} f_{i} x^{i}$ where $f_{i}=\sum_{j=0}^{i} a_{i-j} c_{j}$. Since $f(x) g(x)=f(x) h(x), \quad k+\ell=k+m$ and $d_{i}=f_{i}$ $\forall i=0,1, \ldots, k+l$. Let n be the smallest non negative integer such that $a_{n} \neq 0$. Since $d_{n}=f_{n}$, then

$$
a_{n} b_{0}+a_{n-1} b_{1}+\ldots+a_{0} b_{n}=a_{n} c_{0}+a_{n-1} c_{1}+\ldots+a_{0} c_{n} . \text { since }
$$

$a_{0}=a_{1}=\ldots=a_{n-1}=0, \quad a_{n} b_{0}=a_{n} c_{0}$. Thus $b_{0}=c_{0}$.
Now consider d_{n+1} and f_{n+1}. Since $d_{n+1}=f_{n+1}$, we get that $a_{n+1} b_{0}+a_{n} b_{1}+a_{n-1} b_{2}+\ldots+a_{0} b_{n+1}=a_{n+1} c_{0}+a_{n} c_{1}+a_{n-1} c_{2}+\cdots$ $\ldots+a_{0} c_{n+1}$. Since $a_{0}=a_{1}=\ldots=a_{n-1}=0, \quad a_{n+1} b_{0}+a_{n} b_{1}=a_{n+1} c_{0}$ $+a_{n} c_{1}$. Since $b_{0}=c_{0}$, $\quad a_{n+1} b_{0}=a_{n+1} c_{0}$. By Proposition 4.21
we have that $D \cup\{0\}$ is A.C. Since $a_{n+1} b_{0}, a_{n} b_{1}, a_{n} c_{1} \in D \cup\{0\}$ and $D \cup\{0\}$ is A.C., $\quad a_{n} b_{1}=a_{n} c_{1}$. Hence $b_{1}=c_{1}$. Consider d_{n+2} and f_{n+2}. Since $d_{n+2}=f_{n+2}$, we get that $a_{n+2} b_{0}+a_{n+1} b_{1}+a_{n} b_{2}=a_{n+2} c_{0}+a_{n+1} c_{1}+a_{n} c_{2}\left(\right.$ since $a_{0}=a_{1}=\ldots$
$\ldots=a_{n-1}=0$). Since $b_{0}=c_{0}$ and $b_{1}=c_{1}, \quad a_{n+2} b_{0}+a_{n+1} b_{1}=a_{n+2} c_{0}$ $+a_{n+1} c_{1}$. Since $D U\{0\}$ is A.C., $\quad a_{n} b_{2}=a_{n} c_{2}$. Hence $b_{2}=c_{2}$. Using the same proof we then get $b_{i}=c_{i}$ for alli. Thus $g(x)=h(x)$. Therefore $D[x]$ is M.C. .

Remark 4.24 Let $D=\{1\}$ be a ratio semiring. Then clearly D is A.C. Consider D [x].

$$
\begin{aligned}
& \text { Let } f(x)=1+x, g(x)=1+x^{2} \text { and } h(x)=x+x^{2} \text {. We see that } \\
& \qquad \\
& f(x)+g(x)=(1+x)+\left(1+x^{2}\right)=1+x+x^{2} \text { and } \\
& f(x)+h(x)=(1+x)+\left(x+x^{2}\right)=1+x+x^{2}
\end{aligned}
$$

So we have that $f(x)+g(x)=f(x)+h(x)$ and $g(x) \neq h(x)$. Thus $D[x]$ is not A.C.

The next theorem will show that if D is A.C. and D is infinite, then $D[x]$ is A.C.

Theorem 4.25 Let D be an infinite ratio semiring. Then $D[x]$ is A.C. iff D is A.C. .

Proof Assume that $D[x]$ is A.C. Let $a, b, c \in D$ be such that $a+b=$ $a+c$. Since a, b, c are all polynomials in $D[x]$ which is $A . C$., so $b=c$. Thus D is A.C..

Conversely, assume that D is A.C. Let $f(x), g(x)$ and $h(x) \varepsilon$ $D[x]$ be such that $f(x)+g(x)=f(x)+h(x)$. Let $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$,
$g(x)=\sum_{i=0}^{n} b_{i} x^{i}$ and $h(x)=\sum_{i=0}^{n} c_{i} x^{i}$. Then $\sum_{i=0}^{n}\left(a_{i}+b_{i}\right) x^{i}=\sum_{i=0}^{n}\left(a_{i}+c_{i}\right) x^{i}$.
Thus $a_{i}+b_{i}=a_{i}+c_{i} \quad \forall i=0,1, \ldots, n$. By Proposition 4.21 we have that $D \cup\{0\}$ is $A . C$. Since $a_{i}, b_{i}, c_{i} \varepsilon D \cup\{0\}$ such that $a_{i}+b_{i}=$ $a_{i}+c_{i}$ for all $i=0,1, \ldots, n$, we get that $b_{i}=c_{i} \forall i=0,1, \ldots, n$. Thus $g(x)=h(x)$. Therefore $D[x]$ is A.C. .

Remark 4.26 Let Φ^{+}have the usual addition and multiplication. Then \mathbb{Q}^{+}is a ratio semiring and since \mathbb{Q}^{+}is A.C. Then by Proposition 4.21, we obtain that $Q^{+}[x]$ is M.C. So $Q^{+}(x)$ is the quotient ratio semiring of $\Phi^{+}[x]$. Let a be a symbol not representing any element of $Q^{+}(x)$. Extend + and . from $Q^{+}(x)$ to $Q^{+}(x) \cup\{a\}$ by $a \cdot z=z \cdot a=$ $x \cdot z \quad \forall z \varepsilon Q^{+}(x), a^{2}=x^{2}, \quad a+z=z+a=x+z \forall z \in Q^{+}(x)$ and $a+a=x+x$. By Theorem 2.51, $\Phi^{+}(x)$. $\cup\{a\}$ is a semifield of type III.

Definition 4.27 Let D be a ratio semiring and $E \subseteq D$. Then E is called a C-set iff

1) $x, y \in E \Rightarrow x y^{-1} \varepsilon E$
2) $x \in E$ and $y \in D \Rightarrow \frac{x+y}{1+y} \varepsilon E$

Let D be a ratio semiring and E a C-set in D.. Define a relation \sim on D by $x \sim y$ iff $x^{-1} \varepsilon E$. Clearly \sim is reflexive. Let $x, y \in D$ be such that $x \sim y$. Then $x^{-1} \varepsilon E$. By condition 1), $(E, \circ) \leqslant(D,$.$) . \quad Thus \left(x y^{-1}\right)^{-1} \varepsilon$ E. Since $y x^{-1}=\left(x y^{-1}\right)^{-1}$, $y x^{-1} \varepsilon E$. Thus $y \sim x$. Let $x, y, z \varepsilon D$ be such that $x \sim y$ and $y \sim z$. Then $x y^{-1} \varepsilon E$ and $y z^{-1} \varepsilon E$. So $\left(x y^{-1}\right)\left(y z^{-1}\right) \varepsilon E$ because $(E, \cdot) \leqslant(D, \cdot)$. Thus $x z^{-1} \varepsilon E$. Hence $x \sim z$. So \sim is an equivalence relation.

Let D / E be the set of all equivalence classes in D. Let α, $B \varepsilon D /_{E}$. Define + and - on $D /_{E}$ in the following way:

Choose $x \in \alpha$ and $y \in \beta$ and let $\alpha \cdot \beta=[x y]$ and $\alpha+\beta=[x+y]$. To show + and e are well-defined, let $x^{\prime} \varepsilon \alpha$ and $y^{\prime} \varepsilon B$. Then $x^{\prime} \cdot x^{-1} \varepsilon E$ and $y^{\prime} \cdot y^{-1} \varepsilon$ E. Since $(E, \cdot) \leqslant(D, \cdot), \quad\left(x^{\prime} \cdot x^{-1}\right) \cdot\left(y^{\prime} \cdot y^{-1}\right) \varepsilon E$. Thus $\left(x^{\prime} \cdot y^{\prime}\right) \cdot(x: y)^{-1} \varepsilon E$, so $x^{\prime} \cdot y^{\prime} \sim x y$. Hence $[x y]=\left[x^{\prime} y^{\prime}\right]$. So \cdot is welldefined. Since $\frac{\mathrm{x}^{\prime}+\mathrm{y}^{\prime}}{\mathrm{x}+\mathrm{y}^{\prime}}=\frac{\mathrm{x}^{\prime} \mathrm{x}^{-1}+\mathrm{y}^{\prime} \mathrm{x}^{-1}}{1+\mathrm{y}^{\prime} \mathrm{x}^{-1}}$ and $\mathrm{x}^{\prime} \mathrm{x}^{-1} \varepsilon \mathrm{E}$, so $\frac{\mathrm{x}^{\prime}+\mathrm{y}^{\prime}}{\mathrm{x}+\mathrm{y}^{\prime}}, \varepsilon \mathrm{E}$. Thus $x^{\prime}+y^{\prime} \sim x+y^{\prime}$. Similarly we can show that $x+y^{\prime} \sim x+y$. So $x^{\prime}+y^{\prime} \sim x+y$. Hence $\left[x^{\prime}+y^{\prime}\right]=[x+y]$, so + is well-defined.

Claim that D / E is a ratio semiring.
Let $\alpha \varepsilon \mathrm{D} / \mathrm{E}$. Choose $\mathrm{x} \quad \varepsilon \alpha$. Then $\alpha \cdot[1]=[\mathrm{x}][1]=[\mathrm{x} \cdot 1]$
$=[x]=\alpha$, so $[1]$ is the multiplicative identity. Let $\beta=\left[x^{-1}\right]$ Then $\alpha \beta=[x]\left[x^{-1}\right]=\left[x x^{-1}\right]=[1]$ so every element has a multiplicative inverse. Clearly . is commutative and associative. Thus (D/E, *) is a commutative group, and clearly $\left(D /{ }_{E}{ }^{+}\right)$is a commutative semigroup.

Let $\alpha, \beta, \gamma \in D / E \cdot$ Choose $x \in \alpha, y \in \beta, z \varepsilon \gamma$. Then
$(\alpha+\beta) \cdot \gamma=([x]+[y])[z]=[x+y][z]=[(x+y) z]=[x z+y z]=[x z]+[y z]$ $=[\mathrm{x}][\mathrm{z}]+[\mathrm{y}][\mathrm{z}]=\alpha \cdot \gamma+\beta \cdot \gamma$.

Hence $(D / E,+, \cdot)$ is a ratio semiring. So we have the claim.

Remark 4.28 Let $\Phi^{+}(x)$ be the quotient ratio semiring of $Q^{+}[x]$ given in remark 4.23. Let L be a C-set in $\Phi^{+}(x)$ such that $1+x, \frac{1+x}{x} \varepsilon$ $\mathbb{Q}^{+}(x) \backslash L$ and $\mathbb{Q}^{+} \cap L=\{1\}$ and $\gamma x \notin L \forall \gamma \varepsilon \mathbb{Q}^{+}$. Then $\mathbb{Q}^{+}(x) / L$ is a ratio semiring. Let $W=Q^{+}(x) / L$ and $w=[x]$. Claim that $[1]$, $w^{2} \notin I_{W}(w)$. Suppose that $[1] \varepsilon I_{W}(w)$. Then $[1]+w=w$, so $[1]+[x]$ $=[x]$. Then $[1+x]=[x]$, so $\frac{1+x}{x} \varepsilon L$ which is a contradiction. Thus [1] $\& I_{W}(W)$. Similarly we can show that $W^{2} \& I_{W}(W)$.

