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CHAPTER |
INTRODUCTION

1.1. Background and Rationale

The liver plays an important role in the body’s metabolic processes, with many
functions including nutrient metabolism and detoxification of xenobiotics (Steadman,
Braunfeld, and Park, 2013). Excessive toxins can damage the liver cells, leading to liver
diseases. Liver diseases cause serious public health problems worldwide. Oxidative
stress is one of the mechanisms that can cause liver damage.

Rotenone is a natural pesticide derived from the root of plants from the
Leguminosae family, including Derris (Derris elliptica), Barbasco (Lonchocarpus utilis),
and Rosewood (Tephrosia spp.). In Thailand, rotenone extracted from Derris elliptica
is widely used in agriculture and aquaculture. Its residue can be found in the
environment, including air, soil, and water. The first fatal case of rotenone toxicity in
Thailand was revealed by Narongchai, Narongchai, and Thampituk (2005). A number of
studies have reported neurotoxicity of rotenone by inhibition of electron transport
chain complex | of the respiratory chain in mitochondria, resulting in diminishing of ATP
production and increased levels of ROS (Li et al., 2003; Sherer et al., 2003; Testa,
Sherer, and Greenamyre, 2005) that lead to parkinsonism in an animal model. Liver
pathology changes were reported as well. Lapointe et al. (2004) showed that liver

necrosis and degeneration were found in male Lewis rats after infusion of 2 meg/kg per



day of subcutaneous rotenone for 21 days. Narongchai et al. (2005) reported that
rotenone treatment caused microscopic haemorrhage in human liver. Hepatic
sinusoidal dilatation of Sprague-Dawley rats that received 3 mg/ke body weight
rotenone per day for 30 days was documented by (Radad, Hassanein, Moldzio, and
Rausch, 2013).

Several studies of hepatoprotective activities from natural plant extracts have
been revealed during recent years (Pari and Amudha, 2011; Shaker, Mahmoud, and
Mnaa, 2010; Shapiro et al., 2006; Wang, Zhao, Sun, and Yang, 2014). Centella asiatica
(Apiaceae) is a medicinal herb that has been commonly used in many countries in Asia.
This herb has been used for a variety of conditions such as wound healing and memory
improvement (Manyam, 1999; Rosen, Blumenthal, and McCallum, 1967; Shukla et al,,
1999; Veerendra Kumar and Gupta, 2003). Triterpenoids including asiaticoside,
madecassoside, asiatic acid and madecassic acid are the major constituents found in
Centella asiatica (Brinkhaus, Lindner, Schuppan, and Hahn, 2000). Previous studies
have reported a hepatoprotective effect of Centella asiatica extract (Antony,
Santhakumari, Merina, Sheeba, and Mukkadan, 2006; Sharma and Sharma, 2005; Zhang
et al,, 2010). However, the compositions of the main compounds extracted from the
herb were varied across geographical regions. Therefore, standardization of the extract
is now generally performed for quality control of the major components.

Standardized extract of Centella asiatica (ECa 233) was developed by the

Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand. The



standard extract ECa 233 used in the present study contained >80% triterpenoids with
a ratio of madecassoside to asiaticoside kept at 1.5(x0.5):1 (Wanasuntronwong,
Tantisira, Tantisira, and Watanabe, 2012). The study by Kam-eg, Tantisira, and Tantisira
(2009) reported that pre-treatment of ECa 233 was effective in ameliorating cognitive
deficits in mice. ECa 233 also presented anxiolytic properties in chronic immobilization
stressed mice (Wanasuntronwong et al.,, 2012) and exhibited burn wound-healing
effects in rats (Wannarat, Tantisira, and Tantisira, 2009). However, the protective effect

of ECa 233 standard extract on the liver has not yet been determined.

1.2. Objectives
The aim of this study was to investigate the effect of ECa 233 on liver

metabolome of rotenone-treated rats.

1.3. Scope

Blood samples were collected for hepatic enzyme tests, alanine
aminotransferase (ALT) and aspartate aminotransferase (AST). Lipid peroxidation
inhibition of the liver tissue was evaluated by thiobarbituric acid reactive substances
(TBARS) assay. Antioxidant enzyme activities including superoxide dismutase (SOD),
catalase (CAT) and glutathione peroxidase (GPx) were determined. Metabolomic
analysis was performed to better understand the underlying mechanisms in the liver
tissue. This technique was formerly used to demonstrate protective effects of many

plant extracts, such as Angelica sinensis (Ji et al., 2014), and Muntingia calabura (Rofiee



et al,, 2015). In Centella asiatica, a metabolomics approach was applied to determine
the effects of growth-ligshting on metabolite content in three varieties of Centella
(Maulidiani et al.,, 2012), predict the antioxidant activity in the extract of Centella
varieties (Maulidiani et al., 2013) and investigate metabolic alterations in obese diabetic

rats treated with Centella asiatica extract (Maulidiani et al., 2016).

1.4. Benefits of the study
This study provides the information of liver metabolome and protective effects
of ECa 233 against rotenone toxicity. This information could be used to develop ECa

233 as dietary supplementation for improving liver health in the future.



CHAPTER Il
LITERATURE REVIEW

2.1. Liver

Liver is the largest internal organ (approximately 1.0-1.5 kg) of the body. It is
located in the right upper quadrant of abdominal cavity below the diaphragm. Liver
composes of two sections, large right lobe and two left lobes (Gyamfi and Danquah,
2016). Liver has multiple functions such as nutrient metabolism and storage, xenobiotic
detoxication and excretion.

2.1.1. Liver functions

2.1.1.1. Nutrient metabolism

Liver plays important role in nutrient metabolisms including
carbohydrates, proteins and lipids. In the carbohydrate metabolism, liver is responsible
for monitoring and regulating blood glucose levels by storing glucose as glycogen
through slycogenesis in feeding state and converting glycogen to glucose as well as
synthesizing glucose from amino acids and triglycerides via glycogenolysis and
gluconeogenesis in fasting state. In lipid metabolism, liver uptakes and synthesizes fatty
acids. Cholesterol, phospholipids, and lipoproteins are also synthesized by the liver.
Besides, fatty acids are oxidized by the liver. In protein metabolism, liver synthesizes

plasma protein albumin and nonessential amino acids. Moreover, amino acids



deamination and transamination are taken place in the liver (Crawford and Burt, 2012;
Steadman et al., 2013).

2.1.1.2. Nutrient storage

Liver stores glycogen and vitamins such as vitamin B12, vitamin D and
vitamin A. Ferritin, the main storage form of iron, is stored in the liver (Steadman et al,,
2013).

2.1.1.3. Xenobiotics detoxification and excretion

Liver plays a major role in drugs and xenobiotics metabolisms because
it has high volume blood via hepatic artery and portal vein, and comprises of many
hepatic enzymes.

2.1.2. Causes of liver injury

There are many factors that can induce liver injuries including infections (from
viruses, bacteria, fungi or parasites), immune-mediated responses, drugs and toxins,

metabolic diseases, and environment (Table 1).



