mswszuuAuAumM st degldnisdeasuuvauulng (Buend)

YIYIU ANS1E TU

unAngonazuiludayaatuiivvesieninusaaustnisfnw 2554 Aliusnistuadalayangne (CUIR)
\uuitudeyavesdidndwerivendnug Ndsunadudinineidy
The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR)

are the thesis authors' files submitted through the University Graduate School.

a v a

"31/1mﬁwuéﬁlﬂudawﬁwaqmiﬁﬂmmwé’ﬂqmﬁzyiynmﬂiimmamumum%
anmIansulnil aedendenssulnii
ANEIAINTTUAIARS PNAINTAUUM Ny
Un1sfnwn 2558

SvaAnSroIaNsNNINe Sy

DEVELOPMENT OF AN ACCESS CONTROL SYSTEM USING NEAR-FIELD
COMMUNICATION (NFC)

Mr. Chan Daraly Chin

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering Program in Electrical Engineering
Department of Electrical Engineering
Faculty of Engineering
Chulalongkorn University
Academic Year 2015

Copyright of Chulalongkorn University

Thesis Title DEVELOPMENT OF AN ACCESS CONTROL SYSTEM
USING NEAR-FIELD COMMUNICATION (NFC)

By Mr. Chan Daraly Chin
Field of Study Electrical Engineering
Thesis Advisor Associate Professor Watit Benjapolakul, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master's Degree

Dean of the Faculty of Engineering

(Associate Professor Supot Teachavorasinskun, D.Eng.)

THESIS COMMITTEE
___ Chairman
(Associate Professor Lunchakorn Wuttisittikulkij, Ph.D.)
___ Thesis Advisor
(Associate Professor Watit Benjapolakul, Ph.D.)
___ Examiner

(Assistant Professor Chaiyachet Saivichit, Ph.D.)

External Examiner

(Chaiyaporn Khemapatapan, Ph.D.)

Fu an1d Fu : maaunszuumuaunsdiideslinisdeasuuvaunsilng (Sulevid)
(DEVELOPMENT OF AN ACCESS CONTROL SYSTEM USING NEAR-FIELD

COMMUNICATION (NFQ) 8. 7iUSnwnineniinugudn: se. a3.1in lugyanana, 57 wii,

Host-based Emulation Card (HCE) fiardutnguandndinsunisimuineundindunis

doarsuvuauwlngd (Bulend) vesszuvuiiinisueunsess (esanaiuisaldunu card

Y a

emulation Iaensld Secure Element (SE) wiatnwaunidndudesnasaresesiubuas SE Jeae

U

Dalenalifuanitunisinuilunisimuiludhuganarietunldsslend il HCE arunsn
ses3uIAsgUlnsInAea ISO / IEC 7816-4 ldamuiusgaunsvanslunain oendlsfini dniiam
Fansniineiauineundindy vunesgudidesmnuenduasyanaiiausinazsialildnuldu
KAnfusmemuonity uenaind lavsFiduenFlutingtu 1wy NFC shield fisasfuianising

Tnaea 1SO 144434 (it

woUndindunounseeniisesiulduend gnimuntuieynieitulnimuw lned1aeq
2 & =~ s s Xqu o) Y = o
Juduenl@aunsamia G4 HCE unusiiaru 4 ndnvesseuunsauaumsdts Tngsianiu
Vanupazgnusudeu iihsa wastuiinlilumbeanudineluredvsdiadouduszuuiiuen

91U (isolation system) lemasanian Tunisnageuneunaindusananivaeiamn lausi3iouen

' '
I a A

Fuuulawmuresaszgnueeeenuulausiuinigiu 1SO Nilegiiu teviglunsfiamunniuneu

Y

¥ A <

vpeuoUNaLATY HCE 1ne ACR122U NFC reader aggnldiiies1u HCE lunisnaaeuil a1y
dnuazfoafuish ACRI22U vihevuuwasesiiulandiiu UsB Fedadululaililuiagtu

gnvine NS laus31ouenddmiu NFC shield 938198301un195§1u 15O / IEC 7816-4 Tagld

q

¥ o

Fai1uuanIu NFC Forum Type 4 iiloaiuayunisidsiuuasa Arduino Uno t8u NFC reader

1ty lausingnadi@iudmsu NFC shield aggnyageusisuaundindulounsasn laely

NUIFBTLUSELNBUMLAIUNITNAABY N1TNAABILINVDILBUNALATULIUATREA A2LTUN15d1579
1% Ao & i I3 T . ~ I3

Tayandanuegluszuunenveweunsasn (Android’s isolation system) N1snaaesiiassavily
n13nsvdeuILeUndlatuansaitnuldgnaesuulnsinaeaunsgiumelausilenuses
dUUUV18Y (extended open source library) Lagld ACR122U WagN15NAR0IaANIEABN1T
n57980Ulaus13Na3197uVe NFC shield d115U Arduino fuwaUnandu HCE lagaean1snnaed

gavheuandliiuindoyaiednaiilindoudusiaiureweundinduneunseus

a

e denssuludn aneilatandn

a1 denssuludn aneilate . MUsnwman

Uns@nw 2558

5670541621 : MAJOR ELECTRICAL ENGINEERING

KEYWORDS: HOST-BASED CARD EMULATION / NEAR-FIELD COMMUNICATION (NFC) / ACCESS

CONTROL SYSTEM / ANDROID / ARDUINO
CHAN DARALY CHIN: DEVELOPMENT OF AN ACCESS CONTROL SYSTEM USING NEAR-
FIELD COMMUNICATION (NFC). ADVISOR: ASSOC. PROF. WATIT BENJAPOLAKUL,
Ph.D., 57 pp.

Host-based Card Emulation (HCE) is main reason for developing NFC application of
Android OS. It can replace the card emulation by using Secure Element (SE) when developers
need to negotiate with SE manufacturer. This is more open for academia to develop in this
field and take its benefits. HCE can support ISO/IEC 7816-4 protocol standard which is
commonly used in the market. However, developers are still difficult to develop their
application over this standard since third-party software is limited only to their products.

Moreover, NFC library such as NFC shield currently supports only ISO 14443-4 protocol.

To pave the ways for developers, NFC-enable Android application is developed to
emulate as NFC smartcard using HCE instead of 4 digits passcode of access control system.
All passcodes are modified, encrypted and saved in internal phone storage as isolation
system anytime. To test this application while developing, open source NFC library is
extended over existing ISO standard’s library to help to track all procedures of this HCE
application. ACR122U NFC reader is used to read HCE in this test as well as how ACR122U
works on Windows platform over USB which it is not currently feasible. Lastly, developing
the NFC library for NFC shield is based upon the ISO/IEC 7816-4 using NFC Forum Type 4 Tag
Specification to support Arduino Uno board as NFC reader, then this built library for NFC
shield is tested with Android application. There are three experiments in this work. The first
experiment of Android application is to discovery data which storing in Android’s isolation
system. The second experiment is to validate whether the application works correctly over
protocol standard with extended open source library using ACR122U. The last experiment is
to validate the built library of NFC shield for Arduino with HCE application. These last two

experiments show the output data is the same as the passcodes of Android application.

Department: Electrical Engineering Student's Signature

Field of Study: Electrical Engineering Advisor's Signature

Academic Year: 2015

ACKNOWLEDGEMENTS

First of all, | would like to express my heartfelt gratitude to my thesis
adviser, Assoc. Prof. Dr. Watit Benjapolakul, for his advice and valuable guidance
throughout my study and research. | would like to thank to Asst. Prof. Dr.
Lunchakorn Wuttisittikulkij for being the chairman of this thesis, and giving useful
comments. | am also thankful to Asst. Prof. Dr. Chaiyachet Saivichit and Dr.
Chaiyaporn Khemapatapan for being internal and external committee, respectively,

for his suggestions.

I also would like to extend my thanks to friends, seniors and juniors in
Telecommunication research laboratory for their kindness and sharing their

experience during my research here.

| am particularly indebted to AUN/Seed-Net, JICA project for financial
support during my stay in Thailand. | also would like to my acknowledgement to

Institute of Technology of Cambodia (ITC) where giving me a chance to study here.

Lastly, I am highly indebted and thoroughly grateful to my parents and my
brother. They have sacrificed everything for me. Without them, | cannot stand up

here today.