Choose $S_{1} \subseteq I_{W}(w)$ such that either $\left(S_{1}=\Phi\right)$ or (S_{1} is an additive subsemigroup of $I_{W}(w)$ and $W \backslash S_{1}$ is an additive ideal of W)

Let a be a symbol not representing any element of w. Extend + and - from W to W U \{a\} by
(1) $a \cdot y=y \cdot a=w \cdot y \quad \forall y \in W$ and $a^{2}=w^{2}$,
(2) $a+y=y+a=a \quad \forall y \in S_{1}$ and $a+y=y+a=w+y \quad \forall y \in W \backslash S_{1}$,
(3) $a+a=w+w$.

Then by Theorem 2.51, $W \cup\{a\}$ is a semifield of type III. Hence $\mathbb{Q}^{+}(\mathrm{x}) /_{L} \cup\{a\}$ is a semifield of type III.

Theorem 429 Let K be a semifield of type III and a $\varepsilon K, d \varepsilon K \backslash\{a\}$ be such that ($\mathrm{K} \backslash\{\mathrm{a}\}, \cdot)$ is a group and $a \mathrm{x}=\mathrm{dx} \forall \mathrm{x} \in \mathrm{K}$. Let K^{\prime} the prime semifield of K. Then $K^{\prime} \cong \mathbb{Q}^{+} \cup\{a\}$ as in Remark 4.8 or $K^{\prime} \cong\{a, 1\}$ as in Remark 4.7 (1) or (2) or (3) or (4) or $K^{\prime} \cong\langle d\rangle U\{a\}$ as in Remark 4.9 or Remark 4.10 or Remark 4.11 or Remark 4.12 or $\mathrm{K}^{\prime} \cong$ $Q^{+}\langle d\rangle U\{a\}$ as in Remark 4.13 or Remark 4.14 or Remark 4.15 or Remark 4.16 or $K^{\prime} \cong\langle x\rangle\langle y\rangle U\{a\}$ as in Remark 4.17 or Remark 4.18 or $K^{\prime} \cong$ $Q^{+}(x) \cup\{a\}$ as in Remark 4.26 or $K^{\prime} \cong Q^{+}(x) / L \cup\{a\}$ as in Remark 4.28.

Proof Let $D=K \backslash\{a\}, S=\{x \in D \mid a+x=a\}$ and 1 the identity of ($\mathrm{D}, \cdot \cdot$).

Case $1 \quad d=1$.
By Theorem 2.41, D is a ratio semiring. Let D_{1} be the smallest ratio subsemiring of D. By Proposition $1.18, D_{1} \cong\{1\}$ with $1 \cdot 1=1,1+1=1$ or $D_{1} \cong Q^{+}$with the usual addition and multiplication.

Subcase $1.1 \quad D_{1} \cong\{1\}$ with $1 \cdot 1=1$ and $1+1=1$. Thus $1+1$ =1. By Theorem 2.43, $a+a=a$ or $a+a=d+d=1+1=1$ and $a+1=1+a$
$d+1=1+1=1$. So we have 4 cases to consider. They are $(1),(2),(3)$ and (4) as in Remark 4.7. Thus $K^{\prime} \cong\{a, 1\}$ as in Remark 4.7 (1) or (2) or (3) or (4).

Subcase $1.2 \quad D_{1} \cong Q^{+}$with the usual addition and multiplication. Then up to isomorphism we can consider $Q^{+} \subseteq D$. Claim that $S \cap \Phi^{+}=\Phi$. Suppose not, then $\exists x \in Q^{+}$and $x \in S$. By Theorem 2.50, $S \subseteq I_{D}(d)=I_{D}(1)$. So $x \in I_{D}(1)$. Then $x+1=1$, which is a contradiction since $x, 1 \varepsilon Q^{+}$. Thus $S \cap Q^{+}=\Phi$. So we have the claim. Thus $\Phi^{+} \subseteq D \backslash S$, so $a+x=d+x=1+x \quad \forall x \in \Phi^{+}$and by Theorem 2.43 (1) and (2), $a+a=d+d=1+1$. Since $Q^{+} \cup\{a\} \subset K, \quad a x=x a=d x \quad \forall x \in Q^{+} \cup\{a\}$. By Theorem 2.51, we obtain that $\mathscr{Q}^{+} \cup\{a\}$ is a semifield as in Remark 4.8. Thus $\mathbb{Q}^{+} U\{a\}$ is a subsemifield of K, so $K^{\prime} \subseteq \mathbb{Q}^{+} U\{a\}$. By Theorem $2.41, K^{\prime} \backslash\{a\}$ is a ratio semiring. Thus $K^{\prime} \backslash\{a\}$ is a ratio subsemiring of $K \backslash\{a\}$, so $\Phi^{+} \subseteq K^{\prime} X\{a\}$. Thus $\Phi^{+} \cup\{a\} \subseteq K^{\prime} \backslash\{a\}$. Therefore $K^{\prime} \cong Q^{+} \cup\{a\}$ as in Remark 4.8.

Case $2 d \neq 1$.

Subcase $2.1 \quad d^{2} \varepsilon I_{D}(d)$ and $1 \varepsilon I_{D}(d)$.
Then $d=d+d^{2}=1 \cdot d+d \cdot d=(1+d) \cdot d=d \cdot d=d^{2}$. Thus $d=1, a$ contradiction. Thus this case cannot occur.

$$
\begin{aligned}
& \text { Subcase } 2.2 \\
& \text { Then } d=d+d^{2}=1 \cdot d+d \cdot d=(1+d) \cdot d . \quad \text { Since } 1, d \varepsilon D=K \backslash\{a\}
\end{aligned}
$$

which is a ratio semiring, $1+d \neq a$. Then $1=d \cdot d^{-1}=((1+d) \cdot d) \cdot d^{-1}=$ $(1+d) \cdot\left(d \cdot d^{-1}\right)=(1+d) \cdot 1=1+d$. Thus $1+d=1$. Claim that $1+d^{n}=1$ $\forall \mathrm{n} \in \mathbb{Z}^{+}$. We shall prove this by induction. Clearly it is true for $n=1$. Assume it is true for $n-1$. That is $1+d^{n-1}=1$. Thus $d=d+d^{n}$. Then $1=1+d=1+\left(d+d^{n}\right)=(1+d)+d^{n}=1+d^{n}$. Thus $1+d^{n}=1$. So we have the claim. Let $m, n \in \mathbb{Z}$ be such that $m<n$. Then $d^{m}+d^{n}=$
$1 \cdot d^{m}+d^{n-m} \cdot d^{m}=\left(1+d^{n-m}\right) \cdot d^{m}=1 \cdot d^{m}=d^{m}\left(\right.$ since $n-m \in \mathbb{Z}^{+}$and by the claim) Thus $d^{m}+d^{n}=d^{m}$ for all $m, n \in \mathbb{Z}, m<n \ldots \ldots(1)$. For $m \in \mathbb{Z}$, $m \leqslant 0$. Claim that $d^{m} \varepsilon D \backslash S$. If $m=0$, then $d^{0}=1 \varepsilon D \backslash S$ since $1 \varepsilon D \backslash I_{D}(d)$ and $S \subseteq I_{D}(d)$. If $m<0$, then $d^{m}=d^{m}+d^{0}=d^{m}+1 \varepsilon D \backslash S$ since $D \backslash S$ is an ideal of ($D,+$).

Thus $d^{m} \varepsilon D \backslash S$ for all $m \leqslant 0$.
Subcase 2.2.1 $1+1=1$.
Then $d^{n}+d^{n}=d^{n} \quad \forall n \varepsilon \mathbb{Z}$. So we have that
$d^{m}+d^{n}=d^{m}$ for all $m, n \in \mathbb{Z}, m \leqslant n$.
Let $\langle d\rangle=\left\{d^{n} \mid n \in \mathbb{Z}\right\}$. Clearly $(\langle d\rangle, \cdot) \leqslant(K \backslash\{a\}, \cdot)$ and by (3), we can show that $\langle\alpha\rangle$ is an additive subsemigroup of $K \backslash\{a\}$. Thus $(\langle d\rangle,+, \cdot)$ is a ratio semiring.

Subcase 2.2.1.1 There exists $m \in \mathbb{Z}^{+}$such that $d^{m} \varepsilon S$. Choose the smallest $n_{0} \varepsilon \mathbb{Z}^{+}$such that $d^{n} \varepsilon s$. Then $n_{0} \geqslant 1$ (since $\left.d^{m} \varepsilon D \backslash S \quad \forall m \in \mathbb{Z}, m \leqslant 0\right)$. So we get that $d^{k} \varepsilon D \backslash s \quad \forall k<n_{0}$. Claim that $d^{n} \varepsilon S \quad \forall n \geqslant n_{0}$. Let $n \geqslant n_{0}$, then $d^{n_{0}}=d^{n_{0}}+d^{n}$. Now $a=a+d^{n}=a+\left(d^{n_{0}}+d^{n}\right)=\left(a+d^{n}\right)+d^{n}=a+d^{n}$. Thus $a+d^{n}=a$. Therefore $d^{n} \varepsilon s$. So we have the claim. Let $s_{1}=\left\{d^{n} \mid n \geqslant n_{0}\right\}$. Then $\langle d\rangle \backslash S_{1}=$ $\left\{d^{n} \mid n<n_{0}\right\}$. Thus $S_{1} \subseteq s$ and $\langle d\rangle \backslash S_{1} \subseteq D \backslash s$. Clearly $\left(S_{1},+\right) \leqslant$ $\left(I_{\langle d\rangle}(d),+\right)$ and $\langle d\rangle \backslash S_{1}$ is an ideal of $(\langle d\rangle,+)$. Since $s_{1} \subseteq s$ and $\langle d\rangle \backslash S_{1} \subseteq D \backslash s, a+x=a \quad \forall x \in S_{1}$ and $\left.a+x=d+x \quad \forall x \varepsilon<d\right\rangle \backslash S_{1}$. By Theorem 2.43, $a+a=a$ or $a+a=d+d=d$ since $1+1=1$. Since $\langle d\rangle U\{a\} \subseteq K, a x=x a=d x \quad \forall x \varepsilon\langle d\rangle \cup\{a\}$. By Theorem 2.51, $\langle d\rangle U\{a\}$ is the semifield given in Remark 4.9. Thus $K^{\prime} \subseteq\langle d\rangle \cup\{a\}$. Claim that $K^{\prime} \cong\langle d\rangle U\{a\}$. By Theorem 4.2, a, $1 \varepsilon K^{\prime}$ and ($\left.K^{\prime} \backslash\{a\}, \cdot\right)$ is a group. Then $d=d \cdot 1=a \cdot 1 \in K^{\prime} \backslash\{a\}$. Thus $d \varepsilon K^{\prime} \backslash\{a\}$. Hence $\langle d\rangle \subseteq K^{\prime} \backslash\{a\}$. Therefore $\langle d\rangle U\{a\} \subseteq K^{\prime}$. Hence $K^{\prime} \cong\langle d\rangle U\{a\}$ as
in Remark 4.9
Subcase 2.2.1.2 There does not exist an $m \varepsilon \mathbb{Z}^{+}$such that $d^{m} \varepsilon S$. Thus $d^{n} \varepsilon D \backslash S \quad \forall n \in \mathbb{Z}^{+}$and from (2) we then get that $d^{n} \varepsilon D \backslash S \quad \forall n \in \mathbb{Z}$, so $a+d^{n}=d+d^{n} \quad \forall n \in \mathbb{Z}$. By Theorem 2.43, $a+a=a$ or $a+a=d+d=d$ since $1+1=1$. Since $\langle d>U\{a\} \subseteq K, a x=x a=d x$ $\forall x \varepsilon<d\rangle U\{a\}$. By Theorem 2.51, $\langle d\rangle U\{a\}$ is the semifield given in Remark 4.10. The same as before, we can show that $K^{\prime} \cong\langle d\rangle \cup\{a\}$ as in Remark 4.10

Subcase 2.2.2 $\quad 1+1 \neq 1$.