Table 1 Causes of liver injury (Crawford and Burt, 2012)

Causes of liver injury

Infections
Viral hepatitis — hepatotropic
Viral hepatitis — opportunistic
Bacterial
Fungal
Parasitic

Helminthic

Immune-mediated responses
Autoimmune hepatitis
Primary biliary cirrhosis
Primary sclerosing cholangitis
Transplant rejection

Graft-versus-host disease

Drug- and toxin-induced hepatotoxicity
Alcoholic liver disease
Therapeutic agents (including complementary

medicines and drugs of abuse)

Metabolic diseases
Inherited metabolic disease
Acquired metabolic derangement

Non-alcoholic fatty liver disease

Mechanical factors
Obstructive cholestasis

Vascular disorders

Environmental factors
Environmental toxins

Heat stroke




2.2. Rotenone

Rotenone is a natural toxin derived from the root of plant in Leguminosae
family such as Derris (Derris elliptica), Barbasco (Lonchocarpus utilis) and rosewood
(Tephrosia spp.). Its chemical structure is shown in Figure 1. Rotenone is widely used
as insecticide, pesticide and piscicide (fish killing agent) (Gupta, 2012). Rotenone is
mitochondrial complex | inhibitor that inhibits electron transfer in the electron
transport chain from Fe-s center in complex | to ubiquinone (Figure 2). This process
results in inhibiting of oxidative phosphorylation, following by the generation of
reactive oxygen species (ROS). Rotenone also causes mitochondria dysfunction as well
as cell apoptosis. Several studies have demonstrated that rotenone can develop
Parkinsonism symptoms in rats (Gupta, 2012; Ling, 2003; Sherer et al., 2003).

Nevertheless, previous studies have demonstrated that not only neurotoxicity
that occurred by rotenone exposure, but also the other systemic toxicity. Liver necrosis
and degeneration have been documented in rotenone treated rats (subcutaneous
injection, 2.5 mg/kg/day) for 20 days (Lapointe et al,, 2004). A study conducted by
Radad et al. (2013) showed that the hepatic sinusoid dilation was observed in rat
treated with rotenone (3 mg/kg/day) for 30 days. Lipid peroxidation in the liver tissue

was increased by rotenone (Terzi et al., 2004).



OCH,

Figure 1 Chemical structure of rotenone

Intermembrane space

H* H*
ROTENONE
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Mitochondria matrix

Figure 2 Mitochondria complex | inhibition of rotenone in electron transport chain
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Although rotenone is less toxic in human and reports of toxicity are rare, fatal
case was documented. The postmortem report of a 47-year-old woman with type 2
diabetes, consuming 200 mL of 0.8% rotenone solution, was observed multiple organ
failure, pulmonary edema, congestion of heart, spleen and kidneys. An icteric with
centrilobular necrosis and general disintegration of the liver were reported (Wood,
Alsahaf, Streete, Dargan, and Jones, 2005). In addition, the first fatal case of rotenone
toxicity in Thailand was revealed by Narongchai et al. (2005). The examination report

also indicated microscopic hemorrhage in human liver.

2.3. Standardized extract of Centella asiatica (ECa 233)

Centella asiatica (L.) Urban, commonly known as Asiatic pennywort, Indian
pennywort, Gotu Kola, or Bua-Bok (Thai) is a plant belong to Apiaceae (Umbelliferae)
family. Centella asiatica is a perennial herbaceous creeper plant. Its leaves are round
or kidney shape (Figure 3). It typically grows in moist areas in tropical and subtropical
countries such as India, Sri Lanka, Madagascar, Australia, China, South Africa, America
and Thailand. Centella asiatica is a medical plant that has been used in traditional
medicine of Asian countries for a long period of time. According to the Thai National
List of Essential Medicines: Herbal Medicines, Centella asiatica is used as wound
healing cream and antipyretic herbal infusion and capsules (National Drug System

Development Committee, 2012).
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Figure 3 Centella asiatica (L.) Urban (Chandrika and Prasad Kumara, 2015)

The major chemical constituents of Centella asiatica are triterpenoids including
asiaticoside, madecassoside and their aglycone forms; asiatic acid and madecassic acid.
The chemical structure is presented in Figure 4. Other triterpenoids such as
braminoside, brahminoside, thankuniside and isothankuiside are also found in this
herb. In addition, Centella asiatica contains essential oils, flavonoid derivatives,
alkaloids, sterols, fatty acids and amino acids (Brinkhaus et al., 2000). The main
bioactive compounds of Centella asiatica are different depending on the origin of the
plants.

ECa 233 was established by the Faculty of Pharmaceutical Sciences,
Chulalongkorn University. ECa 233 is a white to off-white powder consisted of
triterpenoids from Centella asiatica not less than 80%. The ratio of madecassoside to

asiaticoside is controlled at 1.5(x0.5):1 (Wanasuntronwong et al., 2012).
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Madecassoside Asiaticoside

Figure 4 Chemical structure of triterpenoids in the standardized extract of Centella
asiatica ECa 233, Madecassoside (A) and Asiaticoside (B); Glu = Glucose, Rha =

Rhamnose.

Several studies of biological activities of ECa 233 have been conducted.
Wannarat et al. (2009) demonstrated that gel containing 0.05% ECa 233 had wound
healing effects on second degree burn wound in rats. Ruengprasertkit, Hongprasong,
Tantisira, and Tantisira (2010) showed that the oral paste containing 0.05% ECa 233
had an efficacy of reducing pain, ulcer size and erythema in minor aphthous ulcers.
Moreover, a study by Kam-eg et al. (2009) showed that pretreatment of ECa 233 (10
mg/kg p.o. twice daily) for 7 days significantly improved memory and learning of mice
previously intracerebroventricular injected with B-amyloid peptide.

Previous study indicated that ECa 233 (10-100 pg/mL) enhanced neuronal
process of human neuroblastoma IMR-32 cells by upregulated the levels of
extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt)

(Wanakhachornkrai et al., 2013). Furthermore, Wanasuntronwong et al. (2012) reported
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that ECa 233 exhibited anxiolytic effects on acute and chronic stress mice. Acute and
sub-chronic toxicity studies of ECa 233 were studied by Chivapat, Chavalittumrong, and
Tantisira (2011). The results showed that giving an oral administration of ECa 233 (10
g/kg) to mice for 14 days did not cause acute toxic sign and death. In addition, no sub-
chronic toxicity was observed in rats administrated with ECa 233 (10-1,000 mg/kg) for

90 days.

2.4. Free radicals and oxidative stress

Free radical is defined as an atom or molecule containing one or more unpaired
electron in the outer shell. Free radical is unstable, highly reactive, and can gain the
electron from other compounds to be a non-radical state. Therefore, the molecules
losing their electron become a free radical and can start the reactions over and over
again. The radical reaction chain composes of three steps; initiation, propagation and
termination.

In the initiation step, hydrogen is removed from the fatty acid molecule (RH)
to form an alkyl radical (R") (Equation 1). Then, in the propagation step, the alkyl radical
quickly reacts with molecular oxygen to form peroxyl radical (ROO") (Equation 2).
Peroxyl radical can react with another fatty acid molecule and generate hydroperoxide
(ROOH) (Equation 3). Free radical can react with another molecule and start a new

chain reaction. The radical chain reaction will stop in the termination step that free
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radical will share the electron with another free radical (Equation 4-6) (Kiokias, Varzakas,

Arvanitoyannis, and Labropoulos, 2009; Schaich, Shahidi, Zhong, and Eskin, 2013).

(1) Initiation
X+RH—R+XH e (1)
(I Propagation
R+0,—ROO +XH - (2)
ROO"+ RH — ROOH + R v (3)
(I Termination
R#R—>RR - (4)
R"+ ROO"—> ROOR (5)
ROO" + ROO'— ROOR + O, - (6)

There are many types of radicals. Reactive oxygen species (ROS), radicals
derived from oxygen, is the most important free radical in the biological systems that
can be generated from normal cellular metabolisms. ROS includes superoxide anion
radical (O,7), hydroxyl radical (OH"), hydrogen peroxide (H,0,), peroxyl radical (ROO"),
and lipid radical (LOO"). Hydrogen peroxide is not free radical but can react with metal
in Fenton reaction to form more ROS, a hydroxyl radical. Reactive nitrogen species
(RNS) is free radicals that contain nitrogen in the molecule such as nitric oxide radical
(NO) and nitrogen dioxide (NO,’). Some reactive species (ROS and RNS) are shown in

Table 2.