Vi

CONTENTS

Page

THAT ABSTRACT <.t \%
ENGLISH ABSTRACT ..ottt v
ACKNOWLEDGEMENTS .. vi
CONTENTS <ttt vii
LIST OF FIGURES ..ottt bbbttt bbb s s et s snsenenes X
LIST OF TABLES .. Xii
Chapter 1 INTRODUCTION ...ttt 1
1.1 INTFOAUCTION oo 1
1.2 OBJECTIVES .ottt ettt sttt ane 2
1.3 SCOPE OFf TNESIS ..t 2
1.4 Expected outcomes and CONtHBDULIONS ..o 3
1.5 Organization of diSSErtation ..o 3
Chapter 2 BACKGROUND AND LITERATURE REVIEWcuiiiiiiiiinirscnisceieeiseesceseceeeies 4
2.1 BACKGIOUNG .t 4
2.1.1 Android Operating SYSLEM ...c.cviiirieicieeie e 4

2.1.2 Near-Field Communication (NFO)cccovuiieririniirineiseeeseisee s a4

2.1.3 NFC-enabled phon@ ... 5
2.1.3.1 Read/WIit€ MOTE ..ot 5

2.1.3.2 Peer-to-Peer MOAE ...t 5

2.1.3.3 Card emulation MOEcceuiriiinirieiiecsieee e s 6

2.2 LIEEIATUIE TEVIEW ..ottt 7

2.3 ProbBlEM STAtEIMENT ..ottt et ee e seee e 9

viii

Page

2.4 Research proposal and its appliCation ... 10
Chapter 3 NFC-ENABLED ANDROID SOFTWARE AND HARDWARE DEVELOPMENT 13
3.1 Overview Of arChit@CTUIEcoieiiieic e 14
3.2 Android Application developmenT ... 14
3.2.1 ANAIOIA IDE ...t 14
3.2.2 User iNterface (U] ... 15
3.2.3 NFC protocol support and service selectioncverirnernicnneenes 16
3.2.3.1 HCE Service (Host Card EmMUlation)......c...coovueeeenreenrinneinnieniis e 17

3.2.3.2 SErVICE SELECTION weuiveiiiirtieete e 17

3.2.3.3 AID group and CatEGONIEScuvvuiveiririeieieieeeees e 17

3.2.3.4 K&y MANAGEIMENT ..ottt 18

3.2.0 ACCESS PASSCOUE. ...ttt 19
3.2.80.1 FOIMATION ettt 19

3.2.4.2 Credential data StOrage ..o 19

3.2.5 ApPLICAION SECUNTY ..ceuieiiiiicicieicie e 20
3.2.6 CryPLOSIAPNY ..ottt 20
3.2.7 Proposed METNOMc.ouiiieieieiee e 21
3.2.7.1 Implementing HoSt ADPU SEIVICEcovuiueiierieciiinieinieeseieeseieeis 21

3.2.7.2 Key management and security aCtivitycccooeevieenieenicsees 21

3.2.7.3 AppliCation STrUCTUIE ..o 24

3.3 Hardware deVelopmMENT 25
3.3.1 Developing a library of NFC shield for ArduinOccccccoieirnieeiniericienns 25

3.3.2 Extending work from libnfc open lbrary.......ccceveevieeeceeen, 30

Page

Chapter 4 EXPERIMENT AND DISCUSSIONooviiiiiiiiiiiiiiiirieieieeieiie e nanes 32
4.1 Credential data in internal storage ... 32
4.2 Test-setup with ACR122U REATENcuoviiiiriiiieeisietie et 34
4.3 Test-setup with NFC Shield using ArduiNocccceeirieininieneceeseeeeeee a5
4.4 Comparison of process time and @nalySiScccceirernrriererererereeseseseseenne a8
Chapter 5 CONCLUSION ...ttt 50
REFERENCES ...ttt 51
AAPPENDIX <.ttt 55

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10

Figure 11

Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:

Figure 23:

LIST OF FIGURES

Routing data with a secure element. ... 6
Routing data without the secure element ... 7
Generating keys from computer and transferring to Android phone 9
Proposal of the application development ..., 11
Applying application in the access control Systemcccceevevenencinicinenns 12
Android application with NFC reader using Window platformccccccoceveenee. 14
Android application with Aruido + NFC Shield V2.0 ... 14
ANdroid StUdIO IDE 1.1.0 .t 15
A sample of Python 2.7 command-liNecccovninnininininseeeeeeeene 15
: A sample of Ul of an Android application ... 16
2 PASSCOAR LIST ot 18
4 digits Of @ PASSCOTE ... 19
Flowchart of key management process after savedcccocovevevieririennnnes 23
Application credential storage StruCture.........cccoevieiricniecniecseesees 24
APPLICALION STIUCTUIE ... 24
APDU PIOCEAUIE ...ttt 29
Flowchart of extended APDU exchange from lUbnfC. ... 31
Android device monitor in rooted smartphone ... 33
Access the stored encrypted data in rooted Android smartphone................ 33
Set SyStemM VariableS 36
Setting the build directory for CMake ..., 37
Editing the entry of CMaKe ... 37
FiXiNG €Irors iN CMNAKE=GUI ... 38

Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:

Figure 30:

windows

Figure 31:
Figure 32:

Figure 33:

com. ...

Figure 34:
Figure 35:

Figure 36:

Xi

Adding adpu_extended reader to CMakeListS.IXtccovivirirrivrrierrieieeees 39
Building the files iN CMEKE ..o 40
Creating the inf driver file by INf-Wizard ..., 40
Microsoft Usbccid Smartcard Reader driver in DMcocvvinivncnicnenee. 41
Updating from WUDF to ACR122U PICC Interfaceccccoeoveninicrneniernieenne a2
ACR122U PICC Interface from lbusb-win32........cooovivininenieinecsecc a2

.. a4
Testing ACR122U with Android applciation using USB port ... 45
Arduino Uno with NFC Shield V2.0.....ccccicicneeeeseeeeeeis 46
Result of Android application talking with NFC shield through Serial

.. ar
Android application with NFC shield using developed libraryccccovueeeeee ar
The respond time of APDU exchange over ISO/IEC 7816-4cccovvvvveeeeennee 48
Average time of APDU between ISO7816-4 and I1SO 14443A............ccccocoeunee 49

Xii

LIST OF TABLES

Table 1: Protocol stack of ANdroid’s HCE........c.coirreeeece e 17
Table 2: C-APDU FOIMAL ...t 25
Table 3: R-APDU FOIMAT ..ot 25
Table 4: NDEF Tag Application select — C-APDU.........ccoiuvieinicincineesceeneeeeiesieeens 26
Table 5: NDEF Tag Application select — R-APDU.......ccoirinicncnecsceeeeceeieeen 26
Table 6: CC select command — C-APDU ...t 26
Table 7: CC select command — R-APDU......coiuiriinireinieseeeieesieeeie e 26
Table 8: ReadBinary command — C-APDU ..o 27
Table 9: ReadBinary command — R-APDU........cccovirrirrieenieeseisceis s 27
Table 10: NDEF seleCt — C-APDU ...ttt 27
Table 11: NDEF seleCt — R-APDU ...ttt 27
Table 12: NLEN read command — C-APDU ..o 28
Table 13: NLEN read comman — R-APDUccccviiiiirinieinceeiee e 28
Table 14: Data read command — C-APDU.....c.ccuviiiririiniereceeicse e 28

Table 15: Data read command — R-APDUoo oottt see s 28

Chapter 1
INTRODUCTION

1.1 Introduction

People today carry their usual keys (physical keys, access cards, credit cards ...) to
everywhere. At least two physical keys and an electronic card are taken every time.
They keep these keys in their pockets or wallet. Therefore, they need more space to
keep those things. In addition, they also carry the essential devices (smartphones,
tablets, notebooks) in daily life.

Nowadays, smartphones are not just only for calling but for other purposes such
camera, recorder, music player, game station, internet explorer and so on. In recent
years Near Field Communication (NFC) have been integrated into smartphone. NFC
which is in group of wireless technology is one of the most promising technologies. In
short-range communication channel, NFC performs the data transfers with speed up
to 424 kbps that operates on 13.56 MHz frequency and range of communication is
maximum 4 centimeter between two devices. Since NFC started launching, there are
two important components in its application. One is active NFC device for starting
communication, and the other one is passive device such as tags or NFC cards which
can store information as memory. This popular technology is mostly used in access
control which is the selective restriction of access to a place or other resources.
Smartphones today becomes more essential in a part of human life since it includes
necessary multifunction. Many researchers try developing application to operate
embedded sensors in smartphone for serving life style. Since NFC-enabled smartphone
was released by Google and Samsung in 2010, the researchers were attracted and
started taking its advantages. In mid-2011, Google wallet is a new mobile payment
system developed by Google that allows the users to store their credit cards, debit
cards or gift cards on mobile phone. NFC plays the main function in this system to
make it efficient. Just tapping the smartphone on PayPass-enabled terminal at

checkout in market, so it is unnecessary for users to take and keep any personal cards

in their pocket. Moreover, it indicates that smartphones technology are moving fast to

replace physical world by virtual information.