By Proposition $1.18, Q^{+}$with the usual addition and multiplication is the smallest ratio subsemiring of $K^{\prime} \backslash\{a\}$. Then up to isomorphism we can consider $Q^{+} \subseteq K^{\prime} \backslash\{a\}$.

Subcase 2.2.2.1 $\quad d \in Q^{+} . \quad$ Claim that $Q^{+} \cap S=\Phi$. If $x \in Q^{+}$and $x \in S$, then $x \in I_{D}(d)\left(\right.$ since $\left.S \subseteq I_{D}(d)\right)$. Thus $x+d$ $=d, a$ contradiction since $x, d \varepsilon Q^{+}$. So we have the claim. Thus $Q^{+} \subseteq D \backslash S$, so $a+x=x+a=d+x \quad \forall x \in Q^{+}$and $a x=x a=d x \quad \forall x \varepsilon Q^{+} U\{a\}$. By Theorem 2.43 (1) and (2) we get that $a+a=d+d$. By Theorem 2.51, we obtain that $Q^{+} U\{a\}$ is the semifield given in Remark 4.8. Since $Q^{+} \subseteq K^{\prime} \backslash\{a\}, \quad Q^{+} \cup\{a\} \subseteq K^{\prime}$. Since K^{\prime} is the smallest subsemifield of $K, K^{\prime} \subseteq Q^{+} U\{a\}$. Therefore $K^{\prime} \cong \mathbb{Q}^{+} U\{a\}$ as in Remark 4.8.

$$
\text { Subcase 2.2.2.2 } \quad d \notin Q^{+} \text {. }
$$

Consider $\mathbb{Q}^{+} \cdot\langle d\rangle=\left\{x d^{n} \mid \times \varepsilon Q^{+}, n \varepsilon \mathbb{Z}\right\}$. Clearly ($\left.Q^{+} \cdot<d>, \cdot\right)$ is a subgroup of $(K \backslash\{a\}, \cdot)$. Claim that $\Phi^{+} \cdot\langle d\rangle$ is a ratio subsemiring of $K^{\prime} \backslash\{a\}$. Since a and $1 \varepsilon K^{\prime}, d=a \cdot 1 \varepsilon K^{\prime}$. Since $\Phi^{+} \subset K^{\prime} \backslash\{a\}$, which is a group under multiplication, $Q^{+} \cdot\langle\alpha\rangle \subseteq K^{\prime} \backslash\{a\}$. To show the claim, we need only show that $\Phi^{+} \cdot\langle d\rangle$ is a subsemigroun of $K^{\prime} \backslash\{a\}$ under addition. Let $x, y \in \mathbb{Q}^{+}, m, n \in \mathbb{Z}$. Consider $x d^{m}+y d^{n}$. If $m=n$
then $x d^{m}+y d^{n}=x d^{m}+y d^{m}=(x+y) d^{m} \varepsilon Q^{+} \cdot\langle d\rangle$. Now suppose that $m \neq n$. We may assume that $\mathrm{m}<\mathrm{n}$.

Case 1 (of claim) $x=y$. Then $x d^{m}+y d^{n}=x d^{m}+x d^{n}=x\left(d^{m}+d^{n}\right)=$ $x d^{m} \in Q^{+} \cdot\langle d\rangle$.

Case 2 (of claim) $x>y$. Then $\exists \ell \in Q^{+}$such that $x=\ell+y$. Then

$$
\begin{aligned}
& x d^{m}+y d^{n}=(\ell+y) d^{m}+y d^{n}=\ell d^{m}+y d^{m}+y d^{n}=\ell d^{m}+y\left(d^{m}+d^{n}\right) \\
& =\ell d^{m}+y d^{m}=(\ell+y) d^{m}=x d^{m} \varepsilon Q^{+} \cdot\langle d>
\end{aligned}
$$

Case 3 (of claim) $x<y$. Let $z \varepsilon K$ and $n \varepsilon \mathbb{Z}^{+}$. Define $n z=$ $n z=\underbrace{z+z+\ldots+z}$ Since $y=\left[\frac{y}{x}\right] x+\gamma$ where $0 \leqslant \gamma<x$, then $x d^{m}+y d^{n}=$ n times
$x d^{m}+\left(\left[\frac{y}{x}\right] x+\gamma\right) d^{n}=x d^{m}+\left[\frac{y}{x}\right] x d^{n}+\gamma d^{n}=\left(x d^{m}+\gamma d^{n}\right)+\left[\frac{y}{x}\right] x d^{n}$ $=x d^{m}+\left[\frac{y}{x}\right] x d^{n} \quad($ by case 2$)=x d^{m}+(\underbrace{x d^{n}+x d^{n}+\ldots+x d^{n}}_{\left[\frac{y}{x}\right] \text { times }})$ $=x(d^{m}+\underbrace{d^{n}+d^{n}+\ldots+d^{n}}_{\left[\frac{y}{x}\right] \text { times }})=x d^{m} \varepsilon Q^{+} \cdot\langle d\rangle$.

So we get that

$$
x d^{m}+y d^{n}= \begin{cases}(x+y) d^{m} & \text { if } m=n, \\ x d^{m} & \text { if } m<n, \quad \ldots \ldots(4) \\ y d^{n} & \text { if } m>n .\end{cases}
$$

So we have the claim. Therefore $Q^{+} \cdot\langle d\rangle$ is a ratio subsemiring of $\mathrm{K}^{\prime} \backslash\{\mathrm{a}\}$.

Let $x \in \mathbb{Q}^{+}$. If $x d \varepsilon S$, then $x d \in I_{D}(d)$ since $S \subset I_{D}(d)$. Thus $x d+d$ $=d$, so $x+1=1$, a contradiction since $x, 1 \varepsilon Q^{+}$. Hence $x d \varepsilon D \backslash S$ $\forall x \in \mathbb{Q}^{+}$. For $n \in \mathbb{Z}, n<1$ we have that $x d^{n}=x d^{n}+x d$. Since $x d \in D \backslash$ which is an ideal of $(D,+), \quad x d^{n}+x d \varepsilon D \backslash S$.

Thus $\mathrm{xd}^{\mathrm{n}} \varepsilon \mathrm{D} \backslash \mathrm{S} \forall \mathrm{X} \in \mathbb{Q}^{+}, \forall \mathrm{n} \in \mathbb{Z}, \mathrm{n} \leqslant 1 \ldots \ldots \ldots \ldots$ (5)
Subcase 2.2.2.2.1 There exists $n \in \mathbb{Z}^{+}$such that
$d^{n} \varepsilon s$. Let n_{0} be the smallest positive integer such that $d^{n}{ }^{n} \varepsilon$. By (5) we get that $n_{0} \geqslant 2$. Let $S_{1}=\left\{x d^{n} \mid x \in Q^{+}, n \geqslant n_{0}\right\}$. Then $\mathbb{Q}^{+} \cdot\langle d\rangle \backslash S_{1}=\left\{x d^{n} \mid x \in Q^{+}, n<n_{0}\right\}$. Claim that $S_{1} \subseteq s$ and $Q^{+} \cdot\langle d\rangle \backslash S_{1}$ CD\S.

To show $S_{1} \subseteq S$, let $x \in \mathbb{Q}^{+}$and $n \varepsilon \mathbb{Z}^{+}, n \geqslant n_{0}$ 。

Case 1 (of claim) $n=n_{0}$.
Subcase 1.1 $x=1$. Then $x d^{n_{0}}=1 \cdot d^{n_{0}}=d^{n_{0}} \varepsilon s$.
Subcase $1.2 x<1$. Then $\exists \ell \varepsilon Q^{+}$such that $1=x+\ell$. Thus $d^{n_{0}}=x d^{n_{0}}+e d^{n_{0}}$. Then $a=a+d^{n_{0}}=a+\left(x d^{n_{0}}+e d^{n_{0}}\right)=\left(a+x d^{n_{0}}\right)+e d^{n_{0}}$. If $a+x d^{n_{0}} \neq a$, then $a+x d^{n_{0}}=d+x d^{n^{0}}$ (by Theorem 2.43). Thus $a=\left(d+x d^{n^{0}}\right)+l d^{n_{0}}=d+l d^{n_{0}}=d$ (since $n_{0} \geqslant 2$ and by (4)). Hence $a=d$, a contradiction. Thus $a+x d^{n_{0}}=a$, so $x d^{n_{0}} \varepsilon s$.

Subcase $1.3 \quad x>1$. Then $x=[x]+\ell$ where $0 \leqslant \ell<1$. Then $x d^{n_{0}}=[x] d^{n_{0}}+e d^{n_{0}}=(\underbrace{a^{n_{0}}}_{[x]_{\text {times }}^{n_{0}}+\ldots+d^{n_{0}}}+e d^{n_{0}}$. By subcase 1.1 and
Subcase $1.2, d^{n_{0}}, \ell d^{n_{0}} \in S$. Since $(S,+) \leqslant\left(I_{D}(d),+\right)$, we get that $(\underbrace{d^{n_{0}}+\ldots+d^{n_{0}}}_{[x] \text { times }})+\ell d^{n_{0}} \varepsilon$ s. Hénce $x d^{n_{0}} \varepsilon s$.

Case 2 (of claim) $n>n_{0}$. Then $x d^{n_{0}}=x d^{n_{0}}+x d^{n}$ (by (4)). By case $1, x d^{n_{0}}$. S. Then $a=a+x d^{n_{0}}=a+\left(x d^{n_{0}}+x d^{n}\right)=\left(a+x d^{n^{0}}\right)+x d^{n}$ $=a+x d^{n}$. Thus $a+x d^{n}=a$. Hence $x d^{n} \varepsilon S$.

$$
\text { Therefore we get that } s_{1} \subseteq s \text {. }
$$

To show $\mathbb{Q}^{+} \cdot\langle d\rangle \backslash S_{1} \subseteq D \backslash S$, let $x \in \mathbb{Q}^{+}, n<n_{0}$. If $n \leqslant 1$,
then by (5) we get that $x d^{n} \varepsilon D \backslash S$. Suppose that $1<n<n_{0}$.
Case 1 (of claim) $x=1$. Then $x d^{n}=1 \cdot d^{n}=d^{n}$. Since n_{0} is the smallest positive integer such that $d^{n^{n}} \varepsilon S, d^{n} \varepsilon D \backslash S$.