Table 2 Reactive Species (Halliwell, 2001)

15

Reactive Species

Reactive Oxygen Species (ROS)
Radicals
Superoxide, O,”
Hydroxyl, OH’
Peroxyl, RO" (e.g. lipid peroxyl)
Alkoxyl, RO’
Hydroperoxyl, HO,"

Nonradicals

Hydrogen peroxide, H,0,
Hypochlorous acid, HOCL
Hypobromous acid, HOBr
Ozone, O5

Single oxygen

Reactive Nitrogen Species (RNS)
Radicals
Nitric oxide (nitrogen monoxide), NO

Nitrogen dioxide, NO,"

Nonradicals

Nitrous acid, HNO,

Nitrosyl cation, NO*

Nitroxyl anion, NO~

Dinitrogen tetroxide, N,Oy,
Dinitrogen trioxide, N,Os
Peroxynitrite, ONOO~
Peroxynitrous acid, ONOOH
Nitronium (nitryl) cation, NO,"
(e.g. as nitryl chloride, NO,Cl)
Alkyl peroxynitrites, ROONO
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2.4.1. Important reactive oxygen species

2.4.1.1. Superoxide anion radical (O,")

Superoxide anion is considered as primary reactive oxygen species that
can further interact with other molecules to generate secondary reactive oxygen
species. Superoxide anion is mostly produced in mitochondrial electron transport
chain. Superoxide anion is generated by one-electron reduction of molecular oxygen
(O,) (Equation 7) and then converted to H,O, by superoxide dismutase enzymes (SOD).
This radical is also formed by other enzymatic processes such as xanthine oxidase,
lipoxygenase, cyclooxygenase and NADPH dependent oxidase (Phaniendra, Jestadi, and
Periyasamy, 2015; Valko et al., 2007).

0,+e —>0," (7)

2.4.1.2. Hydroxyl radical (OH’)

Hydroxyl radical is a neutral form of hydroxide ion. It is highly reactive
radical that can interact with other molecules, resulting in cellular damages. Hydroxyl
radical can be produced by various reactions; for example, one-reduction of H,O, by
ferrous (Fe?") in Fenton reaction (Equation 8). It is also generated from the reaction
between O,” and H,0, in Haber-Weiss reaction (Equation 9) (Phaniendra et al., 2015).

Fe** + H,0, — Fe** + OH  + OH" - (8)

0, + H,0, — O, + OH + OH™  —— (9)
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2.4.1.3. Hydrogen peroxide (H,0O,)
Hydrogen peroxide is formed during dismutation reaction by SOD
enzyme and can be formed from two hydroxyl radicals as well (Equation 10, 11).
Hydrogen peroxide is not a free radical but this molecule can damage the cells at the
concentration of 10 uM (Phaniendra et al.,, 2015). Hydrogen peroxide can react with
metal (Fe?*or Cu**) to form OH". Hydrogen peroxide can be eliminated by endogenous
antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx) and peroxiredoxin
(Phaniendra et al., 2015).
20,7+ 2H" — H,0,+0, - (10)
OH"+OH —H0, - (11)
2.4.2. Sources of reactive oxygen species
ROS can be generated from endogenous and exogenous sources. Endogenous
sources include mitochondrial respiration, autoxidation, enzymatic reaction as well as
some metal ions. External sources of ROS result from air pollution, smoking,

medication, and radiation (Dasgupta and Klein, 2014).

2.4.3. Oxidative stress and diseases
Oxidative stress is an imbalance between free radical production and
antioxidant defense system. Thus, the excessive free radicals can damage biological

molecules including nucleic acids, lipids and proteins. Hydroxyl radical can react with
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nucleic acids, resulting in several types of damages such as DNA bases damages,
deoxyribose sugars damages, protein-DNA crosslink, single and double strand breaks.

Cell membranes consist of lipid and protein, which phospholipids are the most
component of the membranes. Since the polyunsaturated fatty acids (PUFAs) residues
of phospholipid are sensitive to oxidation; therefore, cell membranes are usually the
target of free radicals. ROS attacks to the cell membranes, resulting in lipid
peroxidation. Lipid hydroperoxide (LOOH) is a primary product and malondialdehyde
(MDA) is the main secondary products from lipid oxidation reaction. Protein can also
be attacked by the ROS, leading to the generation of protein carbonyl derivatives
(McGill and Jaeschke, 2013). The oxidative damages cause various pathological

conditions such as inflammation, atherosclerosis, cancer, ageing, etc. (Table 3).



Table 3 Oxidative stress related diseases (Pham-Huy, He, and Pham-Huy, 2008)

Oxidative stress related diseases

Cardiovascular diseases
Coronary heart diseases
Atherosclerosis
Stroke/Ischemia-Reperfusion
Neurodegenerative diseases
Alzheimer’s disease
Parkinson’s disease

Renal diseases

Liver diseases

Pulmonary diseases
Rheumatoid arthritis

Ageing

Cancers

19
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2.5. The antioxidant defense system

Antioxidant defense system consists of enzymatic and non-enzymatic
antioxidants. The endogenous antioxidant enzymes include SOD, CAT and peroxidase.
Examples of non-enzymatic antioxidants are glutathione, vitamin C and vitamin E.

2.5.1. Enzymatic antioxidants

2.5.1.1. Superoxide dismutase (SOD)

Superoxide dismutase (EC 1.15.1.1) is an important enzyme that
converts O, to H,O, and molecular oxygen. There are three isoforms of SOD in human.
Cytosolic copper zinc superoxide dismutase (CuzZn SOD, SOD1) is a 32 kDa homodimer
containing Cu and Zn in the active sites, and is mainly localized in cytosol. Manganese
superoxide dismutase (Mn SOD, SOD2) is a homotetramer (96 kDa) containing one
manganese per subunit (Matés, 2000) that generally found in mitochondria matrix.
Extracellular superoxide dismutase (EC SOD, SOD3) is CuZn SOD that found in
extracellular matrix. EC SOD is a homotetramer (135 kDa) composed of two disulfide-
linked dimers. In dismutation reaction, O, can be oxidized or reduced into form O, or
H,O, (Equation 12-14) (Fukai and Ushio-Fukai, 2011; McGill and Jaeschke, 2013;

Villamena, 2013).

SOD
0,” — 0O,+e (oxidation) — -—- (12)
SOD
O, +e +2H" — H,0, (reduction) - (13)

SOD
20,7+ 2H* — H,0,+0, (14)
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2.5.1.2. Catalase (CAT)

Catalase (EC 1.11.1.6), also known as H,0, oxidoreductase, is tetrameric
enzyme (240 kDa) that contains ferriprotoporphyrin group in the structure. Catalase
presents in peroxisome and converts H,O, to water and molecular oxygen (equation
15) (Matés, 2000).