1.2 Objectives

The intention of this thesis is to create an offline Android application which can use
NFC-enabled Android smartphone as a single card emulator (Host-based Card
Emulation or HCE) with key management (4 digits passcode) for NFC access control
system; to pave the way for both debugging Android HCE on 64 bits Windows platform;
and to distribute open library for Arduino to support NFC Forum Type 4 Tag by
implementing ISO/IEC 7816-4 protocol.

1.3 Scope of thesis

This research focuses on, developing an application of NFC emulation card integrated
with key access management (without server generated) for NFC access control system
via host-based card emulator in smartphone, testing application using open library to
debugging in Window platform over USB, and developing a library for Arduino to
communicate with HCE over ISO/IEC 7816-4 The research will cover and consider the
following issues:

1. To Develop an application for NFC-enabled phone with Android OS version
4.4 (Kitkat) or upper.

2. To emulate an NFC card emulation by Host-card emulation mode (HCE)
based-on ISO/IEC 7816-4 (Identification cards — Part 4: Organization, security
and commands for interchange).

3. To implement the service for a NFC Forum Type 4 Tag Operation Version
2.0 to transmit data from android application through embedded NFC chip
of Android smartphone by standing on ISO/IEC 7816-4.

4. To modify and save passcodes in credential storage as data for HCE to use.

5. To configure, to extend, and to build the work from NFC open library to test
HCE application to support Window platform 64-bit using NFC Reader over
USB.

6.

1.4

To develop a new library for Arduino to communicate with Android

application (NFC Forum Type 4 Tag Spec) over NFC Shield Version 2.0.

Expected outcomes and contributions

After completing this research, we can expect the benefits over existing technology as

below:

1.

1.5

To replace and reduce carrying physical keys and the NFC tags and card by
NFC smartphone.

To Emulate NFC phone as real NFC cards or tags without assistance from
computer while the existing work needs the assistance (Computer) to
generate key code

To hide 4 digits passcode for access control system using NFC and to access
multi-system of access control.

To pave the way for developers testing and debugging Android HCE on
Windows platform over USB.

To be the forerunner of a library for NFC Shield over ISO/IEC 7816-4 in order

to apply in real system.

Organization of dissertation

In this section, it presents the rest of this thesis arrangement. Chapter 2 describes the

backeround of Android OS, NFC, and NFC-enabled phone, NFC Forum including the

literature review. The detail of how to implement the Host-based card emulation

through NFC Forum type 4 tag operation version 2.0 over ISO/IEC 7816-4, store

credentials in internal phone in secured way in Chapter 3. Chapter 4 talks about the

test-setup, and result from the experiment and discussion. The conclusion of this

dissertation, as well as the future work, are in Chapter 5.

Chapter 2
BACKGROUND AND LITERATURE REVIEW

21 Background
2.1.1 Android operating system

Android is the name of an operating system (OS) for mobile device. It is based on Linux
kernel and is developed by Google. Android OS nowadays is a popular OS among three
OSs (Android OS, i0S and Window phone) [1]. It is designed for touchscreen mobile
device such as tablets and smartphones, and has the largest installed user base. This
OS has direct manipulation interface using touch gestures such tapping, swiping and
pinching. Not only are Android used on smartphones or tablets, but also televisions,
wristwatches, digital cameras, and other electronic devices. Android is owned by
Google under open source licenses and proprietary software including proprietary
components for services. It is popular with information technology companies because
it requires customizable, low-cost, and optimized operating system for high technology
devices.

Until now the versions of Android OS is updated by starting from Android 1.0 to Android
5.0 - Lollipop as well as 5.0.2 with a few bug fixes, and Android 6.0 - Marshmallow

(current version) [2].
2.1.2 Near-Field Communication (NFC)

Near-Field Communication or NFC, a contactless technology developed by NXP
Semiconductor and Sony, is known as communication for short distance. NFC is the
main point which is considered as the key to develop the application. It has been
implemented in many information systems such as public transport, payment, ticket,
access control systems [3], [4]. The main functions of NFC are information storing,
readable and writable. NFC are divided into two main hardware; NFC device (Active)
and NFC tags (Passive). NFC device is used for reading/writing data from/to NFC tags or

NFC device. NFC tags, however, are used as information storage.

2.1.3 NFC-enabled phone

In 2010, Nexus S is the first Android NFC phone made by cooperation between Google
and Samsung and it was the first NFC-enabled phone used in NFC payment system.
After seeing its current advantages and application, new generations of smartphone
made by many different manufacturers are embedded with NFC inside even though it
is currently low functioning. NFC enabled smartphone can be operated in three
different modes. These operating modes are defined by NFC-forum [5], [6], [7];
Reader/Writer (R/W), Peer-to-Peer (P2P), and Card Emulation (CE):

® Read/Write mode (R/W), NFC device can read and/or write passive NFC

tags.

® Peer-to-Peer mode (P2P), allowing two active NFC devices to exchange

data together.

® Card emulation mode (CE), NFC device itself acts as an NFC card.

2.1.3.1 Read/Write mode

In reader and writer mode, the NFC devices (Active tag) has ability to read and write
NFC Forum-mandated tag types (Passive tag) such as NFC smart poster tag.
Reader/Writer mode is to enable NFC device to read data stored in NFC tags or cards

on RF interface.
2.1.3.2 Peer-to-Peer mode

In this Peer-to-Peer (P2P) mode, Two NFC devices (Only active devices) can exchange
information bi-directionally at link-level with speed up to 424Kbit per second. Peer-to-
Peer mode is standardized on ISO/IEC 18092 that specifies, coding, modulation
schemes, transfer speed, and the RF interface’s frame format. It is also initialization
scheme and conditions required to control data collision during initialization.
Furthermore, this I1SO standard defines a transport protocols, protocol activation, in

particular, data exchange method. P2P is mostly used in device pairing, networking,

and data transfer operation such as Android Beam function that allows to share files

between two NFC-enabled Android devices by holding them close together.
2.1.3.3 Card emulation mode

There are two different types for card emulation mode [8], [9]; one is a secure element
(SE) and the other is a host card emulation. Card emulation with a secure elements or
SE, means that NFC module consists of two parts; an NFC controller and a secure
element. NFC controller is used for the communication and the secure element is

used for encrypting and decrypting secure information.

Android device

Host CPU

I

NFC Controller ~=— Secure Element

—
—

NFC Reader

Figure 1: Routing data with a secure element [10]

Moreover, the SE can be considered as a smart card in phone. When NFC card
emulation is provided by using a secure element, through an application to be
emulated, the card is provisioned into the SE on the device. Then, when the user taps
the device on NFC reader in Figure 1 [10], all data from the reader to SE are routed
directly by the NFC controller in the device [8]. The SE and NFC reader start
communicating with each other and Android application is not involved in the
transaction at all. After the transaction completed, the Android application can ask
directly to SE for the transaction status and notify the user. In NFC phone, SE can be
embedded in SIM card, SD card or NFC chip [9].

Android device

NFC Reader

Figure 2: Routing data without the secure element [10]
Card emulation without a secure element or Host Card Emulation (HCE) in Figure 2 was
introduced in Android 4.4. HCE does not rely on a secure element. This technique
emulates the card by allowing application to talk directly to NFC reader. When HCE
emulates the NFC card in Android phone, the NFC controller routes the data from the
NFC reader directly to host CPU on which Android application is running [10].

2.2 Literature review

The study of current benefits and future directions of NFC service for mobile
application was started by Ok, K. et al [5]. By standing on that statement, they
conducted NFC application’s literature review, application prototypes, and studies
from academy and industry. On their overview on application, they present the
application examined in survey table by classifying them based on each operating
modes (R/W, CE, and P2P). An application named “Electronic key” in the table in [5]
was in class of CE in order to eliminate carrying contactless smart key and physical key.
However, when they investisated CE mode, they found out that this mode did not
support mobility. It can be considered as mobile phone challenge and future
developments issue to be solved and to be researched. Many researches for access
control works on R/W mode and P2P mode such as Saminger, C. et al [11], Nasution
S.M. et al [12], Teck, T. et al [13] and Pascal, U. [14]. Logical link control protocol (LLCP
in P2P) was used by Hung, C.-H., Y.-W. Bai, and J.-H. Ren [15] to design of a door lock
control based on NFC of a smartphone as keypad to open the door and

implementation. They also proposed another design and its implementation of door

system based on NFC technology of a smartphone using a single button [16]. Being
quite similar to this work, John et al [17] have proposed One-Time password (Via
message) to access the door with ID and pin.

