

CHAPTER IV

RESULTS

Experiment I : Growth Curve of P.multocida: CU strain

Fig. 2 : The starting bacteria of each flask was almost equal. The log cells $/ \mathrm{ml}$. at $\emptyset \mathrm{hr}$. was $6.18,6.10$ and 6.05 in BHI broth, tryptose broth with thiamine and flesh-liver-duck broth or about 10^{6} $\mathrm{CFU} / \mathrm{ml}$. In flesh-liver duck broth the bacteria died quickly, the log cells/ml at 24 hr was only $1.7 \varnothing$ and the $O S$ was nearly \emptyset furough out the incubation period. In another two flasks, the bacteria grew
 about 9.24 in BHI broth and 8.95 in broth tryptose broth with thiamine then it was coustant. At the end of incubation (24 hr) the 10 g cells $/ \mathrm{ml}$ in two flasks were 8.76 and 8.48 respectively. The turbidity during $\emptyset-3 \mathrm{hr}$ was nearly unmeasured then increased sharply during $3-9 \mathrm{hr}$ In BHI broth it peaked in 12 hr then it was constant through 24 hr . In tryptose broth with thiamine it was slighly increased in 9 to 24 hr .

Fig. 3 : Comparison of the growth curves of P . multocida CU strain in BHI broth incubated in various conditions sugsestted that the growth at $37^{\circ} \mathrm{C}$ shaking 200 rpm was the best and the growth decrease at $37{ }^{\circ} \mathrm{C}$ static, $41.5^{\circ} \mathrm{C}$ static and $41.5^{\circ} \mathrm{C}$ shaking 200 rpm respectively.

At $37{ }^{\circ} \mathrm{C}$ in both conditions, the bacteria grew exponentially during the first period of incubation. The log phase of growth was not observed. The viable cells peaked in $6-9 \mathrm{hr}$, the $0 . \mathrm{D}$. at 540 nm of 5 times diluted broth culture was about $\varnothing .24$ and $\varnothing .8 \emptyset$ respectively
then it was continuously constant through the end of incubation (48 hr).

At $41.5{ }^{\circ} \mathrm{C}$ in static condition, the growth increased slowly and the \log cells/ml peaked 9.15 in 18 hr then decreased rapidly whereas the O.D. of 5 times diluted broth culture peaked about 0.32 in $24-30$ hr then slighly decreased. In shaken condition, the bateria grew a little bit during $\emptyset-3 \mathrm{hr}$, the 10 cells $/ \mathrm{ml}$: was only about 6.72 then the bacteria died gradually. For 48 hr incubation the log cells/ml. was uncopunted. The O.D. of 5 times diluted broth culture was nearly \emptyset thoroughout the incubation period.

Table 5 showed the viable cell count per ml in 6 and 9 hr of BHI broth cultures incubated at $37^{\circ} \mathrm{C}$ in static and shaking condition. In shaking condition the different viable cell on 6 and 9 hr was higher than that in static condition. Asian experiment 1 ; starting with the same amount of bacteria ($1.05 \times 10^{6} \mathrm{CFU} / \mathrm{ml}$.), on 6 hr the viable cells of $1.52 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$. would increase slightly to $2.85 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$. on 9 hr in static condition where as in shaking condition the viable cell of $3.1 \times 10^{3} \mathrm{CFU} / \mathrm{ml}$. on 6 hr would reach highly to $9.91 \times 1 \emptyset^{9} \mathrm{CFU} / \mathrm{ml}$. on 9 hr

Experiment 11: Virulence of the CU strain in Various Ages of Ducks

Old ducks were more resistant to the CU strain of P.multocida. All one- week old ducks S/C inoculated with 1.0 ml of the stock culture of $1.60 \times 10^{3} \mathrm{CFU} / \mathrm{ml}$. died at all. For $2-\mathrm{wk}$ old, $3-\mathrm{wk}$ old and 4-wk old ducks, 16 of $2 \emptyset$ ducks, 12 of 20 ducks and 1 of 20 ducks died following the $1.0 \mathrm{ml} \mathrm{S} / \mathrm{C}$ inoculation with the stock cultures of $3.77 \times 1 \emptyset^{9} \mathrm{CFU} / \mathrm{ml} 1.18 \times 1 \emptyset^{9}$ and $1.67 \times 1 \emptyset^{9} \mathrm{CFU} / \mathrm{ml}$ respectively (Table 6).