CAT
ZHzoZ — 2 Hzo + OZ “““ (15)

2.5.1.3. Glutathione peroxidase (GPx)

Glutathione peroxidase (EC 1.11.1.19) is a selenium containing enzyme
that transforms H,O, to water and molecular oxygen by using glutathione (GSH) in the
reaction (Equation 16). Glutathione peroxidase also catalyzes the reduction of
hydroperoxide (Equation 17). There are many isoforms of GPx found in animal such as
cytosolic and mitochondria (GPx-1), gastrointestinal GPx (GPx-2), plasma GPx (GPx-3)
and phospholipid hydroperoxide GPx (GPx-4) (Dasgupta and Klein, 2014; McGill and
Jaeschke, 2013). Mechanism of an important enzymatic antioxidants are summarized

in Figure 5.

H,0O, + 2GSH & GSSG + 2H,0 (16)

GP
ROOH + 2GSH — ROH + GSSG + H,O - (17)
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Figure 5 Generation of reactive oxygen species and the defense mechanisms (MatEs,

Pérez-Gomez, and De Castro, 1999).

2.5.2. Non-enzymatic antioxidants

Non-enzymatic antioxidants are the antioxidants that are not functioned as
enzyme; for example, food vitamins, plant polyphenols and other synthetic
antioxidants, low molecular weight antioxidants, e.g., glutathione. Vitamin E
(tocopherols and tocotrienols) is a fat-soluble vitamin that acts as chain-breaking
antioxidant. The most active form of vitamin E is o-tocopherols. Vitamin E prevents
lipid peroxidation of cell membrane and inhibits the autoxidation. Vitamin E functions
as peroxyl radical scavenger by donating hydrogen from hydroxyl group to lipid peroxyl
radicals. The antioxidant ability of vitamin E can be regenerated by other antioxidants

such as vitamin C (Nimse and Pal, 2015).
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Vitamin C or ascorbic acid is water-soluble antioxidant that can be obtained
from diets such as cherry, strawberry, citrus fruits, etc. Vitamin C acts as free radical
scavenger by donating its electron to the free radicals (Nimse and Pal, 2015; Padayatty
et al,, 2003). Glutathione is a tripeptide composed of three amino acid including L-
glutamate, L-cysteine and glycine. Its thiol group in cysteine residue is a reducing agent,
which can interact with the free radicals (Pastore, Federici, Bertini, and Piemonte, 2003;
Townsend, Tew, and Tapiero, 2003). Glutathione can be found in both of thiol form
(reduced glutathione, GSH) and disulfide forms (oxidized glutathione, GSSG). Reduced
glutathione is used as a cofactor of GPx in the detoxification of H,0,. Subsequently,
GSH is converted into GSSG form. GSSH can be reduced back to GSH by slutathione
reductase enzyme together with the NADPH. Besides the protection against the ROS
and RNS, slutathione has other cellular functions including xenobiotic detoxification
and immune booster (Lushchak, 2012; Perricone, De Carolis, and Perricone, 2009).
Moreover, glutathione can convert vitamin C and E back into their active forms (Birben,

Sahiner, Sackesen, Erzurum, and Kalayci, 2012).
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2.6. Metabolomics

Metabolomics is one of the omics that described a systemic identification and
quantification of metabolome of biological system such as cell, tissue, biological fluid,
and organism (the omics cascade is shown in Figure 6). Metabolome is defined as all
small molecule metabolites (<1000 Da), e.g., amino acids, small peptides, sugars, and
fatty acids. Changes in metabolites are resulted from gene, mRNA, protein functions,
as well as the environments. Metabolomics represents the depiction of an organism’s
phenotype and how metabolites respond to genetic or environment at a specific time
point (Nielsen and Oliver, 2005). There are many definitions used in the analysis of the
metabolites; for example, metabolite targeting analysis and metabolomic profiling.
Metabolite targeting analysis is a quantitative analysis of a few specific metabolites.
Metabolomic profiling is a semi-quantitative analysis of a group of specific metabolites
such as amino acids, carbohydrates, and lipids classes.

Metabolomics workflow consists of several steps including biological question,
experimental design, sample preparation, data acquisition, data processing, data
analysis, and biological interpretation (Figure 7). Generally, the high-throughput
analytical techniques such as nuclear magnetic resonance spectroscopy (NMR), liquid
chromatography (LC) and gas-chromatography (GC) coupled with mass spectrometry
(MS) are used in metabolomics approach to identify and quantify the metabolites from

a biological sample as much as possible.
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Figure 6 The relationship between different -omes (Ritchie, Holzinger, Li, Pendergrass,

and Kim, 2015).

Figure 7 Metabolomics workflow (Wang and Chen, 2013)
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Table 4 Analytical methods used in metabolomics approach (Verpoorte, Choi,

Mustafa, and Kim, 2008)

HPLC or TLC-UV GC-MS LC-MS MS NMR
Sample preparation ++ - - + 4+
Reproducibility - + - + T4+
Absolute Quantitation - - - - T4+
Relative Quantitation + ++ + ++ -+
Identity + ++ ++ ++ ++
Compound number Ca. 30 Ca. 1000  Ca. 200  Ca. 1000 Ca. 200
Sensitivity + ++ ++ +++ -

Scale from - to +++ for disadvantages to major advantages. HP: High Performance; LC: Liquid
Chromatography; TLC-UV: Thin-Layer Chromatography-UV Densitometry; GC: Gas Chromatography;

MS: Mass Spectrometry; NMR: Nuclear Magnetic Resonance Spectroscopy.

Currently, there is no single method can be able to analyze all the metabolites
at one time. Thus, a combination of analytical instruments is usually required. The
comparison of each analytical method used in metabolomics is summarized in the
Table 4. GC-MS technique is often used in metabolomics study because of high
chromatographic separation power, high reproducibility as well as more availability of
mass spectrum databases (Scalbert et al., 2009). However, the compound must be
volatile or can be derivatized and thermally stable. Hence, this technique is less
suitable for low volatility and highly polarity compounds (Wang, Liu, Hu, Li, and Wan,
2015). In sample preparation step of GC-MS based metabolomic analysis, volatile
sample such as breath can be directly analyzed. Nevertheless, some metabolites, e.g.,

sugars, sugar alcohols, amines, amino acids, and organic acids that contain high polar
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functional groups, thermally unstable, and less volatility. Therefore, derivatization step
is needed to reduce their polarity and change the compounds to more volatile.
Methoxymation and silylation are usually performed in derivatization step. For
methoxymation, carbonyl group is converted to oximes to prevent sugar ring formation
(aldehyde and ketone groups). O-methoxyamine hydrochloride in pyridine is mostly
used in this step. In the silylation step, active hydrogen atom in functional group such
as hydroxyl (-OH), carboxyl (-COOH), amine (-NH,) and thiol (-SH) is substituted by an
alkylsilyl group; hence, metabolites are less polar and more volatile. There are many
silylation reagents widely used in metabolomics study, for example, N-methyl-
trimethylsilyltrifluoroacetamide (MSTFA) and N,O-bis (trimethylsilyllacetamide (BSA).
Trimethylsilylchlorosilane (TMCS) can be added in MSTFA and BSA as a catalyst
(Dettmer, Aronov, and Hammock, 2007; Garcia and Barbas, 2011; Grimm, Fets, and
Anastasiou, 2016; Koek, Jellema, van der Greef, Tas, and Hankemeier, 2011).
Nowadays, metabolomics has been applied in various fields such as
pharmacology, toxicology, medical and pharmaceutical sciences, food and nutrition,
as well as plant biotechnology. Metabolomics has been used as a tool in diseases
diagnosis or biomarker discovery (Chen et al.,, 2009; lkeda et al., 2012; Nishiumi et al.,
2010; Wu et al,, 2009), to evaluate efficacy and toxicity of drugs and herbal plants
(Craig et al., 2006; Ji et al.,, 2014; Lu et al., 2013; Scalbert et al,, 2009; Yin et al., 2016)
and to determine the effects of specific dietary consumption (Lloyd et al., 2011; Stella

et al., 2006).
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2.6.1. Metabolomics studies on hepatoprotective plants or plant extracts.