The biometric access control also is used to unlock the door [18]. They proposed to
scan fingerprint via camera phone and send it (P2P) to the system. Moreover, another
technique from Teh, P. et al [19] proposed NFC smartphone as a medium (P2P) to
send stego-photo, a photo (object) that hided secret or important information in itself,
of user (Information hiding) to unlock the door. Stego-photo, is the name after that
object, had existence of the information, and is invisible. The server will extract the
passcode from selected stego-photo and it will succeed if the passcode is matched in
system. The existing embedded SE in NFC Android phone is the main purpose of
payment system to ease the burden of researcher. The researcher starts work on NFC
enabled smartphone with the secure element beyond payment system but it can be
for access control system [20]. Practical attack scenarios on SE-enabled mobile device
presents the security level of SE [21]. Christoph, B. et al [22] presented access control
technique to unlock the car door by Android based smartphone with secure element
in micro SD card. Anwar, W. et al proposed secure element and mobile trusted module
as alternative SE access control for NFC enabled Android smartphone [23]. Their aim
is to store secured data into an embedded secure element in NFC mobile phone.
Furthermore, in the market, products of HID Global (Hughes Identification Devices) and
ASSA ABLOY (August Stenman Stenman August, Ab Lasfabriken Lukkotehdas Qy), are
using the secure element as the main point for access control. Secure element is
controlled by mobile operator or handset manufacturer. This statement makes the
difficulties for application developer and the end-user, since the developer needs to
negotiate with device manufacturer or service provider and end-user needs to change
or add external hardware such as SIM card or device [24]. To reduce any difficulties
and use NFC enabled smartphone as a real card, Android developer releases Android
OS version 4.4 KitKat (Application Programming Interface or API level 19) which has NFC
host card emulation without secure element to enable smartphone to replace the
NFC smart cards and tags. Saparkhojayev, N et al [25] and an Android application of

Telcred product [26] are using this idea in their work to emulate the smartcard. But in

their Android application, they have no rights to select and save their own keys. The

keys was received from the generation of server.

2.3 Problem statement

After observing the literature review, we can see that the researchers try developing
Android’s application for their own NFC access control system and they used many
techniques (Peer-2-Peer or Read/Write mode) that all are not the official emulated

cards or tags.

—_—
% Generate the keys and transfer to phone—» Using key from computer to access >:l ﬂ:
= <~
y SN)
Computer or Server with key Android phone embedded with NFC NFC Access control

management chipset

Figure 3: Generating keys from computer and transferring to Android phone

Even though Host card emulation (HCE) was released to solve the negotiation
problems (Card emulation with a secure element), and the smartphones are small
computing and mobile devices. However, emulation of NFC cards or tags in
smartphone still needs the assistance from third-party (Computer) to generate keys for
them in Figure 3 and the users have no right to use or change their own passcode
immediately. Most of their works that using Card Emulation implemented over medium
protocol, not the high standard provided.

On the other hand, many types of NFC reader today in the market are used with their
own software to read/write the data to NFC cards and tags. While the Android HCE
application is being developed over ISO/IEC 7816-4, we certainly need to execute and
to debug this application on the real hardware with other trusted third-party software
in order to make clear that it does work. However, those hardware and software are
proprietary products and all of it are limited to their rights. One way to run and test
Android HCE application we have to consider open source NFC library such as Google
Chrome Application NFC Library [27] or NFC Tool Developer [28]. Their purpose are to
contribute constructively by opening the library for any researcher and developers

who are working with NFC hardware on a very low level. Google Chrome App NFC

10

Library (For Chrome OS) plays well with Chrome books connected with ACR122U and
it has some problem with driver for Ubuntu. This Chrome Application supports with
ACR122U and SCL3711 only and Window OS is unsupported for this version. This is the
problem for the most of developers who use Window and Linux OS. NFC tool
developer also released main NFC library to compile for many different OSs such as
GNU/Linux, Mac OS as well as Window OS. But following the released Lib-NFC for
window version, it currently supports only communication over UART not USB. By
seeing these problems, we have some questions as follow:
1. Can we develop application for the version of Android 4.4 as smart cards or
tags for access control system through NFC-enabled phone over ISO/IEC
7816-47

2. How can we create and manage keys management in this application to give
user the rights to manage those keys by themselves (moving the keys
management from computer to the mobile application) to avoid assist from

computer (server) in Figure 4?
3. How is the keys protected is protected from attack without privilege.

4. How can we test and debug this application in Window environment with

NFC reader over USB?
5. Is this application able to talk with NFC Shield V2.0 over Arduino board?

2.4 Research proposal and its application

The target of this research is following the current statement of problem and solving
those problems. So there are some different points from most existing research:
1. Using new NFC card emulation (host card emulation) which a few
researchers are following.
2. Using medium protocols such as I1SO 14443A [29], that is not high standard
protocol for Android’s HCE.

11

3. Giving user the right to manage the keys in Android smartphone that previous
work used computer to manage all access keys and generate then transfer
to the phone.

4. High performance x64 computers for Window users are not able to support
NFC test using open library.

5. No supported ISO/IEC 7816-4 protocol library for academic researches such

Arduino board.

Using key from computer to access >=l :

Computer or Server with key Android phone embedded with NFC NFC Access control

management chipset

- = .

Manage the key and generate the key to access- >: ‘ :

Android phone with key management NFC Access control

application

Figure 4: Proposal of the application development
This work is designed “NFC Unlocker” application in Android smartphone (Android 4.4
with embedded NFC chipset) and a library of Arduino support ISO/IEC 7816-4 protocol
with an AID in order to apply in 4 digits passcode for access control system. This
android application can store all 4 digits passcodes of each access control system.
Users save passcodes in offline key management in application and then use it with
careless of selecting the correct passcode if the correct one is saved (in Figure 5). The

matched passcode is automatically unlock the door.

Door 1
Access Control System
Lz s
= = .

s T 8 up
. |
Access Control System
Door 3

Access Control System

User

12

Door 2
Access Contrel System
R
B 45 6 om
| — F

s 8 9
| I
Access Control System
Door 4

Access Control System

Figure 5: Applying application in the access control system

13

Chapter 3
NFC-ENABLED ANDROID SOFTWARE AND HARDWARE DEVELOPMENT

As what we described in the objectives above, our purpose is to develop an Android
application in Android OS 4.4 (APl 19) with the keys management that are different
from most previous works which did not use official card emulation from Android and
the user cannot manage their own keys with assist from computer and extending work
from open NFC library to test APDU of application, next building a new library support
last standardized protocol, then showing a method to test NFC application on
Windows platform over USB that currently support only UART. The final step of this
development, we test it with NFC shield using Serial communication (Serial Com). From
the start point to the end point in the methodology we have several steps below and
we will describe each step as follow:

1. Android IDE: Choose a development to develop an application having user

interface.

2. NFC protocol support and service selection: Select an NFC protocol and

service for the development.
3. Key management: Manage the password by user and encryption.

4. Application security: Increasing the application security when application is

launched and resumed Credential data storage.
5. Extending work from open NFC library to test application on real hardware.

6. Preparing the test-setup for Android application and ACR122U over USB using

Windows platform

7. Building a library for NFC shield for PN532 chipset over ISO/IEC 7816-4

protocol.

14

3.1 Overview of architecture

The architecture of Android application and computer (Windows platform) is illustrated
in two different mediums. NFC reader is used in application development to test and

debug it process in Figure 6.

a__ ((((.
Windows NFC
- o USB connectivity - @))))

NFC Reader Android smartphone

PC

Figure 6: Android application with NFC reader using Window platform
After successful development of Android application and development of library for

Arduino, experiment of Arduino with Android smartphone is demonstrated in Figure 7.

e ﬁ°) g
Windows [] +
USB connectivity ’ >

- i Android smartphone

Arduino + NFC Shield V2.0

Figure 7: Android application with Aruido + NFC Shield V2.0

3.2 Android Application development
3.2.1 Android IDE

Android IDE (Integrated Development Environment) is a software application such as
Android Studio in Figure 8 that provides comprehensive facilities to computer
programmer for software development. By default, after installing Android IDE,
developer needs to install Android SDK manager (Software Development Kit) that can
download and install any tools, platforms, and other components into IDE. SDK is like
a plugin for Android IDE. Android application are developed in Java programming

language by using Software Development Kit.

f : : - SN
ot Y W
Heetester L app .
1
& wp
Layouts
- e
RetativeLs
Wasgets
layout height
stye
- . bachground
oravity
Wetiien "
Text Fiedts IgnoreGravity

[

Figure 8: Android Studio IDE 1.1.0
3.2.2 User interface (Ul)

User interface (Ul) is one of the main parts of the application. To talk with application,
users need the medium interaction to communicate with each other. It is difficult for
end-user using dialect of shell scripts (Command-line interpreter) in Figure 9 unless

they are advanced programming.