Fis. 2 Turbidity and los nomber of viable cells ver al or pasteurelle mithocide : CO straja incubsted static at $37^{\circ} \mathrm{C}$ ja
(0) Brain beart infusion broth
($⿻$ () Tryptose breth with tbiamine
(Δ) flesb-liver-duck brotb

Fig. 3 Turbiditycof 5 times diluted broth cu!turel end log nurber of viable cells per on 1 of posteurelle rultocida : CU strsin incubaied in brein beart infusion broth.
(e) Static at $37^{\circ} \mathrm{C}$
(©) Shakits 200 rpa. at $37^{\circ} \mathrm{C}$
(8) Static at $41.5^{\circ} \mathrm{C}$
(日) Shating 200 rpm. et $41.5^{\circ} \mathrm{C}$

Table 5 The viable counts ($\mathrm{CFU} / \mathrm{ml}$) of pasteurella multocida : CU strain at 6 and 9 hour of brain heart infusion broth cultures incubated in static and shaking condition at $37^{\circ} \mathrm{C}$

Experiment	stâtic			shaking 200 rpm .		
	- hr.	6 hr .	9 hr .	- hr.	6 hr .	9 hr .
'1	1.05×10^{6}	1.52×10^{9}	2.85×10^{9}	1.05×10^{6}	3.1×10^{9}	9.91×10^{9}
2	1.1×10^{6}	1.70×10^{9}	2.70×10^{9}	1.8×10^{6}	1.71×10^{9}	6.8×10^{9}
3	1.6×10^{6}	9.3×10^{8}	1.54×10^{9}	2.0×10^{6}	3.2×10^{9}	1.81×10^{10}
4	2.22×10^{6}	1.27×10	2.34×10^{9}	3.61×10^{6}	2.15×10^{9}	4.8×10^{9}

Table 6 The virulence of pasteurella multocida : CU strain in various ages of ducks

Age		156	1128	ution	1:1000 1:10000		Control
inoculated (wk)	Stock culture (CFU/ml)	-					
1	1.60×10^{9}	$21 / 21$ *	8/20	3/20	0/20	0/20	0/20
2	3.77×10^{9}	16/20	5/20	0/20	0/20	0/20	0/20
3	1.18×10^{9}	12/20	1/20	0/20	0/20	0/20	0/20
4	1.67×10^{9}	1/20	0/20	0/20	0/20	0/20	0/20.

[^0]
Protective Immunity

After the first vaccination of 1×10^{9} bacteria per duck, 30% and 2% death occured in 100 ducks of each group of S / C vaccination and oral vaccination respectively. Following the second vaccination of $4.4 \times 10^{\boxminus}$ bacteria per duck, S / C exposure died 20% in $3 \varnothing$ ducks.

S/C vaccinated group The level of protection expressed in term of survival rate was $30,100,100$, and 60% and in term of protection was $-15,56,88$, and 60% respectively in $1,2,4$ and 8 wk after the first, vaccination. Being noted, the apparently low immunity level occured in 1 wk after vaccination (Table 7, Fig 4). The higher percentage of survival and protection (more than 80%) was obtained through 8 wk following the second vaccination in 1 month interval (Table 8,Fig.5) and 88% survival rate on 71% protection was obtained in 4 wk after the second vaccination in 2 months interval (Table 9 , Fig. 6).

Oral vaccinated group The percentage of survival was $8 \varnothing$, $9 \varnothing, 44$ and 10% respectively in $1,2,4$ and 8 wk after the first vaccination. However, unsatisfied deg̣ree of protection of $10-46 \%$ was obtained (Table 7, Fig.4). Similarly to the S/C vaccination, the higher percentage of survival and protection (not less than 86%) was developed through 8 wk following the second vaccination in 1 month interval (Table 8 , Fig.5) and 82% survival rate or 65%. protectiin was developed in 4 wk after the secind vaccinatiin in 2 month interval (Table 9, Fig.6).

Drinking water vaccinated group The survival rate was
$70,70, \varnothing$, and 20% and the degree of protectin was $25,26,-12$, and 20%, respectively in $1,2,4$ and 8 wk after the first vaccination (Table 7 , Fig.4). Double vaccination via this route induced higer immunity. In 1, 2, 4 and 8 wk after the second vaccination in 1 month interval, the survival rate was $89,88,5 \emptyset$ and 65% and protectiin was $89,68,50$ and 48% respectively (Table 8 Fig 5). in 4 wk post the second vaccination in 2 month interval, 100% survival rate or 83% protection was obtained (Table 9, Fig. 6).

Unvaccinated cintrol

The percentage of survival aming the cintrol group was 44 , 45, 12 and 20% respectively in $1,2,4$ and 8 wk after the first vaccination and $\varnothing, 2 \emptyset, \emptyset$, and 17% respectively, in $1,2,4$ and 8 wk after the second vaccination in 2 months interval. and 17% in 4 wk after the second vaccination in 2 month interval.