Currently, metabolomics approach is widely used to identify metabolite
profiles of medicinal plants or the plants extracts. Metabolomics is also used to
evaluate toxicity of the herbs, assess the therapeutic effects of the bioactive on various
diseases, and explore more mechanisms and pathway involved. There are several
metabolomics studies of hepatoprotective effects of natural products or plant extracts
have been reported (Table 5).

A study of the effects of green tea extract (GTE) on acetaminophen-induced
hepatotoxicity in mice by using ultra-performance liquid chromatography coupled with
quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) and NMR were
conducted by Lu et al. (2013). The animals were divided into a control group,
acetaminophen group (APAP) (200 or 300 mg/kg), GTE group (500 or 1000 mg/kg), GTE
(500 mg/kg)/APAP (200 or 300 mg/kg) group, and GTE (1000 mg/kg)/APAP (200 or 300
mg/kg) group. The effect of GTE pre-dose administration was studied 3 hours and 3
days before APAP treatment. The post-dose of GTE was investigated after the animal
were treated with APAP for 6 hours. Liver tissue and blood sample were collected at
24 hours after APAP treatment for metabolomic analysis. The results revealed that the
metabolites pattern change in GTE pretreatment was less than APAP treatment alone.
Metabolic pathways that possibly involved were metabolisms of fatty acids,

glycerophospholipids, glutathione, and energy.
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In another study, metabolomics was used to investigate the effect of ginger
essential oil (GEO) and citral in alcohol fatty liver mice (Liu et al., 2013). Six-week-old
C57BL/6 mice were divided into six groups: normal control, alcohol fatty liver disease
(AFLD), two groups of GEO treatment and two groups of citral treatment. Mice in an
AFLD and all treatment groups were fed with ethanol-containing diet (Lieber DeCarli
diet), whereas those in control group were fed with normal liquid diet. The treatment
groups were fed with either GEO (2.5 or 12.5 mg/kg) or citral (0.375 or 1.875 mg/kg) for
4 weeks. Mice in control and AFLD groups were treated with only vehicle in the same
volume as the treatment groups. Serum was collected for metabolomic analysis. The
metabolites profiling was determined by high performance liquid chromatography
coupled with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF MS). The
results showed that GEO and citral exhibited protective effect against AFLD.
Metabolomics results revealed changes in some metabolites after alcohol
administration. The levels of metabolites restored back to normal levels (comparable
to the control) when treated with GEO and citral. The study indicated that GEO has
the hepatoprotective effect to AFLD.

A study on hepatoprotective effects of Angelica sinensis polysaccharides
extract (ASP) in mice using GC-MS metabolomics approach was carried out by Ji et al.
(2014). Mice were divided into five groups: control, liver injury, and three doses of ASP.
The animals were treated by normal saline or ASP (60, 120 and 240 mg/kg/day,

respectively) for 3 days. Subsequently, liver injury was induced by carbon tetrachloride
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(CCly) by intraperitoneal injection. After that, mice in ASP groups were administrated
with ASP. Thirty-six hours after CCl, treatment, mice were sacrificed. Blood sample and
liver tissue were collected for the analyses. The hepatoprotective effect of ASP was
exhibited, and the dose of ASP 120 mg.kg/day showed the most protective effect. Ten
metabolites in the plasma and nine metabolites in the liver were revealed as potential
biomarkers.

Rofiee et al. (2015) evaluated the protective effects of Muntingia calabura
extract (MCME) on CCl, induced liver injured rat by using LC-MS Q-TOF. Rat were
randomly divided into six groups: normal control, negative control (normal saline),
positive control (10 mg/kg silymarin), and pretreatment treated with three doses of
MCME (100, 200 and 400 mg/kg, respectively). Animals were received test solutions for
seven days, followed by hepatotoxicity induced by CCl, at 24 hours after the last
administration. Then, 48 hours later, serum samples were collected for analysis.
Metabolomics fingerprinting was performed using LC-MS Q-TOF and network and
pathway analysis was performed by Metabolomics Pathway Analysis (MetPA). The
results showed that MCME exhibited the protective effect from CCly-induced
hepatotoxicity, and two pathways involved in hepatoprotective of MCME was revealed

by MetPA were bile acid biosynthesis and arachidonic acid metabolism.
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CHAPTER Il
MATERIAL AND METHODS

3.1. Bioactive

Standardized extract of Centella asiatica (ECa 233) developed by the Faculty
of Pharmaceutical Sciences, Chulalongkorn University was obtained from Siam Herbal
Innovation Company Limited (Samutprakan, Thailand). ECa 233 was prepared by a
patent-pending procedure (Saifah et al., 2009). Total triterpenoids of the ECa 233 used
in this study were 89%, which composed of 51% madecassoside and 38% asiaticoside
as quantitatively verified by Hengjumrut, Anukunwithaya, Tantisira, Tantisira, and
Khemawoot (2017), using UHPLC 100 liquid chromatograph (Eksigent ekspert™,
Montreal, Canada) connected to QTRAP 6500 mass spectrometer (AB Sciex, Pte. Ltd.,

Framingham, MA, USA) for the analysis.

3.2. Chemicals and Reagents

Deoxycholic acid sodium salt (extra pure, 99%) used as internal standard was
purchased from Acros organic (Geel, Belgium). Rotenone, 1,1,3,3-tetraethoxypropane
(TEP), 2-thiobarbituric acid (TBA), acetic acid, sodium dodecyl sulfate (SDS), n-butanol,
pyridine, superoxide dismutase from bovine erythrocytes, xanthine, xanthine oxidase,
sodium carbonate (Na,COs), ethylenediamine tetraacetic acid (EDTA), nitroblue
tetrazolium (NBT), bovine serum albumin, copper (II) chloride (CuCl,), sodium chloride,

acetone, pyridine (anhydrous, 99.8%), methoxyamine hydrochloride, N-methyl-N-
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trimethylsilyl- trifluoroacetamide (MSTFA) with 1% trimethylchlorosilane (TMCS) and n-
heptane (for HPLC, 99%) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Other
reagents used in this study were analytical grade. Catalase, glutathione peroxidase and

Bradford assay kits were purchased from Abcam (Cambridge, UK).

3.3. Animals

Adult male Wistar rats weighing 300-350 ¢ were obtained from the National
Laboratory Animal Centre, Mahidol University (Nakhon Prathom, Thailand). All rats were
housed under the controlled conditions of 25 + 2 °C with proper humidity and 12-hour
dark/light cycles. Standard rat food and tap water were freely available in their home
cage during the entire experimental process. All experimental procedures were
approved by the Institutional Animal Care and Use Committee of the Faculty of
Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand (Approval No.

1533-004).