= C:\Python27\python.exe 2 -0
Python 2.7.6 (default, Nou 10 2013, 19:24:24) [MSC u.1500 64 bit (AMD64)] on winfy

“help”, “"copyright”, “credits” or "license” for more information.
>>> import sys
>>> print ‘Number of arguments:', len(sys.argu), ‘arguments.
Number of arguments: 1 arguments.
>>> print ‘Arguments List:', str(sys.argu)
Arguments List: [*"]
>>> print ‘hello world , hello shell’
hello world , hello shell
>>> print ‘Arguments List: str(sys.argu)
File "<stdin>", line 1
print ‘Arguments List: str(sys.argu)

SyntaxError: EOL while scanning string literal
53> o

Figure 9: A sample of Python 2.7 command-line
Ul is everything that users can see and interact with, in particular the use of control,

manage, modify, or input to software. Everything that the application can do is shown

16

on the user interface. In this application, user interface is plays its role as NFC card and

key management for users as a sample in Figure 10.

[=
NFCUnlocker Key Management
The pre I af this application is to emulate ar
it L e e b Public Key i
Multi-passcode i
Passcodes
Passcodel
Passcode2 -
1 2 3
4 Sx |6
START CARD EMULATION 7 , 8 9)
L | O Next

Figure 10: A sample of Ul of an Android application
3.2.3 NFC protocol support and service selection

NFC technology standard offers support of many different protocols and different
types of NFC cards and tags. For Android 4.4, it can support only a few protocols but
these are in common and are supported by many NFC readers in the market today
such as ISO 14443-4 [30], I1SO 7816-4 [31] in Table 1, including Android NFC device
functioning as reader themselves [10]. Android 4.4 can support emulating smart cards
which based-on the NFC Forum (ISO-DEP specification in ISO/IEC 14443-d4) and
Application Protocol Data Units (APDUs) that is defined in ISO/IEC 7816-4 specification).
Emulating ISO-DEP is mandated only on top of the NFC-A technology (defining in
ISO/IEC 14443-3 Type A) and can support optionally for NFC-B technology (defining in
ISO/IEC 14443-4 Type B).

17

Table 1: Protocol stack of Android’s HCE

15014443-4:

Transmission protocol

15014443-3 Type A:

Activation and anti-collision

ISO 14443-2:

RF signal interface

1SO14443-1:
Physical layer

3.2.3.1 HCE Service (Host Card Emulation)

The HCE architecture in Android is based on Android service components. A key
advantage of the service in Android is that it can run in background without any user
interface (Ul). However, this key should be disabled in this application to avoid access

without authorization. Another key for HCE service follows the specification.
3.2.3.2 Service selection

This service is selected for the reader and card. When the user taps the device to an
NFC reader, the Android system needs to aware of which HCE service the NFC reader
really wants to talk to. This is where the ISO7816-4 specifications [31] come in by
following NFC forum technical specifications. It is the way to select application,

centered on an AID (Application IDentification) which consists up to 16 bytes.
3.2.3.3 AID group and categories

In several cases, an HCE service may need to register multiple AIDs to implement an
application, and it needs to be sure that it is the default handler for all these AIDs (as

opposed to some AlDs in the group going to another service). Each AID group can be

18

associated with a category. This allows Android to group HCE service together by
category, and that in turn allows the user to set defaults at the category level instead
of the AID level. Android 4.4 supports two categories: CATEGORY PAYMENT (covering
industry-standard payment application) and CATEGORY OTHER (for all other HCE

applications) [10].
3.2.3.4 Key management

Multi-passcode is the main key in this purpose. It is a key to be verified by the NFC
reader. If it is matched with access control system then the system starts searching in
the transmitted data for the passcode. If it is found, the system returns for allowins.
Otherwise, it is prohibited.

The user can create and modify their password anytime in key management. Each
passcode is contained with two inputs, one is for passcode input to unlock the access

control, and the other can be for description that remarks the password in Figure 11.

Multi-passcode:

Passcode list Passcode 1

Description :

Passcode 2

Description :

Figure 11: Passcode list

19

3.2.4 Access passcode

The keys which is created and modified are access codes. Each access passcode has 4
digit which is the most common key code for access control such as door’s access
control, ATM or SIM’s PIN. To inhibit from eavesdropping, each NFC access control
prefers 4 digits (in Figure 12) access control but we can replace pressing these
passwords on the input-keypad by just tapping the phone on the control system that

makes anyone not able to see it.

[Passcode:] [Ist] 2nd 3rd 4th

Figure 12: 4 digits of a passcode
3.2.4.1 Formation

Formation is an aspect after the passcodes are saved. Those passcodes are formatted
as a text line and encrypted and stored in credential data storage as describe in Section
3.2.4.2 for transmitting to NFC reader:

Key format:

(Headen)-(Multi-passcode)-(Passcodel)-(Passcode2)-(...)-(PaacodeN)-(Footer)
3.2.4.2 Credential data storage

The phones actually have two storages; internal storage which is internal phone’s
storage, and external storage that can insert and remove to/from device such as SD
memory card. The internal phone’s storage which is chosen from these two storages
is safer to prevent the data lost or damage. Android has two others ways to store data
in the device [32], those are SharedPreferences and databases. SharedPreferences
allows the application to store the pair of name and value (primitive data types only).
Android’s database includes a SQLite to create and manage structured data more
complex than name/value of SharedPreferences. Both of these ways have isolation
system based on underlying Linux permissions. From Section 3.2.3.4, the data contains
two inputs, name and value. The name refers to Multi-passcode and Passcode, and

the value denotes the integer value of those name. So Android’s SharedPreferences

20

is good choice to store data in device for easy access. All passcodes are saved as a file
in the device’s filesystem.

AUl stored data in credential storage are secured as the filesystem. Application will set
by default within the application’s data directory in filesystem set. To access them,
filesystem permissions allows only the UID with which the specific application runs. In
addition, advanced programming users are able to hack to the Android system such
using running two applications with the same UID or etc. After all, this application works
securely in isolated mechanisms since it supports only Android 4.4 and upper, which
means that this version come up with Security-enhanced (SE) Android [33] - was
develop by the NAS (National Security Agency) and Red Hat for Linux server to provide
security of kernel-level which is able to be used as a firewall of application-level and
was developed as mandatory access control system (MAC) to improve the security on
Linux server. As a result, MAC sets the enforcement form the kernel to access data. So
even the users with the administrator’s privileges cannot access to the private data in
Android devices. SE Android prevents credential data from unbridled access that makes
the malwares cannot bypass security features unless Android phones are rooted to

modify SE Android policy.
3.2.5 Application security

Moreover, to protect itself in case of theft, this application needs user to use a
password before it is launched. Furthermore, in some cases of pausing, although the
activity is resumed, the user still needs to input the correct password to launch it. The

application password is stored in credential data as same as access passcode.
3.2.6 Cryptography

Talking about cryptography, they will think of encryption which simply refers to
converting a plaintext to ciphertext (scrambled form) for preventing attackers who try
to deduce the message from the encrypted form. In this section, Advanced Encryption
Standard 256 bits algorithm (AES-256), one of 3 AESs (128, 192 and 256 bits) from high
to higher, is applied for the private key with public key for advance security
encrypted/descripted data established by United State National Institute of Standards

21

and Technology (NIST) and recently it was used in “NFC-enabled Access control and

Management system” [25].
3.2.7 Proposed method

The aforementioned Section 3.2.3, 3.2.4 and 3.2.5, the basic of HCE service
implementation is illustrated such as key management and security activity with

encryption.
3.2.7.1 Implementing Host ADPU service

This service is a component that handles all transactions of NFC. It allows an
application to emulate an NFC card using HCE.

First of all, checking the feature of NFC Host Card Emulation by using the
<uses-feature> tag in the application manifest to declare that this application uses the
HCE feature for the reason that every last models of smartphone neither have NFC
embedded chipset nor support HCE.