Case 2 (of claim) $x>1$. Then $\exists \ell \varepsilon \Phi^{+}$such that $x=1+\ell$. Then $x d^{n}=(1+\ell) d^{n}=1 \cdot d^{n}+\ell d^{n}=d^{n}+\ell d^{n}$. By case $1, \quad d^{n} \varepsilon D \backslash S$. Thus $d^{n}+\ell d^{n} \varepsilon D \backslash S$ since $D \backslash S$ is an ideal of $(D,+)$. Hence $x d^{n} \varepsilon D \backslash S$

Case 3 (of claim) $x<1$. Then $\exists \mathrm{k} \varepsilon \mathbb{Z}^{+}$such that $k x>1$. By case 2 , $(k x) d^{n} \varepsilon D \backslash S$. Since $(k x) d^{n}=(\underbrace{x+\ldots+x}_{k \text { times }}) d^{n}=\underbrace{x d^{n}+\ldots+x d^{n}}_{k \text { times }}$, we get that if $x d^{n} \varepsilon s$, then $(\underbrace{x d^{n}+\ldots+x d^{n}}_{k \text { times }})$ s. Thus $(k x) d^{n} \varepsilon s$, which is a contradiction. Hence $x d^{n} \in D \backslash S$. So we have the claim i.e. $S_{1} \subseteq s$ and $\Phi^{+}<d>\backslash S_{1} \subseteq D \backslash S$. Thus $a+x=x+a=a \quad \forall x \in S_{1}$ and $a+x=x+a=$ $d+x \quad \forall x \in Q^{+}\left\langle d>\backslash S_{1}\right.$. By Theorem 2.43 (1) and (2), we get that $a+a=d+d . \quad$ Since $\Phi^{+}\langle d\rangle U\{a\} \subseteq K, \quad a x=x a=d x \quad \forall x \in \Phi^{+}<d>U\{a\}$. Clearly $\left(S_{1},+\right) \leqslant\left(I_{Q^{+}}^{(d)}\langle d\rangle+\right)^{(d)}$ and $Q^{+}\langle d\rangle \backslash S_{1}$ is an ideal of $\left(Q^{+}\langle d\rangle,+\right)$. By Theorem 2.51, $\Phi^{+}<d>U\{a\}$ is the semifield given in Remark 4.13. Thus $K^{\prime} \subseteq \Phi^{\dagger}<d>U\{a\}$. Since $a, 1 \varepsilon K^{\prime}$, we get that $d=a \cdot 1 \varepsilon K^{\prime}$. Since $\Phi^{+} \subseteq K^{\prime} \backslash\{a\}, Q^{+} \cdot\langle d\rangle \subseteq K \backslash\{a\}$ because $\left(K^{\prime} \backslash\{a\}, \cdot\right)$ is a group. Hence $\Phi^{+}<d>U\{a\} \subseteq K!$ Thus $K^{\prime} \cong \mathbb{Q}^{+}\langle d\rangle U\{a\}$ as in Remark 4.13

Subcase 2.2.2.2.2 There does not exist an $n \in \mathbb{Z}^{+}$
such that $d^{n} \varepsilon S$. Then $d^{n} \varepsilon D \backslash S \quad \forall^{\prime} n \varepsilon \mathbb{Z}^{+}$. By (2), we have that $d^{m} \varepsilon D \backslash S \quad \forall m \in \mathbb{Z}, m \leqslant 0$. Hence $d^{n} \varepsilon D \backslash S \forall n \varepsilon \mathbb{Z}$. Claim that $\Phi^{+}\langle d\rangle E D \backslash S$. Let $x \in \Phi^{+}$and $n \in \mathbb{Z}$.

Case 1 (of claim) $n \leqslant 1$. Then by (5), $x d^{n} \varepsilon D \backslash S$.

Case 2 (of claim) n >1.

Subcase 2.1 (of claim) $x=1$. Then $x d^{n}=1 d^{n}=d^{n} \in D \backslash S$.
Subcase 2.2 (of claim) $x>1$. Then $\exists \ell \in Q^{+}$such that $x=1+\ell$. Thus $x d^{n}=d^{n}+\ell d^{n}$. Since $d^{n} \varepsilon D \backslash S$ which is an ideal of $(D,+), \quad d^{n}+\ell d^{n} \in D \backslash S$. Hence $x d^{n} \varepsilon D \backslash S$.

Subcase 2.3 (of claim) $x<1$. Then $\exists k \in \mathbb{Z}^{+}$such that $k x>1$. By Subcase 2.2, $(k x) d^{n} \varepsilon D \backslash$ S. Since $(k x) d^{n}=(\underbrace{x+\ldots+x}_{k \text { times }}) d^{n}=$ $\underbrace{x d^{n}+\ldots+x d^{n}}_{k \text { times }}$, we get that if $x d^{n} \varepsilon S$, then $(k x) d^{n} \varepsilon S$ (since $(S,+) \leqslant$ $\left(I_{D}(d),+\right)$). Hence $(k x) d^{n} \varepsilon S$, a contradiction. Thus $x^{n} \varepsilon D \backslash S$. So we have the claim, i.e. $Q^{+}\langle d\rangle \subseteq D \backslash S$. Thus $a+x=x+a=$ $\mathrm{d}+\mathrm{x} \forall \mathrm{x} \in \mathbb{Q}^{\boldsymbol{t}}\langle\mathrm{d}\rangle$ and, by Theorem 2.43 (1) and (2), we get that $\mathrm{a}+\mathrm{a}=$ $d+d$. Since $Q^{\dagger}\langle d\rangle \subseteq K$, $a x=x a=d x \forall x \in Q^{+}\langle d>U\{a\}$. By Theorem 2.51, $\mathbb{Q}^{\ddagger}<d>U\{a\}$ is the semifield given in Remark 4.14. Using the same proof as before, we obtain that $\mathrm{K}^{\prime} \cong \mathbb{Q}^{+} \cdot\langle\mathrm{d}\rangle \cup\{a\}$.

Subcase $2.3 d^{2} \varepsilon D \backslash I_{D}(d)$ and $1 \varepsilon I_{D}(d)$. Then $1+d=d$. By induction, we can show that $1+d^{k}=d^{k} \forall k \in \mathbb{Z}^{+}$. Let $m, n \in \mathbb{Z}$ be such that $m<n$. Then $d^{m}+d^{n}=1 \cdot d^{m}+d^{n-m} \cdot d^{m}=\left(1+d^{n-m}\right) \cdot d^{m}=d^{n-m} \cdot d^{m}=d^{n}$. Thus

$$
\begin{equation*}
d^{m}+d^{n}=d^{n} \quad \forall m, n \varepsilon \mathbb{Z}, m<n \tag{6}
\end{equation*}
$$

For $m \varepsilon \mathbb{Z}^{+}, m \geqslant 2$, claim that $d^{m} \varepsilon D \backslash S$. Since $d^{2} \notin I_{D}(d)$ and $S \subseteq I_{D}(d), \quad d^{2} \varepsilon D \backslash S$. Assume that $m>2$, then $d^{m}=d^{2}+d^{m}$. Thus $a+d^{m}=a+\left(d^{2}+d^{m}\right)=\left(a+d^{2}\right)+d^{m}=\left(d+d^{2}\right)+d^{m}=d^{2}+d^{m}=d^{m}$ since $d^{2} \varepsilon D \backslash S$ and by (6). Hence $a+d^{m}=d^{m}$. Thus $a+d^{m} \neq a$. Therefore $d^{m} \varepsilon D \backslash S$. So we have the claim,

$$
\begin{equation*}
d^{\mathrm{m}} \varepsilon \mathrm{D} \backslash \mathrm{~s} \quad \forall \mathrm{~m} \in \mathbb{Z}^{+}, \mathrm{m}_{-} \geqslant 2 . \tag{7}
\end{equation*}
$$

Subcase 2.3.1 $\quad 1+1=1$.
Thus $d^{n}+d^{n}=d^{n} \forall n \in \mathbb{Z}$. So we have that $d^{m}+d^{n}=d^{n} \forall m, n \in \mathbb{Z}, m \leqslant n$

Let $\langle d\rangle=\left\{d^{m} \mid n \in \mathbb{Z}\right\}$. Clearly $(\langle\alpha\rangle, \cdot) \leqslant(K \backslash\{a\}, \cdot)$
and by (8), we can easily show that $\langle\alpha\rangle$ is an additive subsemigroup of $K \backslash\{a\}$. Hence $\langle d\rangle$ is a ratio subsemiring of $K \backslash\{a\}$.

Subcase 2.3.1.1 There exists $n \in \mathbb{Z}$ such that $d^{n} \varepsilon S$. By (7), we get that $n \leqslant 1$. Let n_{0} be the largest integer such that $d^{n_{0}} \varepsilon s$. Thus $n_{0} \leqslant 1$. Let $S_{1}=\left\{d^{n} \mid n \leqslant n_{0}\right\}$. Then $\langle d\rangle \backslash s_{1}=$ $\left\{d^{n} \mid n>n_{0}\right\}$. Claim that $S_{1} \subseteq S$ and $\langle d\rangle \backslash S_{1} \subseteq D \backslash S$. To show $S_{1} \subseteq S$, let $n \in \mathbb{Z}, n \leqslant n_{0}$. By (8), we get that $d^{n} 0=a^{n_{0}}+d^{n}$. Thus $a=a+d^{n_{0}}=$ $a+\left(d^{n}+d^{n}\right)=\left(a+d^{n}\right)+d^{n}=a+d^{n}\left(\right.$ since $\left.d^{n} \varepsilon s\right)$. Thus $a+d^{n}=a$. Hence $d^{n} \varepsilon S$. To show $\langle\alpha\rangle \backslash S_{1} \subseteq D \backslash s$, let $n \varepsilon \mathbb{Z}, n>n_{0}$. If $n \geqslant 2$, then by (7) , $d^{n} \varepsilon D \backslash S$. If $n_{0}<n<2$, then by the choice of n_{0} we get that $d^{n} \varepsilon D \backslash S$. So we have the claim. Clearly $\left(S_{1} ;+\right) \leqslant\left(I_{<d>}(d),+\right)$ and $\langle d\rangle \backslash S_{1}$ is an ideal of $(\langle d\rangle,+)$. By the claim, we get that $a+x=x+a$ $=a \quad \forall x \in S_{1}, \quad a+x=x+a=d+x \quad \forall x \varepsilon<d>\backslash S_{1}$ and by Theorem 2.43, $a+a=a$ or $a+a=d+d=d$ (since $1+1=1$). Since $\langle d\rangle \cup\{a\} \subseteq K, a x=x a$ $=d x \quad \forall x \varepsilon<d>U\{a\}$. By Theorem 2.51, <d>U\{a\} is the semifield given in Remark 4.11. Using the same proof as before, we obtain that $K^{\prime} \cong<d>\cup\{a\}$.

Subcase 2.3.1.2 There does not exist an $n \varepsilon \mathbb{Z}$ such that $d^{n} \varepsilon S$. Thus $d^{n} \varepsilon D \backslash S \quad \forall n \in \mathbb{Z}$, so $a+d^{n}=d+d^{n} \forall n \varepsilon \mathbb{Z}$. By Theorem 2.43, $a+a=a$ or $a+a=d+d=d$ (since $1+1=1$). Since $\langle d\rangle \cup\{a\} \subseteq K, a x=d x \quad \forall x \varepsilon<d>U\{a\}$. By Theorem 2.51, <d>$\cup\{a\}$ is the semifield given in Remark 4.12 and using the same proof as before, we obtain that $K^{\prime} \cong<d>v\{a\}$.