Antibody Respinse

S/C vaccinated group The GMT of TA antibody against the 8:A stain autoclaved Ag ranged $10.77-25.40,22.63-35.92$ and $19.50-$ 28.98 and those against the CU stain autoclaved Ag ranged 5.04-16.00 , 8.83-22.63 and $13.12-28.51$ respectively for single vaccination double vaccination in 1 month interval and double vaccination in 2 months interval. There was a fluctuatiin of the TA titers. The GMT of PHA antibody against the 8:A sinicated Ag was $147 . \square 3$ in 1 wk and precipitously dropped to $5.44,8.00$ and 6.43 in 2,4 and 8 wk after the first vaccination while those against the $C U$ sonicated Ag was
highly as 588.13 and 512.00 in 1 and 2 wk then dropped sharply to lower than 2.00 in 4 and 8 wk after the first vaccination, Similar results in GMT as measured by PHA test was observed in the two programme of vaccination. The GMT against the 8:A stain sonicated Ag were $118.38,17.96,5.66$ and 9.75 and those against the CU strain sonicated Ag were $588.13,362.04$ and lower than 2.00 respectively in $1,2,4$ and 8 wk after the second vaccination in 1 month interval. The GMT against the 8:A strain sonicated Ag were $114.04,25.40$ and 14.49 and those against the CU strain sonicated Ag were $724.08,322.54$ and lower than 2 respectively in 1,2 , and after the secind vaccination in 2 minths interval. There was no apparent correlatiin between the TA and PHA titers and the degree of protectiin (Table 7, 8, 9, Fig 4 $5,6,7)$.

Oral vaccinated group The GMT of TA antibody against the 8:A stirain autoclaved Ag ranged $476-3200,7.41-16.00$ and $11.31-16.00$ and those against the CU strain auto claved Ag ranged 4.76-11.31, $8.00-16.00$ and $7.34-14.67$ respectively for single vaccination, double vaccination in 1 month interval and double vaccination in 2 months interval. There was a fluctuation of the TA titer. The GMT of the PHA antibody against the 8:A strain sonicated As ranged 4.88$16.0 \emptyset, 9.75-16.00$, and $11.31-32.00$ for single vaccination, double vaccination in 1 month and 2 month interval and those against the $C U$ strain sonicated Ag were mostly lower than 2.00 in all vaccination programme. There was no apparent correlatin between the TA and PHA titers and the degree of protectin (Table 7, 8, 9 Fig $4,5,6$).

Drinking water vaccinated group The GMT of TA antibody against the 8:A strain autoclaved Ag ranged 6.17-17.45, 8.00-14.67, and $7.13-10.08$ and those against the CU strain autoclaved Ag ranged 2.83

- $11.31,6.50-11.89$, and $8.98-10.08$ respectively for single vaccination, double vaccination in 1 month interval and double vaccination in 2 month interval. There was a fluctuation of the TA titers. The GMT of the PHA antibody against the 8:A strain sonicated Ag ranged $1.74-8.72,8.00-9.93$ and $7.34-14.49$ for single vaccination, double vaccination in 1 month and 2 month interval and those against the CU strain sonicated Ag were mostly lower than 2.00 in all vaccination programmer. There was no apparent correlation between the TA and PHA titers and the degree of protection. (Table 7, 8, 9, Fig. $4,5,6)$.

It seems likely that the TA titers against both 8:A and CU strain autoclaved As of the S/C vaccinated group was slightly higher than the either two groups. Unexpectedly the 8:A strain tended to give higher in determinati in of TA and PHA titers than the CU strain. The PHA titers detected by both strain were very low except the S/C vaccination provided a maximum titer at 1 wk after each vaccination then decreased precipitously.

Astinishing that the TA titers of each unvaccinated control were significantly $(P<\emptyset .05)$ higher than those of ducks before vaccination except a pair of values of 1.85 and 3.18 (GMT of cintrol in 1 wk after the first vaccination). Moreover the TA titer of the unvaccinated control were significantly $(P<\emptyset .05)$ higher than that of some vaccinated groups (Fig. 4, 5, 6).