Secondly, extending the service implementation by using HostApduService class. The
processCommandApdu() method is called when the ADPU is defined in ISO/IEC7816-4
called. This ADPU are used to be the application-level packets to exchange between
the HCE service and Reader in halt-duplex. The Reader typically transmits the first AID
to the smartphone at “SELECT APDU” state. In this state, APDU contains AID will extract
the AID and resolve it to the service, and next forward ADPU to the service. ISO-DEP
protocol in this ISO/IEC will be initiated by the reader. RATS (Request for Answer To
Select) command will be sent and its response, the ATS, will be generated by NFC
controller. But the service implementations are required to meet the requirement of
NFC Forum for this response to be able to count on those parameters setting in

accordance with NFC Forum.
3.2.7.2 Key management and security activity

The process of this activity is to be able to modify multi passcode and the passcodes.
In the key management activity, it has the input the integer number boxes for editing

and pairing with its names. The Multi-passcode and passcode can be modified there.

22

If it is “No”, the activity close with do nothing. But, if yes, everything are saved, this
activity will be closed, and the process in Figure 13 happening in the meanwhile. A
method, the concatenating method, is called. It will sort the multi-passcode and the
passcodes that is gotten from the edit text object. The output will be as sequence like
the Section 3.2.4.1 and then the encrypting method catches this output. The process
of encryption starts converting the concatenated passcodes using the symmetric-key
encryption, referring to the same key for both encryption and decryption, to scrambled
text. Similarly, password for protecting application is stored in the same encrypting way
as the passcodes after saved or exit if it is cancelled. When secondary activity is called,
the preferences method, which is used to get the data from the storage, starts
decrypting the encrypted passcode and then loads to each text boxes, respectively.
Likewise, the password activity of the application does. The whole interaction of key
management and password activity with the storage structure is demonstrated in Figure

14.

Start

Open Key management

Retrieve the data from storage

Any Multi-passcode or

passcodes modified?

Sort Multi-passcode and any passcodes as

sequence

Encrypt the concatenated passcodes

Store encrypted data in credential storage

End

Figure 13: Flowchart of key management process after saved

23

24

Key management

Name Value

Multi-passcode

Passcode 1

Passcode 2

Passcode 3

Passcode ...

Android internal credential storage

Application’s password

Password

Figure 14: Application credential storage structure

3.2.7.3 Application structure

Combination of Section 3.2.7.1 and Section 3.2.7.2, its structure is showed in Figure 15.

Accessed

L Key management J

Cpen/Close
Set/Get

Set/Get !

~ N Set/Get —
'ﬂ.[l\uthentication required 7| Cryptography _’[ntemat database > Main activity

J N —

7 Set/Get
I et/Ged
a' \ Set/Close
Start App Set/Get Open/Close - ™
Host APDU service
Setting

Figure 15: Application structure

Authentication is required to check for authorized users who can use this application.
After the right users accessed, Main activity is main interface to manage other activity

such as Key management, Setting and Card emulation. Set/Get function is used for

read and write the value in internal storage.

25

3.3 Hardware development

3.3.1 Developing a library of NFC shield for Arduino

Currently, The NFC’s library for Arduino to communicate with Android’s HCE (ISO/IEC
7816-4) is not existed and NFC Shield V2.0’s library cannot support ISO/IEC 7816-4. In
this part we, in brief, describe algorithm to develop Type 4 Tag Specification [34] library
for the Shield as reader side to support ISO/IEC 7816-4. For writer side, it is not
excluded in account of having HCE application. This part addresses basically how the
reader talk to the card emulation.

To read to NDEF (NFC Data Exchange Format), the reader needs to follow the below
step according to the specification [34] and ISO/IEC 7816-4 [31] using the Application
Protocol Data Unit message Command-Response pair, Application Protocol Data Unit

(C-APDU) in Table 2 and Response — Application Protocol Data Unit (R-APDU) in Table

3.
Table 2: C-APDU Format
CLA INS P1 P2 Lc Data Le
(optional | (optional) | (optional)
Class Instruction | Parameter | Parameter | Length Data Length
byte byte byte 1 byte 2 command | bytes expected
Table 3: R-APDU Format [34]
Response body (optional) SW1 SW2

Data bytes Status Word 1 | Status Word 2

NDEF Tag Application select procedure in Figure 16(a). This procedure is to select the
NDEF Tag Application by sending the Select command to the passive device (emulated
card) and waiting its response. The Application ID from reader must be as same as the
card. If not, the APDU select procedure fails and the next process certainly aborts,
then the device starts implementing both Mapping Version 1.0 (in Type 4 Tag
specification 1.0) and Mapping Version 2.0 (Type 4 Tag specification 2.0 [34]).

Table 4: NDEF Tag Application select — C-APDU [34]

CLA | INS | P1

p2 Lc Data

Le

00h | Adh | 0dh

00h | O7h

Application ID

00h

26

> Application ID or AID is set by develop for both the reader and card

according to Section 3.2.3.2 and 3.2.7.1. In this application, data of AID is

F0394148148100.

Table 5: NDEF Tag Application select — R-APDU [34]

Data SW1 SW2
Completed File control 90h 00h
information MAY
be returned
NDEF Tag App not | - 6Ah 82h

found

Presuming that the NDEF Tag Application succeeds then the next procedure occurs.

The Figure 16(b) illustrates Capability Container select procedure. The procedure is to

select the CC file usning C-APDU which the parameter of the Select command is set

to select by EF (the Elementary File) in

Table 6. After sending this command, the card responds with the command in Table

7 to the reader to confirm the process as below.

Table 6: CC select command - C-APDU [34]

CLA | INS

P1 P2 Lc

Data

Le

00h | Adh

00h | OCh | 02h

E103h

Not present

Table 7: CC select command - R-APDU [34]

Data SW1 SW2
Completed Not present 90h 00h
CC not found Not present 6Ah 82h

27

The Figure 16(c) represents the CC file read procedure. Afer completed previous
process successfully, this procedure is to read the data from CC file. It read the CC file
(15 bytes of CC file in Table 5 in [34]) using the ReadBinary command in Table 8 with
zero offset in the ReadBinary and response in Table 9. If the CC length is less than
OFh or read access witout condiction is not granted, the file is not valid. The valid range
of Le is from 01h to FFh.
Table 8: ReadBinary command — C-APDU [34]

CLA | INS | P1 P2 Lc Data Le

00h | BOh | Offset | Offset | Not present | Not present | Length Le

Table 9: ReadBinary command - R-APDU [34]

Data SW1 SW2

Completed Content read 90h 00h

The NDEF file select procedure is demonstated in Figure 16(d). Read sends the NDEF
select command to the card with a detail in Table 10 and then waits the response in
Table 11 as below.

Table 10: NDEF select — C-APDU [34]

CLA |INS | P1 | P2 |Lc | Data Le
00h | Adh | O0Oh | OCh | 02h | File ID Not present

Table 11: NDEF select — R-APDU [34]

Data SW1 SW2
Completed - 90h 00h
NDEF not found - 6Ah 82h

Next procedure is to read the NDEF Length (NLEN) in Figure 16(e). The condition of
Type 4 Tag is applied in this state (detailed condition provided in [34]). To read the
NLEN of NDEF file, using the ReadBinary command In Table 12, is starting from offset

zero, and the response is corresponding to Table 13.

Table 12: NLEN read command - C-APDU

CLA | INS | P1 P2 Lc Data Le
00h | BOh | Offset | Offset | Not present | Not present | Length Le
Table 13: NLEN read comman - R-APDU
Data SW1 SwW2
Completed Content read 90h 00h

The last procedure is the NDEF data read in Figure 16(f). NLEN read uses the ReadBinary

command and response for the process. Similarly, the NDEF data read uses this

command to read the NDEF message and it stats at offset 02h of the file.

Table 14: Data read command - C-APDU

CLA

INS

P1

P2

Lc

Data

Le

00h

BOh

Offset

Offset

Not present

Not present

Length Le

Table 15: Data read command - R-APDU

Data

SW1

SW2

Completed

Content read

90h

00h

Reader

(a)

(@)

(d)

(e)

Sel

ect NDEF tag A . .
$ Application __ C-APDU
o e RAPDY
NDEF Tag Application

R

€ad the NLEN — C-APDY
__ R-APDU
Read the R -—BER

R

€ad the Data — C-APDU

Card

Figure 16: APDU procedure

29

30

3.3.2 Extending work from libnfc open library

The purpose of this work is to test ADPU of card and detect each step of the thrown
data from HCE service by extending work [35] from open library to establish a test-
setup for ACR122. The work from libnfc library using APDU exchange is not enough for
reading entire HCE’s data but it can complete only 3 steps in Figure 16 from (a) to (c)
in Section 3.3.1 that is from the “NDEF App Tag select” to the “CC file read”. To extend
the current work, this Section shows the groundwork for the “NDEF select” to the
“Data read” as below and these steps are represents in Figure 17.