Subcase $2 \cdot 3 \cdot 2 \quad 1+1 \neq 1$.

By Theorem $2.41, K^{\prime} \backslash\{a\}$ is a ratio semiring. Since $1+1 \neq 1$, we get that \mathbb{Q}^{+}with the usual + and - is the smallest ratio subsemiring of $K^{\prime} \backslash\{a\}$ (Proposition 1.18). Then, up to isomorphism, we can consider $\mathbb{Q}^{+} \subseteq K^{\prime} \backslash\{a\}$.

Subcase 2.3.2.1 $d \varepsilon \Phi^{+}$.
Claim that $Q^{+} \cap S=\Phi$. Suppose that $\exists \times \varepsilon Q^{+}$and $\times \varepsilon S$. Since $S \subseteq I_{D}(d), x \in I_{D}(d)$. Thus $x+d=d$ which is a contradiction since $x, d \varepsilon Q^{+}$. So we have the claim. Thus $Q^{+} \subseteq D \backslash S$. Hence $a+x=d+x$ $\forall x \in \Phi^{+}$. By Theorem $2.43(1)$ and (2), we get that $a+a=d+d$. Since $Q^{+} \cup\{a\} \subseteq K, a x=d x \quad \forall^{\prime} x \varepsilon Q^{+} \cup\{a\}$. By Theorem 2.51, $\mathbb{Q}^{+} U\{a\}$ is the semifield given in Remark 4.8 and using the same proof as before we can show that $K^{\prime} \cong Q^{+} \cup\{a\}$.

Subcase 2.3.2.2 $d \ddagger \Phi^{+}$.
Consider $Q^{+}<d>=\left\{x d^{n} \mid x \in Q^{+}, n \in \mathbb{Z}\right\}$. Clearly $\left(Q^{+}<d>, \cdot\right) \leqslant(K \backslash\{a\}, \cdot)$ Claim that $\mathbb{Q}^{+}\left\langle d>\right.$ is a ratio subsemiring of $K^{\prime} \backslash\{a\}$. Since $a, 1 \varepsilon K^{\prime}$, $d=a \cdot 1 \varepsilon K^{\prime}$. So $d \varepsilon K^{\prime} \backslash\{a\}$. Since $Q^{+} \underline{=} K^{\prime} \backslash\{a\}$ which is a group under multiplication, $Q^{+}\langle\alpha\rangle \subseteq K^{\prime} \backslash\{a\}$. To show the claim we need only show that $\mathbb{Q}^{+}\left\langle d>\right.$ is an additive subsemigroup of $K^{\prime} \backslash\{a\}$. Let $x, y \in \mathbb{Q}^{+}$ $y \in \mathbb{Q}^{+}, m, n \in \mathbb{Z}$. Consider $x d^{m}+y d^{n}$. If $m=n$, then $x d^{m}+y d^{n}=$ $x d^{m}+y d^{m}=(x+y) d^{m} \varepsilon \Phi^{t}<d>$. Suppose that $m \neq n$. We may assume that $m<n$. Case 1 (of claim) $x=y$. Then $x d^{m}+y d^{n}=x d^{m}+x d^{n}=x\left(d^{m}+d^{n}\right)=$ $x d^{n} \varepsilon Q^{+}\langle d\rangle$ by (6).

Case 2 (of claim) $\mathrm{x}<\mathrm{y}$. Then $\exists \ell \in Q^{+}$such that $\mathrm{y}=\mathrm{x}+\ell$. Then $x d^{m}+y d^{n}=x d^{m}+(x+\ell) d^{n}=x d^{m}+x d^{n}+\ell d^{n}=x\left(d^{m}+d^{n}\right)+\ell d^{n}=x d^{n}+\ell d^{n}=$ $(x+l) d^{n}=y d^{n}$.

Case 3 (of claim) $x>y$. Let $z \in K$ and $n \in \mathbb{Z}^{+}$. Define $n z=z+\ldots$ $\ldots+z \quad$ (n times). Since $x=\left[\frac{x}{y}\right] y+\gamma$ where $0 \leqslant \gamma<y, x d^{m}+y d^{n}$ $=\left(\left[\frac{x}{y}\right] y+\gamma\right) d^{m}+y d^{n}=\left[\frac{x}{y}\right] y d^{m}+\gamma d^{m}+y d^{n}=\left[\frac{x}{y}\right] y d^{m}+\left(\gamma d^{m}+y d^{n}\right)$
$=\left[\frac{x}{y}\right] y d^{m}+y d^{n} \quad($ by case 2$)=\underbrace{(y+y+\ldots+y}_{\left[\frac{x}{y}\right] \text { times }}) d^{m}+y d^{n}=\underbrace{y d^{m}+y d^{m}+\ldots+y d^{m}}_{\left[\frac{x}{y}\right] \text { times }}$

$$
+y d^{n}=y(\underbrace{\left[d^{m}\right.}_{\left[\frac{d}{m}\right] \text { times }}+d^{n})=y d^{n} \quad(\text { by }(6))
$$

So we get that

$$
x d^{m}+y d^{n}= \begin{cases}(x+y) d^{m} & \text { if } m=n \tag{9}\\ \frac{x d^{m}}{y d^{n}} & \text { if } m>n \\ & \text { if } n>m\end{cases}
$$

Thus $Q^{t}\left\langle d>\right.$ is an additive subsemigroup of $K^{\prime} \backslash\{a\}$.
Therefore $\mathbb{Q}^{+}\left\langle d>\right.$ is a ratio subsemiring of $K^{\prime} \backslash\{a\}$.
Claim that $x d^{m} \varepsilon D \backslash S \quad \forall x \in Q^{+}, \forall m \in \mathbb{Z}^{+}, m \geqslant 2$. Let $x \in \mathbb{Q}^{+}, \mathrm{m} \varepsilon \mathbb{Z}^{+}, \mathrm{m} \geqslant 2$.

Case 1 (of claim) $x=1$. Then $x d^{m}=1 \cdot d^{m}=d^{m} \varepsilon D \backslash S \quad$ (by (7)).
Case 2 (of claim) $x>1$. Then $\exists \ell \varepsilon Q^{+}$such that $x=1+\ell$. Then $x d^{m}=d^{m}+\ell d^{m}$.

$$
\text { Since } d^{m} \varepsilon D \backslash S \text { which is an ideal of }(D,+), d^{m}+\ell d^{m} \varepsilon D \backslash S .
$$

Thus $x d^{m} \varepsilon D \backslash S$.

Case 3 (of claim) $\mathrm{x}<1$. Let $\mathrm{x} \in \mathbb{Z}^{+}$be such that $\mathrm{nx}>1$. By case 2 , $(n x) d^{m} \varepsilon D \backslash S$. Since $(n x) d^{m}=(\underbrace{x+x+\ldots+x}_{n \text { times }}) d^{m}=\underbrace{x d^{m}+x d^{m}+\ldots+x}_{n \text { times }} d^{m}$,
we get that if $x d^{m} \varepsilon S$, then $(n x) d^{m} \varepsilon S$ because $(S,+) \leqslant\left(I_{D}(d),+\right)$, a contradiction. Thus $x d^{m} \varepsilon D \backslash S$. So we have the claim,i,e.,

$$
\begin{equation*}
x d^{m} \in D \backslash S \quad \forall x \in Q^{+} \forall m \in \mathbb{Z}^{+}, m \geqslant 2 \tag{10}
\end{equation*}
$$

that $d^{n} \varepsilon s$. By (7), $n \leqslant 1$. Let n_{0} be the largest integer such that $d^{n_{0}} \varepsilon S$. Let $S_{1}=\left\{x d^{n} \mid x \in Q^{+}, n \varepsilon \mathbb{Z}, n \leqslant n_{0}\right\}$. Then $Q^{+}<d>\backslash S_{1}=$ $\left\{x d^{n} \mid x \in Q^{+}, n \varepsilon \mathbb{Z}, n>n_{0}\right\} . \quad$ Claim that $S_{1} \subseteq S$ and $Q^{+}<d>\backslash S_{1} \subseteq D \backslash S$. To show $S_{1} \subseteq S$, let $x \in \mathbb{Q}^{+}$and $n \varepsilon \mathbb{Z}, n \leqslant n_{0}$.

Case 1 (of claim) $n=n_{0}$.
Subcase $1.1 \quad x=1 . \quad$ Then $x d^{n}=1 \cdot d^{n}=d^{n} \varepsilon S$.
Subcase $1.2 x<1$. Then $\exists \ell \in Q^{+}$such that $1=x+\ell$. Then $d^{n_{0}}=1 d^{n_{0}}=(x+\ell) d^{n_{0}}=x d^{n^{n}}+\ell d^{n_{0}}$. Thus $d^{n_{0}}=x d^{n_{0}}+\ell d^{n_{0}}$. Since $d^{n^{0}} \varepsilon S$, $a=a+d^{n_{0}}=a+\left(x d^{n_{0}}+\ell d^{n^{n}}\right)=\left(a+x d^{n^{0}}\right)+\ell d^{n_{0}}$. If $a+x d^{n^{0}} \neq a$, then $a+x d^{n^{0}}$ $=d+x d^{n} 0$. Thus $a=\left(d+x d^{n}\right)+e d^{n}{ }^{n}$ which is a contradiction because $K \backslash\{a\}$ is a ratio semiring. Hence $a+x d^{n^{0}}=a$, so $x d^{n^{n}} \varepsilon s$.

Subcase $1.3 x>1$. Then $x=[x]+\ell$ where $0 \leqslant \ell<1$. If $\ell=0$, then $x=[x] \cdot x d^{n}=[x] d^{n_{0}}=\underbrace{d^{n_{0}}+\ldots+d^{n} 0}_{[x] \text { times }}$. By Subcase 1.1, $d^{n^{n}} \varepsilon s . \quad$ Thus $[x] d^{n_{0}} \varepsilon S$ since $(s,+) \leqslant\left(I_{D}(d),+\right)$. Hence $x d^{n_{0}} \varepsilon S$. If $0<\ell<1$, then $x=[x]+\ell$. Thus $x d^{n}=x d^{n^{0}}=[x] d^{n_{0}}+\ell d^{n_{0}}$. By Subcase 1.2 , $\ell d{ }^{n} 0$ S. It $\ell=0$, then by Subcase $1.3, \quad[x]{ }^{n}{ }^{n} \varepsilon$ s. Hence $[x] d^{n} 0$. $\ell d^{n}{ }^{n} \varepsilon S$ since $(S,+) \leqslant\left(I_{D}(d),+\right)$. Therefore $x d^{n} \varepsilon S$. Case 2 (of claim) $n<n_{0}$. By (9), $x d^{n_{0}}=x d^{n}+x d^{n}$. By case 1 , $x d^{n}{ }^{n} \varepsilon$ s. Then $a=a+x d^{n} 0=a+\left(x d^{n}+x d^{n}\right)=\left(a+x d^{n}\right)+x d^{n}=a+x d^{n}$. Thus $a+x d^{n}=a$. Hence $x d^{n} \varepsilon s$. Therefore $S_{1} \subseteq s$.