3.4. Study design

The experimental design is shown in Figure 8. Rats were randomly divided into
3 groups (N = 18); control, rotenone and ECa 233. Rotenone was dissolved in dimethyl
sulfoxide (DMSO) to prepare rotenone stock solution and then rotenone was diluted
in sunflower oil to prepare working solution (2.5 mg/mL). The amount of DMSO in

working solution was 2%. ECa 233 was freshly prepared by suspending in 0.5 %
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carboxymethyl cellulose (CMC) for the concentration of 10 mg/mL. On day 1 - 20, rats
in the control and rotenone groups received 1 mlL/kg of 0.5 % CMC while rats in the
ECa 233 group received 10 mg/kg ECa 233 in 0.5% CMC orally. On day 15 - 20, 2.5
me/kg rotenone in sunflower oil was intraperitoneally injected in the rotenone and
ECa 233 groups whereas 2% DMSO in sunflower oil was injected in the control animals.
On day 21, all animals were euthanized under pentobarbital anaesthesia (50 mg/kg
intraperitoneally). Blood samples were collected for hepatic enzyme tests. Liver
samples were immediately removed, snap-frozen in liquid nitrogen and stored at -80

°C until further measurements of metabolome and antioxidant capacities.

3.5. Liver enzyme tests

Blood samples were collected in heparinized tubes and centrifuged at 3000
rom for 10 min (Hettich® Mikro 120 centrifuge, Tuttlingen, Germany). Plasma was used
for measuring liver marker enzymes; alanine aminotransferase (ALT) and aspartate
aminotransferase (AST). Plasma samples were sent to the Professional Laboratory

Management Corp. Co., Ltd. (Bangkok, Thailand) to perform the analysis.
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3.6. Antioxidant tests

Liver tissue was weighed and homogenized using a homogenizer (Glas-Col®,
Terre Haute, IN, USA) in ice-cold 0.1 M phosphate buffered saline solution (pH 7.4, 1:10
w/V). Then, liver homogenate was centrifuged at 12,000 x g at 4 °C for 15 min (Sorvall™
Legend™ micro 21R, Thermo scientific™, Waltham, MA, USA). Supernatant was
collected, snap-frozen in liquid nitrogen, and stored at -80 °C until further analysis.
Thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), catalase
(CAT) and slutathione peroxidase (GPx) assays were carried out. The results were
expressed per milligram of total protein.

3.6.1. Thiobarbituric acid reactive substances

Lipid peroxidation in liver samples was measured as the amount of
malondialdehyde (MDA) by thiobarbituric acid reactive substances (TBARS) assay as
described by the method of Ohkawa, Ohishi, and Yagi (1979). One-hundred uL of liver
homogenate were mixed with 100 pL of 8.1% SDS, 750 pL of 20% acetic acid (pH 3.5)
and 750 pL of 0.8% freshly prepared TBA. The volume of the mixture was made up to
2 mL with distilled water and heated at 95 °C in a water bath for 60 min. After that,
the mixture was cooled at room temperature for 10 min. Five hundred pL of distilled
water and 1 mL of n-butanol/pyridine (15:1) were added and vortexed. After
centrifugation at 4,000 rpm for 10 min (HERMLE Z383K refrigerated centrifuge,

Wehingen, Germany), the upper organic layer was taken and the absorbance was read
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at 532 nm with a Spectramax® M5 microplate reader (Molecular Devices, Sunnyvale,
CA, USA). Lipid peroxidation was expressed as micromole of MDA equivalents/mg
protein of the liver sample.

3.6.2. Superoxide dismutase

Superoxide dismutase (SOD) activity in liver samples were determined by the
method of Sun, Oberley, and Li (1988). Initially, 25 pL of liver homogenate was mixed
with 122.5 pyL SOD reagent (a mixture of 0.3 mM xanthine, 400 mM Na,CO5, 0.6 mM
EDTA, 150 uM NBT and 1 ¢/L Bovine serum albumin). Next, 2.5 pL of 167 units/L
xanthine oxidase was added to start the reaction. The solution was then incubated at
room temperature for 20 min. Subsequently, 50 pL of 0.8 mM CuCl, was added to
stop the reaction. The absorbance of the solution was read at 560 nm with a
Spectramax® M5 microplate reader (Molecular Devices, Sunnyvale, CA, USA). A
standard curve was plotted using superoxide from bovine erythrocytes as a positive
control. SOD activity was expressed as a percentage per mg protein of the liver sample.

3.6.3. Catalase

The activity of catalase (CAT) was carried out using a catalase assay kit following
the manufacturer’s instructions (Abcam, Cambridge, UK). One hundred mg of liver
sample was homogenized in 100 pL cold assay buffer and centrifuged at 10,000 x g
for 15 min at 4 °C to remove insoluble material. Then, 5 pL of supernatant was mixed

with 45 plL assay buffer and 12 uL H,O, in 96-well plates at 25 °C for 30 min. After that,



38

10 pL stop solution was added into each well to stop the catalase reaction. Fifty ulL
of the mixture of OxiRed™ probe, horse radish peroxidase (HRP) and assay buffer were
added into sample wells and incubated at 25 °C for 10 min. The absorbance was
measured at 570 nm with a CLARIOstar® microplate reader (BMG LABTECH, Ortenberg,
Germany). Catalase activity was expressed as mU/min/mg protein of liver sample.

3.6.4. Glutathione peroxidase

The activity of glutathione peroxidase (GPx) was measured with a glutathione
peroxidase assay kit (Abcam, Cambridge, UK). One hundred mg of liver sample was
homogenized in 100 pL cold assay buffer and centrifuged at 10,000 x ¢ for 15 min at
4 °C. The supernatant of liver homogenate was used for the assay. Five pL of
supernatant was pipetted into 96-well plates and adjusted to a volume of 50 pL with
assay buffer. Forty uL of the mixture, 40 mM of NADPH, gclutathione reductase and
glutathione were added into each well and incubated at room temperature for 15 min
to deplete all oxidized glutathione (GSSG) in samples. Then, 10 L of cumene
hydroperoxide was added into each well and the plate was mixed to start the GPx
reaction. The absorbance was measured with a CLARIOstar® microplate reader (BMG
LABTECH, Ortenberg, Germany) at 340 nm. Subsequently, the plate was incubated at
25 °C for 5 min. The absorbance was measured again at 340 nm. Glutathione activity

was expressed as U/min/mg protein of the sample.
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3.6.5. Determination of liver protein content

Protein content of liver homogenate was determined with a Bradford assay kit
following manufacturer’s instructions (Abcam, Cambridge, UK). Ten uL of liver
homogenate was mixed with 100 yL of protein assay reagent in 96-well plates and
incubated at room temperature for 5 min. The absorbance was read at 595 nm with a

Spectramax® M5 microplate reader (Molecular Devices, CA, USA).

3.6. Metabolomic analysis

Metabolomic analysis of rat liver samples were carried out using the validated
method of Wang et al. (2009). Two-hundred mg of fresh liver sample was homogenized
(Glas-Col® homogenizer, Terre Haute, IN, USA) in 1 mL of 1 M sodium chloride. A 250
pL volume of acetone was immediately added into 100 pL liver homogenate to stop
enzymatic activity. Then, samples were spiked with an internal standard (10 pL of 2
mg/mL of sodium deoxycholate), vigorously shaken for 1 min and incubated on ice for
5 min. Next, the mixtures were centrifuged at 10,000 rpm for 10 min (Sorvall™ Legend™
micro 21R, Thermo Scientific™, Waltham, MA, USA). Two-hundred pL of supernatant
was then transferred to a GC vial and evaporated under nitrogen. A 50 pL of 15 mg/mL
methoxyamine pyridine, followed by 90 pL of MSTFA with 1% TMCS, were used for
derivatization at room temperature for 1 h. Subsequently, 150 uL of n-heptane was

added and filtered. Supernatant was used for further analysis.
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Separation was performed by gas chromatography-mass spectroscopy with a
GC-MS 7890B GC system/7000C GC/MS Triple Quadrupole (Agilent Technologies, Santa
Clara, CA, USA) with HP-5ms column (30 m x 0.25 mm x 0.25 um). One pL of
derivatized samples was injected by the autosampler equipped with a 10-uL syringe
with the split ratio 1:10 into a split, straight glass wool liner, using helium as a carrier
gas at a flow of 1.0 mL/min. The syringe was washed at least 3 times with acetone
between the adding steps. The mass spectrometer transfer line was kept at 300 °C.
The inlet temperature was set at 250 °C. The column temperature was initially set at
85 °C for 5 min. The temperature of the ion source was 230 °C. The acquisition was
performed in electron impact mode (70 eV) at the rate of 2 scan/s. Full-scan mass

spectra were acquired from 33 to 650 m/z with a scan rate of 5 spectra/s.