- Declaring the library from stdlib.h, string.h and nfc/nfc.h.

- Manually setting AID as same as HCE application’s AID.

- Manually setting the C-APUD command, size of memory, file ID to transmit

as mentioned in Section 3.3.1.
- Using the Card Transmit method to determine that the response.

- Validating the response for each process.

Set AID
|

APDU exchange ... in [34]

l

Defining C-APDU = 00 AQ 00 0C 02 E1 04;

Card Transmit ();

I

Checking R-APCU

Length < 2
or R-APDU != [90h 00h]

Defining C-APDU =00 B0 00 00 02;
Card Transmit ();

Checking R-APCU

Length < 2

or R-APDU != [90h 00h]

Defining C-APDU = 00 BO 00 00 00 OF;

Card Transmit ();

Checking R-APDU
Yes

Length < 2

or R-APDU != [90h 00h]

Figure 17: Flowchart of extended APDU exchange from libnfc

31

32

Chapter 4
EXPERIMENT AND DISCUSSION

In this section, we set up test to deploy the secured data in the Android internal data
storage, and emulate the output data of Android HCE application over Type 4 Tag
Specification 2.0 using ISO/IEC 7816-4 with both ACR122U Reader and NFC Shield V2.0.

4.1 Credential data in internal storage

This section figures the stored data out in Android database. After compiled and
running to the Android phone, the credential data is stored in internal storage, located
in “\data\data\app_name?”, is ideal for safety in unrooted Android phones. In contrast,
rooted Android phone was mentioned in Section 3.2.4.2, it means that this phone is
give users being the super users. In other words, it gives all uses gain full access to
their phone without restriction. In fact, Google and Android smartphone manufacturer
do not recommend the end-users to root their phone for the reason that it is harmful
to the security system. In this case, this application uses the encryption to help stolen
credential data. In Figure 18, it shows the rooted Android 4.4 was accessed to Android
security system and duplicated the private data from this application. Hacker, however,

cannot be deduced the meaning of those passcodes in Figure 19.

33

File Edit Run Window Help

‘Quick Access

” w|[@ooMs] v v EE A

Devices 2 | =

¥ 0|22 0| | d@|lm

Name

a samsung-sm_n910c-41006155 Online
com.example.daraly.nfcunl 918
com.example.daraly.aes25¢ 991

4 @ genymotion-google_nexus_5_ Online
com.google.android.apps.; 2112

android.process.acore 2692
com.facebook katana 2183
COM.SVOX.PicO 2827
com.google.android.apps.r 1874
com.android.musicfx 2642
com.android.mms 1427

com.android.gallery3d 2453
com.google.android.googl 2774
com.android.voicedialer 2711
com.google.android.gms.p 729

com.android.keychain 2725

A ~Annla Andraid Anne e 2600

% Threads| @ Heap| 8 Allocatio... | = Network... |1 File Expl.. 52 |@ Emulator.. |0 System In..| = O

(5 raea nannla Aandenid Anee nbie

IN1E NE 14

22.22

Ba| =+ 7

Name Size Date Time Permissions Info N
& com.android.wallpaper.livepicker 2016-06-09 10:31 drwxr-x--x
1 & com.android.wallpapercropper 2016-06-09 10:31 drwxr-x--x
¢ & com.cyanogenmod.filemanager 2016-06-09 10:31 drwxr-x--x
i = com.example.android.apis 2016-06-14 23:33 drwxr-x--x
I & com.example.android.livecubes 2016-06-09 10:31 drwxr-x--x
= com.example.daraly.aes256test 2016-06-14 23:33 drwxr-x--x
4 (= com.example.daraly.nfcunlocker 2016-06-14 23:34 drwxr-x--x
v & cache 2016-06-13 00:10 drwxrwx--x

& lib 2016-06-14 23:34 Irwxrwxrwx -> /data/a..
4 & shared_prefs 2016-06-14 23:46 drwxrwx--x
myPrefsxml 662 2016-06-14 2346 -rw-rw---- |

i & com.facebook katana 2016-06-14 23:33 drwxr-x--x
» & com.facebook.orca 2016-06-14 23:33 drwxr-x--x
» & com.genymotion.superuser 2016-06-09 10:32 drwxr-x--x
1 = com.google.android.apps.books 2016-06-14 23:33 drwxr-x--x
& com.google.android.apps.genie.ge 2016-06-09 10:52 drwxr-x--x
= com.google.android.apps.magazir 2016-06-09 10:54 drwxr-x--x

I & com.google.android.apps.maps 2016-06-14 23:33 drwxr-x--x ks

Aranoe v

& LogCat| & Console 2

p#B~i-=0

OpenGL Trace View

| h122Mof57aM [T

Figure 18: Android device monitor in rooted smartphone

File Edit Search View Encoding Language Settings Macro Run Plugins Window ?

cHEERLEJRDaeakaxBES1EEHCEN NGB E

E myPrefs.xml 1x] l

3 <?xml version='1.0' encoding='ykf-8' standalone='yes'

E|<map>|

W oo oUW N

[y
(=]

=
=

-</map>

-
[\S]

<string name="encryptedPasscodes">H3z3btYfdvAYORNh4s8AfSGCADBXgQTM4uGG8q/3HLjk=</string>
<string name="passcode2">00AgFqz82Y5/RnniqkGZEw==</string>
<string name="passcode3">WWDhIDFEfmYFFWJHQUASR7g==</string>
<string name="passcode4">H2Lu/4v02R50kLr5iy+zGw==</string>
<string name="passcode5">00AgFqz82Y5/RnniqkGZEw==</string>
<string name="passcodel">gKDjfBf+s+2iMu+nPlcnGA==</string>
<string name="multiKey">CINx5cST02wVL/PbaL¥b7g==</string>
<string name="PasswordApp" >MWWOOOZSNEF3Bs33b6Jf9A==</string>

eXtensible Markup Language file

length : 604

lines: 12

Ln:2 Col:6 Sel:0|0

UTF-8w/0 BOM INS .

Figure 19: Access the stored encrypted data in rooted Android smartphone

34

4.2 Test-setup with ACR122U Reader

In this test, we use hardware as below:

Devices Specifications

Laptop - Model: Sony VAIO F2

- Processor: Intel i7 2720QM CPU @ 2.20GHz

- OS: Window 8.1

- System type: 64-bit Operating system, x64-based processor
- USB: Version 3.0

Smartphone - Samsung Galaxy Note 4 (SM-910C)
- Operating system: Android 5.0.1
- NFC chipset embedded

NFC Device - ACR122U

- Firmware 1.6

As described in Section 2.3, we will do experiment in 64-bit Window platform to test
HCE application. This experiment follows some instructions of Lib-NFC for window
which currently only support over UART [19] to communicate with NFC reader over
USB by installing, configuring and using libnfc on Window. What we have to do is to

install below software which are used in this experiment:

Software used Version
1. TDM-GCC MinGW Compiler [36] | 5.1.0 (x64)
2. libusb-win32-bin [37] 1.2.6.0
3. PCRE [38] 7.0
4. CMake [39] 3.5.2 (x86)
5. Doxygen [40] 1.8.11
6. libnfc [41] 1.7.1

All software used, add them in one directory: example “C:\Tools\”
Step 1: Installing TDM-GCC
- Create: Create a new TDM-GCC installation.
- Setting it as MinGW-w64/TDM64 Experimental (32-bit and 64-bit).

- Select the type of install: Recommended, All packages.

Step 2: Fetching and unzip to the same directory.

Step 3: Installing PCRE with full installation.

Step 4: Installing CMake and add CMake to the system PATH.
Step 5: Installing Doxygen.

Step 6: Unpacking libnfc to Tools directory.

Step 7: Configuring libnfc.

35

- To avoiding a bug in Window, we have to modify a file “CMakelLists.text”

by writing one line in libnfc.