To show $\mathbb{Q}^{+}<d>\backslash S_{1} \subseteq D \backslash S$, let $x \in \mathbb{Q}^{+}, n \in \mathbb{Z}, n>n_{0}$. If. $n \geqslant 2$ then by (10), $x d^{n} \varepsilon D \backslash S$. Suppose that $n_{0}<n<2$. We want to show
that $x d^{n} \varepsilon D \backslash S$
Case 1 (of claim) $x=1$. Then $x d^{n}=1 \cdot d^{n}=d^{n}$. By the choice of n_{0} we get that $d^{n} \varepsilon D \backslash S$. Thus $x d^{n} \varepsilon D \backslash S$.

Case 2 (of claim) $x>1$. Then $\exists \ell \varepsilon Q^{+}$such that $x=1+\ell$. Then $x d^{n}=(1+\ell) d^{n}=1 d^{n}+\ell d^{n}=d^{n}+\ell d^{n}$. By case $1, d^{n} \varepsilon D \backslash S$. Since $D \backslash S$. is an ideal of $(D,+), \quad d^{n}+\ell d^{n} \varepsilon D \backslash S$. Thus $x^{n} \varepsilon D \backslash S$.

Case 3 (of claim) $x<1$. Then $\exists m \in \mathbb{Z}^{+}$such that $m x>1$. By case $2,(m x) d^{n} \varepsilon D \backslash S$. Since $(m x) d^{n}=(\underbrace{x+x+\ldots+x}_{m \text { times }}) d^{n}=\underbrace{x d^{n}+\ldots+x}_{m \text { times }} d^{n}$, we get that if $x d^{n} \varepsilon S$, then $(m x) d^{n} \varepsilon S$ because $(S,+) \leqslant\left(I_{D}<d>,+\right)$, a contradiction. Thus $x d^{n} \varepsilon D \backslash S$. So we have the claim, i.e. $S_{1} \subseteq S$ and $\Phi^{+}\langle d\rangle \backslash S_{1}$ $\subseteq D \backslash S$. Thus $a+x=a \quad \forall x \in s_{1}$ and $a+x=d+x \quad \forall x \in Q^{+}<d>\backslash s_{1}$. By Theorem 2.43 (1) and (2) we get that $a+a=d+d$. Since $Q^{+}\langle d\rangle \cup\{a\} \subseteq K$, $a x=d x \quad \forall x \in Q^{+},\left\langle d>U\{a\}\right.$. By Theorem 2.51, $Q^{+}<d>U\{a\}$ is the semifield given in Remark 4.15. Using the same proof as before we can show that $K^{\prime} \cong \mathbb{Q}^{+}<d>U\{a\}$.

Subcase 2.3.2.2.2 There does not exist an $n \in \mathbb{Z}$ such that $d^{n} \varepsilon S$. Thus $d^{n} \varepsilon D \backslash S \forall n \in \mathbb{Z}$. Claim that $\Phi^{d}<d>\subseteq D \backslash S$. Let $\mathrm{x} \in \mathbb{Q}^{+}$and $\mathrm{n} \varepsilon \mathbb{Z}$.

Case 1 (of claim) $n \geqslant 2$. Then by (10), $x d^{n} \varepsilon D \backslash s$.

Case 2 (of Claim) $n<2$.
Subcase 2.1 $x=1$. Then $x d^{n}=1 \cdot d^{n}=d^{n} \varepsilon D \backslash S$.
Subcase $2.2 \quad x>1$. Then $\exists \ell \varepsilon Q^{+}$such that $x=1+\ell$. Then $x d^{n}=d^{n}+\ell d^{n} \varepsilon D \backslash S$ since $d^{n} \varepsilon D \backslash S$ which is an ideal of $(D,+)$. Thus $x d^{n} \varepsilon \quad D \backslash S$.

Subcase $2.3 \quad x<1$. Then $\exists m \in \mathbb{Z}^{+}$such that $m x>1$. By
subcase $2.2,(m x) d^{n} \varepsilon D \backslash S$. Since $(m x) d^{n}=(\underbrace{(x+\ldots+x}_{m \text { times }}) d^{n}=\underbrace{x d^{n}+\ldots+x d^{n}}_{m \text { times }}$, we get that if $\mathrm{xd}^{\mathrm{n}} \varepsilon S$ then $(m x) d^{n} \varepsilon S$, which is a contradiction. Hence $x d^{n} \varepsilon D \backslash S$. So we have the claim, i.e. $\mathbb{Q}^{+}\langle d\rangle \subseteq D \backslash S$. Thus $a+x$ $=d+x \forall x \in \mathbb{Q}^{\dagger}\langle d\rangle$. By Theorem 2.43 (1) and (2), $a+a=d+d$. Since $Q^{\dagger}\langle c\rangle U\{a\} \subseteq k, a x=d x \forall x \in Q^{\dagger}\langle d\rangle U\{a\}$. By Theorem 2.51, $\mathbb{Q}^{+} .\langle\mathrm{d}\rangle \mathrm{U}\{\mathrm{a}\}$ is the semifield given in Remark 4.16. Using the same proof as before, we obtain that $K^{\circ} \cong \mathbb{Q}^{+} .\langle d\rangle \cup\{a\}$.

Subcase 2.4 $d^{2} \varepsilon D \backslash I_{D}(d)$ and $1 \varepsilon D \backslash I_{D}(d)$. Subcase 2.4.1 $\quad 1+1=1$.

Consider $1+d$. Since $1 \in D \backslash I_{D}(d), \quad 1+d \neq d$. Since $d^{2} \varepsilon D \backslash I_{D}(d), \quad 1+d \neq 1$. Now $1+d=(1+1)+d=1+(1+d)$. Let $x=1+d$, then $1+x=x$. By induction we can show that $1+x^{n}=x^{n} \forall n \in \mathbb{Z}^{+}$. For $m, n \in \mathbb{Z}, m<n$ we get that $x^{m}+x^{n}=x^{m}\left(1+x^{n-m}\right)=x^{m} x^{n-m}=x^{n}$, Thus
for $m, n \in \mathbb{Z}, x^{m}+x^{n}=x^{k}$ where $k=\max \{m, n\} . \ldots \ldots \ldots$ (11)
Next consider $1+d^{-1}$. Since $1+d^{-1}=(1+1)+d^{-1}=1+\left(1+d^{-1}\right)$,
$1+\left(1+d^{-1}\right)^{-1}=1$. Let $y=\left(1+d^{-1}\right)^{-1}$, then $y=\left(1+d^{-1}\right)^{-1}=\left(d^{-1}(1+d)\right)^{-1}$ $=d(1+d)^{-1}=d x^{-1}$. Thus $y=d x^{-1}$ and $1+y=1$. By induction, we can show that $1+y^{n}=1 \quad \forall n \in \mathbb{Z}^{+}$. For $m, n \in \mathbb{Z}, m<n, \quad y^{m}+y^{n}=y^{m}\left(1+y^{n-m}\right)$ $=y^{m} 1=y^{m}$. Thus
for $m, n \varepsilon \mathbb{Z}, y^{m}+y^{n}=y^{r}$ where $r=\min \{m, n\} \ldots \ldots \ldots$ (12)
Claim that $1+x^{r} y^{s}=x^{r}$ for all $r, s \in \mathbb{Z}^{+}$.
We shall prove this by induction on s. Let $r \in \mathbb{Z}^{+}$. First, we shall show that (13) holds for $s=1$.

If $r=1$, then $1+x^{r} y=1+x y=1+d=x=x^{r}$ since $d=x y$.
If $r>1$, then $1+x^{r} y=1+x^{r}\left(d x^{-1}\right)=1+d x^{r-1}=1+d(1+d)^{r-1}=$
$1+d\left(1+d+\ldots+d^{r-1}\right)=1+d+d^{2}+\ldots+d^{r}=(1+d)^{r}=x^{r}$ since $(1+d)^{n}=$ $1+d+d^{2}+\ldots+d^{n}$ for all $n \in \mathbb{Z}^{+}$(because $z+z=z \quad \forall z \varepsilon \quad D$). Hence $1+x^{r} y=x^{r}$. So (13) holds for $s=1$.

Now assume (13) is true for $s=n$. Thus $1+x^{r} y^{n}=x^{r}$. Since $1+y=1, \quad 1+x^{r} y^{n+1}=(1+y)+x^{r} y^{n+1}=1+\left(y+x^{r} y^{n+1}\right)=1+\left(1+x^{r} y^{n}\right) y$ $=1+x^{r} y=x^{r}$ (since (13) holds for $s=1$ and $s=n$). Hence $1+x^{r} y^{n+1}$ $=x^{r}$. So we have the claim.

Let $\langle x, y\rangle=\left\{x^{m} y^{n} \mid m, n \in \mathbb{Z}\right\}$. Claim that $\langle x, y\rangle$ is a ratio semiring containing d. Since $x y=x\left(d x^{-1}\right)=d, d \in\langle x, y\rangle$. Clearly ($\langle x, y\rangle, \cdot$) is a commutative group. To show the claim we need only show that $\langle x, y\rangle$ is closed under addition.

$$
\text { Let } m, n, k, \ell \in \mathbb{Z} \text {. Consider } x^{m} y^{n}+x^{k} y^{\ell} \text {. }
$$

Case 2 (of claim) $m<k$.

Subcase (2.1) $n \geqslant \ell$. Then $x^{k}=x^{m}+x^{k}$ and $y^{n}+y^{\ell}=y^{\ell}$ (by (11) and (12)). So $x^{m} y^{n}+x^{k} y^{\ell}=x^{m} y^{n}+\left(x^{m}+x^{k}\right) y^{\ell}=x^{m} y^{n}+x^{m} y^{\ell}+x^{k} y^{\ell}$. $=x^{m}\left(y^{n}+y^{\ell}\right)+x^{k} y^{\ell}=x^{m} y^{\ell}+x^{k} y^{\ell}=\left(x^{m}+x^{k}\right) y^{\ell}=x^{k} y^{\ell}$. Thus $x^{m} y^{n}+x^{k} y^{\ell}$ $=x^{k} y^{\ell}$.

Subcase (2.2) $n<\ell$. Then $x^{m} y^{n}+x^{k} y^{\ell}=x^{m} y^{n}\left(1+x^{k-m} y^{\ell-n}\right)$ $=x^{m} y^{n} x^{k-m}=x^{k} y^{n}\left(\right.$ by (13)). Thus $x^{m} y^{n}+x^{k} y^{\ell}=x^{k} y^{n}$.

Case 3 (of claim) $m>k$.
Subcase (3.1) $n \leqslant \ell$. Then $y^{n}=y^{n}+y^{\ell}$ and $x^{m}=x^{m}+x^{k}$.
Now $x^{m} y^{n}+x^{k} y^{\ell}=\left(x^{m}+x^{k}\right) y^{n}+x^{k} y^{\ell}=x^{m} y^{n}+x^{k} y^{n}+x^{k} y^{\ell}$
$=x^{m} y^{n}+x^{k}\left(y^{n}+y^{\ell}\right)=x^{m} y^{n}+x^{k} y^{n}=\left(x^{m}+x^{k}\right) y^{n}=x^{m} y^{n}$. Thus $x^{m} y^{n}+x^{k} y^{\ell}$ $=x^{m} y^{n}$.

Subcase (3.2) $n>\ell$. Then $x^{m} y^{n}+x^{k} y^{\ell}=x^{k} y^{\ell}\left(1+x^{m-k} y^{n-\ell}\right.$) $=x^{k} y^{\ell} x^{m-k}=x^{m} y^{\ell}\left(\right.$ by (13)). Thus $x^{m} y^{n}+x^{k} y^{\ell}=x^{m} y^{\ell}$.