3.8. Statistical Analysis

For metabolomics measurements, peak picking and deconvolution were
performed using MS-DIAL version 2.27 (Tsugawa et al., 2015) for the systematic
detection of possible metabolites that were conserved across the samples.
Metabolites were identified by a database search against the NIST 14 mass spectral
library and the 2009 Fiehn metabolomics library. Data analysis and interpretation were
performed by MetaboAnalyst 3.0 (Xia, Sinelnikov, Han, and Wishart, 2015) Orthogonal
partial least squares-discriminant analysis (OPLS-DA) was performed to differentiate

variables between classes. One-way ANOVA was applied for hepatic enzyme and
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antioxidant measurements. SPSS version 22.0 (IBM, NY, USA) was used to identify

differences among the treatments at 95% confidence level (p < 0.05).
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CHAPTER IV
RESULTS

4.1. Liver enzyme tests

The AST and ALT levels of each group are shown in Figure 9A-B. The results
showed that plasma levels of AST and ALT in the rotenone treated group were
increased as compared to those in the control group; however, the change was not
statistically significant. The level of AST and ALT in ECa 233 group were not significantly

different from those in rotenone group.
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Figure 9 Effects of ECa 233 on the plasma levels of AST (A) and ALT (B).

Data are reported as the mean + SD of six animals in each group.
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4.2. Antioxidant tests

TBARS assay was performed to evaluate lipid peroxidation that occurred in the
liver tissues as shown in Figure 10A. TBARS level of the rotenone-treated group was
increased compared to the control group, which indicated that rotenone induced lipid
peroxidation in rat liver (p < 0.05). Supplementation of ECa 233 could reduce liver lipid
peroxidation as decreasing the levels of TBARS were significantly decreased as
compared to the rotenone-treated group (p < 0.05).

Antioxidant enzymes were determined as shown in Figure 10B-D. No significant
difference was observed in hepatic SOD and GPx among the three groups (Figure 108,
Figure 10D). Nonetheless, a significant decrease in CAT activity was observed in the
rotenone group as compared to the control group (p < 0.001). Moreover, ECa 233 pre-
treatment statistically significantly reversed CAT activity back to normal compared to

the rotenone group (p < 0.001; Figure 10C).
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Figure 10 Effects of ECa 233 on TBARS level, SOD, CAT and GPx activity in rat liver after
treatment of ECa 233 at 10 mg/kg. Data are reported as the mean + SD of six animals
in each group; * = p < 0.05, ¥ = p < 0.001. TBARS = thiobarbituric acid reactive
substances as UM MDA equivalents/mg protein (A); SOD = superoxide dismutase as
percentage inhibition/mg protein (B); CAT = catalase activity as mU/min/mg protein (C);

GPx = glutathione peroxidase activity as U/min/mg protein (D).
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4.3. Metabolomic analysis

One hundred and forty-three features were detected in this study, where 65
features were identified (Figure 11) and 78 features were unknown. Most of the
identified metabolic features were involved in metabolic functions of the liver.
Multivariate data analysis was performed using OPLS score scatter plot. Data were log
transformed and pareto scaled. The model showed R°X = 0.136, R°Y = 0.566 and Q%=
0.32. OPLS clearly showed complete separation between control and rotenone groups
(Figure 12), which revealed that biochemical perturbation was apparent in rotenone-
induced rats after exposure to rotenone for 6 days. Metabolic profiles of the ECa 233
group were located between the control and rotenone groups, and were similar to the
control group. Hence, these results suggest that supplementation of ECa 233 at least

partially protected the rat liver from rotenone toxicity.
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Figure 12 Orthogonal partial least squares (OPLS) score scatter plot showing cluster
separation of mass spectra of control rats (A), rotenone-induced rats (x), and

rotenone-induced rats that were pre-treated with ECa 233 (+).
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Figure 13 S-plot of metabolites observed from rotenone-treated rats. Box and whisker
plots display the levels of pipecolinic acid and Unknown #21 in control (light grey),
ECa 233 (grey), and rotenone (black) groups. The top and bottom of the box represent

the 75" and 25" percentiles. The whiskers indicate the maximum and minimum points.

The S plot, which represented the covariance (p) against the correlation (pcorr),
exhibited the most relevant features among the three groups. Statistical analysis
showed that pipecolinic acid and Unknown #21 were the most important features
(Figure 13). Pipecolinic acid was down-regulated while Unknown #21 was up-regulated
in the rotenone group as compared to the control. Administration of ECa 233 tended

to reverse the levels of both metabolites back to a more normal level.
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CHAPTER V
DISCUSSION

Liver enzymes is commonly used to evaluate hepatic functions. This liver
function test includes alanine transaminase (ALT) and aspartate transaminase (AST),
alkaline phosphatase (ALP), gamma-glutamy! transferase, serum bilirubin, prothrombin
time, international normalized ratio (INR) and serum albumin (Bedossa and Paradis,
2012). Liver function tests are used to screen for liver disease. Abnormal values of the
tests can reflect liver status. Aminotransferases such as AST and ALT are marker
enzymes of hepatocellular injury. AST is found in liver, kidney, brain, cardiac muscle,
skeletal muscle, pancreas, lung, erythrocyte, and leukocyte, thus it less sensitive and
specific indicator of liver damage or inflammation. ALT is mostly presents in liver and
more specific to liver than AST. With hepatocellular damage, these aminotransferase
enzymes are released into blood circulation. The blood levels of these enzymes are
related to the intensity of the damages. In the present study, the levels of AST and
ALT were slightly increased after 6 days of rotenone exposure, though the increase no
change significant and the enzyme levels were in the range of normal value of rat. The
slightly reduction of AST and ALT levels were observed in rats received ECa 233 (10
mg/kg) but no significances were observed.

Hepatocytes contain a high density of mitochondria, which are the main energy

source of adenosine triphosphate (ATP) via the electron transport chain and oxidative
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phosphorylation (Chinnery and DiMauro, 2005; Grattagliano et al., 2011). In this study,
rotenone was used to generate ROS in the rats’ liver. TBARS assay is used as the
biomarker for estimation of lipid peroxidation. In this study, treatment with rotenone
significantly increased MDA levels, which indicated that rotenone generated oxidative
damage in the liver. Administration of ECa 233 significantly was found to reduce lipid
peroxidation. Previous studies by Zhao et al. (2014) and Choi et al. (2016) also reported
protective effects of Centella asiatica extracts on lipid peroxidation by decreasing
TBARS levels in hamster and rat livers, respectively. Lipid peroxidation inhibition of ECa
233 against rotenone toxicity possibly resulted from free radical scavenging properties
of the triterpenoids madecassoside and asiaticoside (Lin et al., 2014; Luo et al., 2015;
Luo et al., 2014; Shukla et al., 1999).