As measuring the antibody against capsule Ag determined by the PHA test showed ninspecific positive reactiin that could not be explained.
Table 7 Antibody titers and protective immunity of ducks after the first vaccination

Route of Vaccination	PostVaccination （wk）	TA．titer ${ }^{\text {a }}$ No．serum tested）		PHA titer ${ }^{\text {a }}$（No．scrum tested）		No．survived／No．challenged （z survival）		＊protection
		8：A autoclaved Ag Cu autoclaved Ag 8：A sonicated Ag Cu sonicated Ag．						
s／C	$0^{\text {b }}$	8.00 ± 0.14（10）	1.85 ± 0.28（10）	2.38 ± 0.23（12）	3．83土0．26（16）			
	1	25.4 ± 0.17（3）	5.04 ± 0.14（3）	147．03 ± 0.25（5）	588.13 ± 0.25（5）	3／10．	（30）	－15
	2	10.77 ± 0.16（7）	16．0010．25（7）	5.44 ± 0.27（5）	512.00 ± 0.25（9）${ }^{\text {c }}$	10／10	（100）	56.
	4	21.11 ± 0.27（5）	16.00 ± 0.21（5）	$8.00 \pm 0.27(6)$	＜2．00（6）．	7／7	（100）	88
	8	13.93 ± 0.25（3）	9.19 ± 0.14（3）	$6.73 \pm 0.29(4)$	＜2．00．（4）	3／5	（60）	60
Oral	0	8.00 ± 0.14（10）	$1.8510 .28(10)$	2.38 ± 0.23（12）	3.83 ± 0.26（16）			
	1	4.76 ± 0.15（4）	4.76 ± 0.15（4）	4.88 ± 0.15（7）	＜2．00（7）	8／10	（80）	35
	2	7.13 ± 0.35（6）	$11.31 \pm 0.32(6)$	16.00 ± 0.35（7）	$3.28 \pm 0.38(7)$	9／10	（90）	46
	4	14.67 ± 0.19（8）	11.31 ± 0.16（8）	4.00 ± 0.30（7）	＜2．00（7）	4／9	（44）	32
	8	$32.0 \pm 0.00(6)$	8.00 ± 0.27（6）．	13.45 ± 0.14（8）	＜2．00（8）	1／10	（10）	10
Drinking water	0	$8.00 \pm 0.14(10)$	1.85 ± 0.28（10）	2．38さ0．23（12）	3.83 ± 0.26（16）			
	1	8.00 ± 0.65（4）	2.8310 .30 （4）	＜2．00（5）	＜2．00（5）	7／10	（70）	25
	2	6.17 ± 0.16（8）	4.70 ± 0.35（8）	3.03 ± 0.35（10）	＜2．00（10）	7／10	（70）	26
	4	12．70士0．25（6）	4．00！0．19（6）	6.56 ± 0.15（6）	＜2．00（6）	0／8	（0）	－12
	8	17.45 ± 0.25（8）	11．31 ± 0.16（8）	8.72 ± 0.34（9）	＜2．00（9）	2／10	（20）	20
UnvaccinatedControl	0	$8.00 \pm 0.14(10)$	1．8510．28（10）	2.38 ± 0.23（12）	$3.83 \pm 0.26(16)$			
	1	16．00士0．30（4）	3．18さ0．35（4）	3.67 ± 0.44（8）	＜2．00（8）	5／11	（45）	
	2	16.00 ± 0.35（7）	6.56 ± 0.23（7）	5．19き0．16（8）	＜2．00（8）	4／9	（44）	
	4	28.51 ± 0.23（6）	16.00 ± 0.19（6）	11.88 ± 0.29（7）	＜2．00（7）	1／8	（12）	
	8	35.92 ± 0.30（5）	11．30士0．16（6）	$8.83 \pm 0.32(7)$	＜2．00（7）	0／10	（0）	

Table 8 Antibody titers and protective immunity of ducks after the second vaccination on month interval

Table 9 Antibody titers and protective immuity of ducks after the second vaccination on two months interval

Fig. 4 Antibody titers against the eutoclaved antigen of Pasteurelle multocida strain $8: A$ and $C U$ as neasured by tube agglatination test and the percentage of survival of ducks after the first vaccination.
(
$(\theta-\theta)$ Oral vaccipated group ((1) Drinking water vaccinated group ($-\rightarrow-A$) Unveccinated control

Fig．5．Antibody titers against the autoclaved antigen of Pesteurells nultocida strain 8：Aand CU es measured by tube agglutination test and the percentage of survival of ducks vaccinated twice in one month interval． $(x-x) s / C$ vaccinated sroup
（ $8-8$ ）Oral vaccinated grous
（⿻日木（－）Drinking water veccinsted group

Fig. 6 Antibody titers against the autoclave antigen of Pastegrella multocide strain 8:A and CU as measured by tube agglutination test end the percentage of survival of ducks vaccinated twice in two months interval. $(x — X)$ S/C vaccinated group
(θ - θ) Orel vaccinated group
(8 CBs) Drinking water vaccinated group (A--4) Usvaccinated control

Fig. 7 Antibody titers against the sonicatad antigen of Pastearella nultocids strain 8:A and CU as measured by passive hemarglutivation t,est and the percentage of survival of Unvaccinated control and S/C waccinated ducks
(X) j S/C vaccinated group
(4) Unvaccinated control

[^0]: *No. died / No. inoculated