We see that $x^{m} y^{n}+x^{k} y^{\ell}=x^{r} y^{s}$ where $r=\max \{m, k\}$ and $s=\min \{n, \ell\}$.

Therefore $\langle x, y\rangle$ is a ratio semiring. So we have the claim. By (14), we get that $I_{\langle x, y\rangle}(d)=\left\{x^{m} y^{n} \mid m, n \in \mathbb{Z}, m \leqslant 1 \leqslant n\right\}$. Then $\langle x, y\rangle \backslash I_{\langle x, y\rangle}(d)=\left\{\left.x^{m} y^{n}\right|_{m, n} \in \mathbb{Z}, m>1\right.$ or $\left.n<1\right\}$. Claim that $\langle x, y\rangle \backslash I_{\langle x, y\rangle}(d) \subseteq D \backslash S$
Let $z \varepsilon\langle x, y\rangle \backslash I_{\langle x, y\rangle}(d)$. If $z \varepsilon S$, then $z \varepsilon I_{D}(d)$ since $S \subseteq I_{D}(d)$. Thus $z+d=d$, so $z \varepsilon I_{\langle x, y\rangle}(d)$, which is a contradiction. Thus $z \varepsilon D \backslash S$. So we have (15).

$$
\begin{align*}
& \text { Now consider } I_{\langle x, y\rangle}(d) \cap s \text {. } \\
& \text { Subcase 2.4.1.1 } I_{\langle x, y\rangle}(d) \cap s=\Phi \text {. Then } \\
& I_{<x, y\rangle}(d) \subseteq D \backslash S . \tag{16}
\end{align*}
$$

By (15) and (16), $\langle x, y\rangle \subseteq D \backslash S$. Thus $a+z=d+z \forall z \varepsilon\langle x, y\rangle$ and by Theorem 2.43, $a+a=a$ or $a+a=a+d=d$. Since $\langle x, y\rangle U\{a\} \subseteq K$, $a \cdot z=d z$ for aliz $\varepsilon\langle x, y\rangle U\{a\}$. By Theorem 2.51, we obtain that $\langle x, y\rangle U\{a\}$ is the semifield of type III given in Remark 4.18. Let $A=\left\{\sum_{i<\infty} n_{i} d^{m_{i}} \mid n_{i}, m_{i} \in \mathbb{Z}^{+}\right\}$, by Theorem $4.6, B \cup\{a\} \cong K^{\prime}$ where B is the quotient ratio semiring of A. Since $d \varepsilon\langle x, y\rangle, A \subseteq\langle x, y\rangle$ Thus $B \subseteq\langle x, y\rangle$. And since $x=1+d, y=d x^{-1}$ so $x, y \in B$. Hence $\langle x, y\rangle \subseteq B$. Therefore $\langle x, y\rangle \cong B$. So we get that $K^{\prime} \cong\langle x, y\rangle \cup\{a\}$ as in Remark 4.18.

Subcase 2.4.1.2 $I_{\langle x, y\rangle}(d) \cap S \neq \Phi$.
Let $x^{m} y^{n} \varepsilon I_{\langle x, y\rangle}(d) \cap S$, then $x^{m} y^{n} \varepsilon S$ where $m \leqslant 1$ and $n \geqslant 1$. Choose m_{1} to be the largest integer such that $x^{m} y^{n} \varepsilon S$ for some $n \geqslant 1$ and choose n_{1} to be the smallest integer such that $x{ }^{m_{1}}{ }^{n_{1}} \varepsilon S$. Then $m_{1} \leqslant 1 \leqslant n_{1}$.

For $m \leqslant m_{1}$ and $n \geqslant n_{1}, x^{m_{1}} y^{n_{1}}=x^{m_{1}} y^{n_{1}}+x^{m} y^{n} \quad($ by (14)). Then $a=a+x^{m} y^{n_{1}}=a+\left(x^{m_{1}} y^{n 1}+x^{m} y^{n}\right)=\left(a+x^{m_{1}} y^{n_{1}}\right)+x^{m} y^{n}=a+x^{m} y^{n}$. Thus $\left\{x^{m} y^{n} \mid m \leqslant m_{1}\right.$ and $\left.n_{1} \leqslant n\right\} \subseteq s$.

By the choice of m_{1}, we get that
$\left\{x^{m} y^{n} \mid m_{1}<m \leqslant 1\right.$ and $\left.1 \leqslant n\right\} \subseteq D \backslash S$.
Choose n_{2} to be the smallest integer such that $x^{m} y{ }^{n}{ }^{n}$ for some $m \leqslant 1$ and choose m_{2} to be the largest integer such that $x^{m_{2}} y^{n_{2}} \varepsilon S$. Claim that $m_{1}=m_{2}$ and $n_{1}=n_{2}$. By the choice of $m_{1}, n_{1}, n_{2}, m_{2}$, we obtain that $m_{2} \leqslant m_{1} \leqslant 1$ and $1 \leqslant n_{2} \leqslant n_{1}$. Then $x^{m_{1}} y^{n_{2}}=x^{m_{2}} y^{n_{2}}+x^{m_{1}} y^{n_{1}}$. Since $(S,+) \leqslant\left(I_{D}(d),+\right), \quad x^{m} y^{n}+x^{m} y^{n}{ }^{n} \varepsilon S$. Hence $x^{m} y^{m^{n}}{ }^{n} \varepsilon S$. By the choice of n_{1}, we get that $n_{1} \leqslant n_{2}$. Thus $n_{1}=n_{2}$. And by the choice of m_{2}, we get that $m_{1} \leqslant m_{2}$. Thus $m_{1}=m_{2}$. So we have the claim. Thus we get that n_{1} is the smallest integer such that $x^{m} x^{n_{1}} \varepsilon S$ for some $m \leqslant 1$. So we get that
$\left\{x^{m} y^{n} \mid m \leqslant 1\right.$ and $\left.1 \leqslant n<n_{1}\right\} \subseteq D \backslash S$.
From (17), (18) and (19), we get that
$I_{<x, y\rangle}(d) \cap S=\left\{x^{m} y^{n} \mid m \leqslant m_{1}\right.$ and $\left.n_{1} \leqslant n\right\}$.
Let $S_{1}=I_{\langle x, y\rangle}(d) \cap s . \quad$ Claim that $\langle x, y\rangle \cap s=S_{1}$. Let $M=$
$\langle x, y\rangle$. Since $M=\left(M \backslash I_{M}(d)\right) \cup I_{M}(d),\langle x, y\rangle \cap S=M \cap S=$
$=\left(\left(M \backslash I_{M}(d)\right) \cup I_{M}(d)\right) \cap s=\left(\left(M \backslash I_{M}(d)\right) \cap s\right) \cup\left(I_{M}(d) \cap s\right)=$
$\Phi U\left(I_{M}(d) \cap s\right) \quad($ by $(15))=I_{\langle x, y\rangle}(d) \cap S=S_{1}$. So we have the claim i.e. $\langle x, y\rangle \cap s=\left\{x^{m} y^{n} \mid m \leqslant m_{1}\right.$ and $\left.n_{1} \leqslant n\right\}=S_{1}$. Then $\langle x, y\rangle \backslash S_{1}$
$=\left\{x^{m} y^{n} \mid m>m_{1}\right.$ or $\left.n<n_{1}\right\}$. We have already shown in Remark 4.17 that $\langle x, y\rangle \backslash S_{1}$ is an ideal of $(\langle x, y\rangle,+)$. Since $\langle x, y\rangle \backslash s_{1}=\langle x, y\rangle \cap s_{1}^{c}$ $=\langle x, y\rangle \cap(\langle x, y\rangle \cap S)^{c}=\langle x, y\rangle \cap\left(\langle x, y\rangle^{c} \cup S^{c}\right)=\left(\langle x, y\rangle \cap\langle x, y\rangle{ }^{c}\right) \cup$ $\left(\langle x, y\rangle \cap S^{c}\right)=\langle x, y\rangle \backslash S \subseteq D \backslash S, \quad\langle x, y\rangle \backslash S{ }_{1} \subseteq D \backslash S$. So we have that

$S_{1} \subseteq S$ and $\langle x, y\rangle \backslash S_{1} \subseteq D \backslash S$.

Then $a+z=a \quad \forall z \varepsilon S$, and $a+z=d+z \quad \forall z \varepsilon\langle x, y\rangle \backslash S_{1}$ and by Theorem $2.43, a+a=a$ or $a+a=d+d=d$. Since $\langle x, y\rangle \cup\{a\} \subseteq K$, $a \cdot z=d \cdot z \quad z \quad \varepsilon\langle x, y\rangle U\{a\}$. Then by Theorem 2.51. we obtain that $\langle x, y\rangle \cup\{a\}$ is the semifield given in Remark 4.17 and using the same proof as before, we can show that $K^{\prime} \cong\langle x, y\rangle \cup\{a\}$.

Subcase 2.4.2 $\quad 1+1 \neq 1$.

By Theorem $2.41, K^{\prime} \backslash\{a\}$ is a ratio semiring. Since $1+1 \neq 1$, by Proposition 1.18, we get that Q^{+}with the usual addition and multiplication is the smallest ratio subsemiring of $K^{\prime} \backslash\{a\}$. Then, up to isomorphism, we can consider $Q^{+} \subseteq K^{\prime} \backslash\{a\}$.

Subcase 2.4.2.1 $d \varepsilon \mathbb{Q}^{+}$.

Claim that $\Phi^{+} \sqsubseteq D \backslash S$. Suppose that $\exists x \in \Phi^{+}$and $x \varepsilon S$. Then $x \in I_{D}(d)\left(\right.$ since $\left.S \subseteq I_{D}(d)\right)$, so $x+d=d$ which is a contradiction since $x, d \varepsilon Q^{+}$. So we have the claim. Then $a+x=d+x \quad \forall x \varepsilon \mathbb{Q}^{+}$and by Theorem 2.43 (1) and (2), $a+a=d+d$. Since $Q^{+} U\{a\} \subseteq K$, so $a x=d x$ $\forall x \in Q^{+} U\{a\}$. By Theorem 2.51 , we obtain that $Q^{+} U\{a\}$ is the semifield given in Remark 4.8. Thus $Q^{+} U\{a\}$ is a subsemifield of K, so $K^{\prime} \subseteq \mathbb{Q}^{+} \cup\{a\} . \operatorname{Since} \mathbb{Q}^{+} \subseteq K^{\prime} \backslash\{a\}, \quad \mathbb{Q}^{+} U\{a\} \subseteq K^{\prime}$. Thus
$K^{\prime} \cong Q^{+} U\{a\}$ as in Remark 4.8.
Subcase 2.4.2.2 $d \& Q^{+}$.
Define $\psi: \mathbb{Q}^{+}(x) \rightarrow K \backslash\{a\}$ as follows :
Let $\frac{F(x)}{G(x)} \in \mathbb{Q}^{+}(x)$, define $\psi\left(\frac{F(x)}{G(x)}\right)=\frac{F(d)}{G(d)}$. We must
show that ψ is well-defined. Suppose that $\frac{F^{\prime}(x)}{G^{\prime}(x)}=\frac{F(x)}{G(x)}$. We . must show that $\frac{F^{\prime}(d)}{G^{\prime}(d)}=\frac{F(d)}{G(d)}$. Then $F^{\prime}(x) G(x)=G^{\prime}(x) F(x)$, so $F^{\prime}(d) G(d)=G^{\prime}(d) F(d)$ and hence $\frac{F^{\prime}(d)}{G^{\prime}(d)}=\frac{F(d)}{G(d)}$. So ψ is well-defined. Now we shall show that ψ is a homomorphism.