The antioxidant defense system is essential to maintain redox balance in the
body. Excessive ROS can cause oxidative stress, leading to dysfunction of many organs.
Free radicals can damage biomolecules such as protein, lipids and DNA. The enzymatic
antioxidant defense systems SOD, CAT and GPx are responsible for eliminating the free
radicals. SOD is the primary enzyme that defends against oxidation, by converting
superoxide radical anion (O,7) to hydrogen peroxide (H,O,). Superoxide radicals are
produced by various mechanisms in the body, especially from the mitochondrial
respiratory chain. Consequently, H,O, produced by the reaction of SOD is converted

to water and oxygen by CAT and GPx.
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Although the increase of SOD and GPx activities was observed in many previous
studies (Choi et al., 2016; Jayashree, Kurup Muraleedhara, Sudarslal, and Jacob, 2003;
Zhao et al,, 2014), rat liver pre-treated with ECa 233 did not show significantly higher
SOD and GPx levels in the present study. However, significantly lower CAT activities
were observed in the rotenone treated group. The reduction of CAT activity was likely
associated with the scavenging of H,O, that was generated from the dismutation of
superoxide ions by SOD. Administration of ECa 233 prior to exposure to rotenone
toxicity significantly enhanced the activity of CAT in rat liver. This finding was similar to
the results by Choi et al. (2016) that hepatic CAT activity was increased in
dimethylnitrosamine-induced liver injured rats treated with Centella asiatica extract
(200 mg/ke) for 5 days. In addition, the activity of CAT in liver tissue of lymphoma-
bearing mice was increased after treatment of Centella asiatica extract (50 mg/kg/day)
for 14 days (Jayashree et al., 2003). Furthermore, Sainath, Meena, Supriya, Reddy, and
Reddy (2011) reported that hepatic CAT activity was elevated in rats exposed to lead
co-administered with aqueous extract of Centella asiatica (200 mg/kg/day) for 70 days.

For metabolomic analysis, pipecolinic acid (also known as pipecolic acid) was
one of the most important metabolites in this study. Pipecolinic acid level was
decreased in the rotenone treated group; however, supplementation with ECa 233
brought its concentration up to levels comparable to the controls. Pipecolinic acid is
an intermediate metabolite of lysine. In general, lysine degradation occurs via two

pathways; saccharopine and pipecolinic acid (Broquist, 1991). In this study, the amount



52

of lysine did not significantly change among the three groups. Thus, possible underlying
mechanisms in the rats’ liver were probably related to the increasing of lysine
degradation via saccharopine pathway by rotenone.

Peroxisomal disorder might be another possible explanation of diminishing
level of pipecolinic acid in rotenone-treated group. Typically, pipecolinic acid
catabolism is metabolized by a peroxisomal enzyme, pipecolinic acid oxidase. In the
liver, pipecolic acid oxidation occurs in mitochondria and peroxisomes, where 83% of

pipecolinic acid oxidase inhibition by rotenone was reported (Rao, Tsai, Pan, and Chang,

1993). Both organelles cooperate in metabolic processes such as fatty acid B—oxidation
and ROS metabolism. In particular, ROS are mainly produced by mitochondria,
endoplasmic reticulum and peroxisomes. Boveris, Oshino, and Chance (1972) reported
that approximately 35% of H,0O, was produced by peroxisomes in rat liver. Likewise,
the antioxidant enzyme CAT that used to decompose H,0, is mainly localized in
peroxisomes. This enzyme has been used as a peroxisomal marker (Schrader and
Fahimi, 2006). Therefore, peroxisomal disorders might affect cellular redox balance,
resulting in alteration of the levels of pipecolinic acid. Nevertheless, further studies are

needed to clarify clearly the relationship between pipecolinic acid and CAT.
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CHAPTER VI
CONCLUSION

The outcomes of this study provide further evidence in support of using
Centella asiatica as a value-added component in new dietary supplements or
medicines for liver disorders in the future. GC-MS based metabolomic analysis revealed
for the first time that supplementation of the standard extract of Centella asiatica ECa
233 protected against rotenone toxicity in rotenone-induced rats, where pipecolinic
acid and Unknown #21 were the most two important features in the present study.
ECa 233 supplementation prior to exposure to rotenone inhibited lipid peroxidation in
liver tissue, perhaps due to the antioxidant properties of triterpenoids contained in this
herb, as well as boosting the activity of the CAT antioxidant enzyme. Since pipecolinic
and CAT are mainly found in peroxisomes, this oreanelle is probably associated with
the underlying mechanism of ECa 233 in the liver tissue. However, further investigations

are required to elucidate the mechanisms involved.
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APPENDIX A

Liver enzyme tests, TBARS and antioxidant enzyme activities

Table 6 Liver enzyme tests

Groups AST (U/L) ALT (U/L)

Control 78.00 = 10.30 2583 + 5.64
Rotenone 87.17 + 20.52 30.33 + 6.06

ECa 233 73.17 + 10.48 26.50 + 6.06

Data are reported as the mean = SD of six animals in each group. U/L = Units/L

Table 7 TBARS and antioxidant enzyme activities

66

Groups TBARS SOD CAT GPx
Control 0.947 + 0.288 3.320 + 0.503 27.590 + 3.320 1.925 + 0.435

Rotenone 1.256 + 0.240* 3.130 + 0.876 17.480 + 3.890** 1.829 + 0.222
ECa 233 0.867+0.213" 3.940 + 0.690 29.690 + 2.500"" 1.830 + 0.138

Data are reported as the mean = SD of six animals in each group.
*p < 0.05, ** p < 0.01 compared with control group.

" p <0.05 " p < 0.01 compared with rotenone group.

TBARS = thiobarbituric acid reactive substances as uM MDA equivalents/mg protein

SOD = superoxide dismutase activity as percentage/mg protein
CAT = catalase activity as mU/min/mg protein

GPx = glutathione peroxidase activity as U/min/mg protein
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APPENDIX B

Standard calibration curves

Standard curve of TBARS
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Figure 15 Mass spectrum of pipecolinic acid (NIST Mass Spec Data Center and Stein,

2017).
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APPENDIX D

Chulalongkorn University Animal Care and Use Committee

Certificate of Project Approval {Original O Renew
Animal Use Protocol No. 15-33-004 Approval No. 15-33-004
Protocol Title

NEUROPROTECTIVE EFFECT OF STANDARDIZED EXTRACT OF CENTELLA ASLATICA Eca233
IN ROTENONE-INDUCED PARKINSONISM RAT MODEL

Principal Investigator

RATCHANEE RODSIRI, Ph:D.

Certification of Institutional Animal Care and Use Committee (IACUC)

This project has been reviewed and approved by the IACUC in accordance with university regulations and
policies governing the cate and use of laboratory animals. The teview has followed guidelines documented in
Ethical Principles and Guidelines for the Use of Animals for Scientific Purposes edited by the National Rescarch
Council of Thailand. .

Date of Approval Date of Expiration
May 12, 2015 © | May 12,2018

Applicant Faculty/Institution
Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phyathai Road., Pathumwan
BKK-THAILAND. 10330

Signature of Chairperson Signature of Authorized Official
e RIY. Pches Logdtirad.
Name and Title Name and Title
THONGCHAI SOOKSAWATE, Ph.D. PORNCHAI ROJSITTHISAK, Ph.D.
Chairman Associate Dean (Research and Academic Service)

The official signing above certifies that the information provided on this form is correct. The institution assumes that
investigators will lake responsibility, and follow university regulations and policies for the care and use of animals.

This approval is subjected to assurance given in the animal use protocol and may be required for future investigations and
reviews.
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