Let $\frac{F(x)}{G(x)}, \frac{F^{\prime}(x)}{G^{\prime}(x)} \varepsilon Q^{+}(x)$. Then $\psi\left(\frac{F(x)}{G(x)} \cdot \frac{F^{\prime}(x)}{G^{\prime}(x)}\right)=$ $\psi\left(\frac{F(x) F^{\prime}(x)}{G(x) G^{\prime}(x)}\right)=\frac{F(d) F^{\prime}(d)}{G(d) G^{\prime}(d)}=\frac{F(d)}{G(d)} \cdot \frac{F^{\prime}(d)}{G^{\prime}(d)}=\psi\left(\frac{F(x)}{G(x)}\right) \cdot \psi\left(\frac{F^{\prime}(x)}{G^{\prime}(x)}\right)$ and $\psi\left(\frac{F(x)}{G(x)}+\frac{F^{\prime}(x)}{G(x)}\right)=\psi\left(\frac{F(x) G^{\prime}(x)+G(x) F^{\prime}(x)}{G(x) G^{\prime}(x)}\right)=\frac{F(d) G^{\prime}(d)+G(d) F^{\prime}(d)}{G(d) G^{\prime}(d)}$ $=\frac{F(d) G^{\prime}(d)}{G(d) G^{\prime}(d)}+\frac{G(d) F^{\prime}(d)}{G(d) G^{\prime}(d)}=\frac{F(d)}{G(d)}+\frac{F^{\prime}(d)}{G^{\prime}(d)}=\psi\left(\frac{F(x)}{G(x)}\right)+\psi\left(\frac{F^{\prime}(x)}{G^{\prime}(x)}\right)$. Thus
ψ is a homomorphism.
Subcase 2.4.2.2.1 $\quad \psi$ is $1-1$.
Then ψ is $1-1$ homomorphism. Thus $Q^{+}(x) \cong \operatorname{im} \psi$. So ir ψ is a ratio semiring. Claim that $I_{i m \psi}(d)=\Phi$. To prove this, suppose not. Then $\exists y \in i m \psi$ such that $y \in I_{i m \psi}(d)$. So $y+d=d$. Since $y \in \operatorname{im} \psi$, $\exists \frac{F(x)}{G(x)} \quad \varepsilon \Phi^{+}(x) \quad$ such that $y=\psi\left(\frac{F(x)}{G(x)}\right)$ and $d=\psi(x)$. Thus $\psi\left(\frac{F(x)}{G(x)}\right)+\psi(x)=\psi(x)$ and $\quad \psi\left(\frac{F(x)}{G(x)}+x\right)=\psi(x)$. Since ψ is $1-1$, $\frac{F(x)}{G(x)}+x=x . \quad$ Thus $F(x)+x G(x)=x G(x)$ which is a contradictron since $Q^{+}[x]$ is A.C. (Proposition 4.25). So we have the claim i.e. $I_{\operatorname{Im} \psi}(d)=\Phi$. Let $y \in$ imp . If $y \in S$, then $y \in I_{D}(d)$. Thus $y+d=d$, so $y \in I_{i m \psi}(d)$ which is a contradiction. Hence em $\psi \subseteq D \backslash S$.

Then $a+y=d+y \quad \forall y \in$ im ψ and by Theorem 2.43 (1) and (2), $a+a=d+d$. Since $\operatorname{im} \psi U\{a\} \subseteq K, \quad a y=d y \forall y \in \operatorname{im} \psi U\{a\}$. By Theorem 2.51, we obtain that im $\psi U\{a\}$ is a semifield. Hence $K^{\prime} \subseteq \operatorname{im} \psi U\{a\}$. Since $\Phi^{+} \subseteq K^{\prime} \backslash\{a\}$ and $d \varepsilon K^{\prime} \backslash\{a\}, \quad \operatorname{im} \psi \subseteq K^{\prime} \backslash\{a\}$. Thus $\operatorname{im} \psi U\{a\} \subseteq K^{\prime}$. Therefore $K^{\prime} \cong \operatorname{im}_{\psi} \cup\{a\}$. Since $\operatorname{im}_{\psi} \cong \Phi^{+}(x), \quad \operatorname{im} \psi \cup\{a\} \cong \Phi^{+}(x) \cup\{a \mathrm{a}\}$ where $\mathscr{Q}^{+}(x) \cup\{a\}$ is the semifield given Remark 4. 26 Hence $K^{\prime} \cong \mathbb{Q}^{+}(x) \cup\{a\}$ as in Remark 4.26.

Subcase 2.4.2.2.2 ϕ is not 1-1.

$$
\text { Then } \exists \frac{F(x)}{G(x)}, \frac{F^{\prime}(x)}{G^{\prime}(x)} \in Q^{+}(x) \text { such that } \frac{F(d)}{G(d)}=\frac{F^{\prime}(d)}{G^{\prime}(d)} \text {. So }
$$

$\frac{F(d) G^{\prime}(d)}{G(d) F^{\prime}(d)}=1$. Thus $\psi\left(\frac{F(x) G^{\prime}(x)}{G(x) F^{\prime}(x)}\right)=1$.

$$
\text { Define } \operatorname{ker} \psi=\left\{\left.\frac{F(x)}{G(x)} \varepsilon Q^{+}(x) \right\rvert\, \psi\left(\frac{F(x)}{G(x)}\right)=1\right\} \text {. Claim that }
$$

ker ψ is a C-set. Let $y, z \varepsilon \operatorname{ker} \psi$. Then $\psi(y)=\psi(z)=1$. Now $\psi\left(y \cdot z^{-1}\right)=\psi(y) \cdot \psi\left(z^{-1}\right)=1 \cdot(\psi(z))^{-1}=1 \cdot 1^{-1}=1 \cdot 1=1$. Thus $y z^{-1} \varepsilon$ $\operatorname{ker} \psi$. Let $y \in \operatorname{ker} \psi, z \varepsilon Q^{+}(x)$. Since $\psi\left(\frac{y+z}{1+z}\right)=\frac{\psi(y)+\psi(z)}{\psi(1)+\psi(z)}=\frac{1+\psi(z)}{1+\psi(z)}$ $=1$, we get that $\frac{y+z}{1+z} \varepsilon$ ker ψ. Hence $\operatorname{ker} \psi$ is a C-set. So we have the claim. Thus $\mathbb{Q}^{+}(x) / \operatorname{ker} \psi$ is a ratio semiring and we obtain that $Q^{+}(x) /_{\operatorname{ker} \psi} \cong \operatorname{im} \psi$. Since $d^{2}, 1 \varepsilon D \backslash I_{D}(d), \quad d^{2}, 1 \varepsilon i m \psi \backslash I_{i m \psi}(d)$ because $I_{i m \psi}(d) \subseteq I_{D}(d)$. Let $W=Q^{+}(x) / \operatorname{ker} \psi$ and $w=[x]$, so $W \cong i m \psi$. Thus w^{2} and $[1] \varepsilon W \backslash I_{W}(w)$.

Let $D_{1}=i m \psi$ and $S_{1}=D_{1} \cap S$. Claim that
(1) $S_{1}=\Phi$ or $\left(S_{1},+\right) \leqslant\left(I_{D_{1}}(d),+\right)$,
(2) $D_{1} \backslash S_{1}$ is an ideal of $\left(D_{1},+\right)$.

To show (1), we assume that $S_{1} \neq \Phi$. Let $x, y \in S_{1}$. Then $x, y \in D$ and
$x, y \in S$. Thus $x+y \in D_{1}$ and $x+y \in S$ because S is an additive subsemigroup of $I_{D}(d)$. Hence $x+y \in S_{1}$. So we have (1). Now we shall show (2). Since $1 \in D \backslash I_{D}(d)$ and $S \subseteq I_{D}(d)$, we get that $1 \varepsilon D_{1} \backslash S$. Since $D_{1} \backslash S_{1}=D_{1} \cap S_{1}^{C}=D_{1} \cap\left(D_{1} \cap S\right)^{C}=D_{1} \cap\left(D_{1}^{C} \cup S^{C}\right)=\left(D_{1} \cap D_{1}^{c}\right) \cup\left(D_{1} \cap S^{c}\right)$ $=\Phi \cup\left(D_{1} \cap S^{C}\right)=D_{1} \cap S^{C}=D_{1} \backslash S$, we get that $D_{1} \backslash S_{1}=D_{1} \backslash S$. Thus $1 \varepsilon D_{1} \backslash S_{1}$, so $D_{1} \backslash S_{1} \neq \Phi$. Let $x \in D_{1} \backslash S_{1}$ and $y \varepsilon D_{1}$. Thus $x \varepsilon D_{1} \backslash S$, so $x \in D \backslash S$. By Theorem 2.50, we have that $D \backslash S$ is an ideal of $(D,+)$, so $x+y \in D \backslash S$. Since $x, y \in D_{1}, x+y \in D_{1}$. Thus $x+y \in D_{1} \backslash S$, so $\mathrm{x}+\mathrm{y} \in \mathrm{D}_{1} \backslash \mathrm{~S}_{1}$. So we have (2).

Since $S_{1}=D_{1} \cap S$ and $D_{1} \backslash S_{1}=D_{1} \backslash S$, we get that $S_{1} \subseteq S$ and $D_{1} \backslash S_{1} \subseteq D \backslash S$. Then $a+x=a$ for $a l l x \in S_{1}$ and $a+x=d+x$ for all $x \in D_{1} \backslash S_{1}$. By Theorem 2.43 (1) and (2), $a+a=d+d$. Then by Theorem 2.51, we obtain that $D_{1} \cup\{a\}$ is a semifield. Thus im $\psi U\{a\}$ is a semifield. Using the same proof as in Subcase 2.4.2.2.1, we get that $K^{\prime} \cong \operatorname{im} \psi \cup\{a\}$. Since $Q^{+}(x) /$ ker $\psi \cong \operatorname{im} \psi$, we get that $K^{\prime} \cong Q^{+}(x) /_{\operatorname{ker} \psi} \cup\{a\}$. Claim that $1+x, \frac{1+x}{x} \varepsilon Q^{+}(x) \backslash$ ker ψ.

Suppose that $1+x \in$ ker ψ. Then $\psi(1+x)=1$. Thus $1+d=1$, so $d+d^{2}=d$. Hence $d^{2} \varepsilon I_{D}(d)$, a contradiction. Thus $1+x \in Q^{+}(x)$ ker ψ. Now suppose that $\frac{1+x}{x} \varepsilon$ ker ψ. Then $\psi \frac{(1+x)}{x}=1$. Thus $\frac{1+d}{d}=1$, so $1+d=d$. Hence $1 \varepsilon I_{D}(d)$. a contradiction. Thus $\frac{1+x}{x} \varepsilon \mathbb{Q}^{+}(x) \backslash$ ker ψ. Therefore we get that $Q^{+}(x) /$ ker $\psi \cup\{a\}$ is the semifield given in Remark 4.28 and $K^{\prime} \cong \Phi^{+}(x) / \operatorname{ker} \psi^{U\{a\}}$.