From
MACRO (GET_CURRENT_YEAR RESULT)
EXECUTE_PROCESS(COMMBND "emd™ " /C date /T" OUTPUT_VARIABLE)
STRING (REGEX REPLACE ".* (..)/(..)/(....). %" m 3" S{S{RESULT}})

ENDMACRO (GET_ CURRENT YERR)
GET_ CURRENT YEAR (CURRENT YERR)

To
MACRO (GET CURRENT YEAR RESULT)
EXECUTE_PROCESS (COMMAND "cmd" " /C date /T" OUTPUT VARIABLE)
STRING (REGEX REPLACE "'n" "" 5{S{RESULT}})
STRING (REGEX REPLACE ".*(..)/(..)/(....). %" "\\3" 5{S{RESULT}})

ENDMACRO (GET CURRENT YEERR)
GET CURRENT YEAR (CURRENT YEAR)

- Modifying a file in “libnfc\libnfc\nfc-internal.c” by changing value from

false to true of “allow intrusive scan”.

// Set default context values
res->allow autoscan = true;
res-»>allow intrusive scan = true;
Fl#ifdef DEBUG

res->log level = 3;
#else

Step 8: Rename the a file “README.md” to “README”.

Step 9: Modifying a library file in “libnfc\libnfc\drivers\acr122 ubs.c” by removing a

line of “usb_reset(data.pudh) to solve the problem of reset while it is processing.

36

continue;
// Reset device
usb reset (data.pudh) ;
// Retrieve end points
acrl22 usb get end points(dev, &data);
// Claim interface

Step 10: Adding some PATH into the “System Variables” in “Computer Properties>

Advances system settings > Advanced Tab> Environment Variables”

PATH: “C:\Tools\MinGW6M\bin; C:\Tools\doxygen\bin; C:\tools\MinGW64\x86 64-w64-
mingw32\lib32; C:\tools\MinGW64\x86 64-w64-mingw32\include; C:\tools\CMake
2.8\bin; C:\tools\GnuWin32\bin; C:/Tools/libnfc;”.

User variables for Daraly

Variable Value

ANDROID_HOME C:\Users\Daraly\AppData\Local\Android...
ANDROID_PLATF... C:\Users\Daraly\AppData\Local\Android...
ANDROID_TOOLS C:\Users\Daraly\AppData\Local\Android...
MOZ_PLUGIN_PA...

- . lms me asimem e s

New.. || Edt.

System variables

Variable Value
NUMBER_OF_PR... 8
0S Windows_NT

Path C:\ProgramData\Oracle\Java\javapath;...

PATHEXT .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;....

v

| Edt. || Delete |

Figure 20: Set system variables
Step 11: Open the cmake-gui.
- Selecting the source directory to libnfc.
- Creating a build directory and set it as where to build the binaries in Figure

21.

37

File Tools Options Help

Where is the source code: | C:/Tools/libnfc | |Browse Source...
Where to build the binaries: | C:/Tools/libnfc-build v [Browse Build...
Search: | | [Grouped [] Advanced |k AddEntry | 9 Remove Entry

Name Value

Figure 21: Setting the build directory for CMake
Clicking on the “Configure” and specify the generator for the project with

“MinGW Makefile” using default native compilers.

7 CMake 352 - C/Tools/libnfc-build =~ * — 0O BESN

File Tools Options Help

‘Where is the source code: C:/Tools/libnfc Browse Source...

‘Where to build the binaries: C:/Tools/libnfc-build v Browse Build...

Search: Grou, Advanced 5F Add Ent # Remove Enty
ry Y

Name Value

@ Error in configuration process, project files may be invalid

Press Configure to update and display new values in red, then press Generate to generate selected build files.

Generate Current Generator: MinGW Makefiles _

A
CMake Error at cmake/modules/FindLIBUSB.cmake:55 (MESSAGE):

Could not find LIBUSB

Call Stack (most recent call first):
cmake/modules/LibnfcDrivers.cmake:22 (FIND_PACKAGE)
CMakeLists.txt:125 (INCLUDE)

Configuring incomplete, errors occurred!
See also "C:/Tools/libnfc-build/CMakeFiles/CMakeCutput.log".

Figure 22: Editing the entry of cmake
Some errors exactly occurs. To fix these, editing the entry again by browsing

path for “LIBUSB_INCLUDE DIRS” to directory of “\libusb-win32-bin-

38

1.2.6.0\include” and path for “LIBUSB_LIBRARIES” to a file “\libusb-win32-
1.2.6.0\lib\gcc\libusb.a”.

- Adding new path by naming “LIBNFC_ROOT DIR” with value “\libnfc”

- Make sure that LIBNFC_DRIVER _ACR122 USB is ticked as Figure 23.

File Tools Options Help

Where is the source code: {C:/T ools/libnfc |
Where to build the binaries: ‘ C:/Tools/libnfc-build v |

Search: | [] Grouped [] Advanced |¥ Add Entry I |x Remove Entry]

LIBNFC_DRIVER_ACR122_USB

=
=]
||
=
=

Press Configure to update and display new values in red, then press Generate to generate selected build files.

Configure | ‘ Generate Current Generator: MinGW Makefiles

CMake Error at cmake/modules/FindLIBUSB.cmake:55 (MESSAGE):
Could not find LIBUSB

Call Stack (most recent call first):
cmake/modules/LibnfcDrivers.cmake:22 (FIND PACKAGE)
CMakeLists.txt:125 (INCLUDE)

Configuring incomplete, errors occurred!
See also "C:/Tools/libnfc-build/CMakeFiles/CMakeOutput.log”.

Figure 23: Fixing errors in cmake-gui
- Clicking on “Configure” button again. It has an error with LATEX but it is
not matter. Ignore it and click on “Generate”.
Step 12: Copying a file “apdu_extended read.c” (mentioned in Section 3.3.2

to “Mibnfc\examples\“ in order to compile with others C files. Then modify

39

CMakelList.txt in the same directory of example to point this file to execute as

Figure 24.

e

- - — | —— — 1 . a |

[=l cMakelLists bt B

S [T 5 B R 76 B o

[TN B s

SET (EXAMPLES-SOURCES
apdu_extended_readed
nfc-anticol
nfc-dep-initiator
nfc-dep-target
nfc-emulate-forum-tag?2
nfc-emulate-tag
nfc-emulate-uid
nfc-mfsetuid
nfc-poll
nfc-relay

L}

Figure 24: Adding adpu_extended reader to CMakeLists.txt

Starting to build and execute files with mingw32-make command at libnfc
directory in cmd.exe and type “mingw32-make”

After builded all files without any errors, now copy a file from “\libnfc-
build\libnfc\libnfc.dll” to “\Windows\SysWOW64\”

Creating an inf driver for ACR122 by execute a file from the “\libusb-win32-
bin-1.2.6.0\bin\inf-wizard.exe”. Plug-in the ACR122 into the computer via
USB port in order to inf-wizard may detect the device. If the NFC reader
does not connect to computer so it does not have in the list as Figure 26.

After completely made, this driver will be an unsigned driver.

o mingw32-make
C:\Tools\libnfc-build>mingw32-make

1%]
2%]
3%]
4]
6%]
7%]
8%]
9%]
11%]
12%]
13%]
14%]
16%]
17%]

18%]
19%]

20%]
22%]
23%]

Figure 25: Building the files in cmake

mr libusb-win32 Inf-Wizar8 - O n

Device Selection

Select your device from the list of detected devices below. If your device isn't
listed then either connect it or click "Next" and enter your device description

manually.
Vendor ID Product... Description MI
0x1058 0x0820 My Passport 0820
0x062A 0x4101 2.4G Keyboard Mouse (Interface 1) 0x01
0x0000 0x0000 USB Root Hub (xHCI)
0x062A 0x4101 2.4G Keyboard Mouse (Interface 0) 0x00
0x072F 0x2200 ACR122U PICC Interface 1
0x05CA 0x18C0 USB2.0 Camera (Interface 0) 0x00

< Back Next > Cancel

Figure 26: Creating the inf driver file by inf-wizard
- 64-bit Windows cannot be installed the unsigned drivers. This is a matter
of above inf ACR122 driver. To fix it, users need to disable the driver

signature verification on the Windows first. This trick work for Window 8

41

and 10. Hold down the “SHIFT” key which clicking the Restart button. After
rebooted, the Boot Manager shows up. Go to “Troubleshoot> Advanced
options> Startup Settings”. Then click on Restart button to return to edit
the “Startup Settings” and then disable the driver signature enforcement.
- After disable the driver signature, now install inf file of ACR122 driver by
right click on ACR122U PICC interface.inf and then getting installed and

agreed with unsigned driver warning installation message.

Step 13: Updating driver in device manager (DM). By default, Window installs a
driver for ACR122 and it names Microsoft Usbccid Smartcard Reader (WUDF) as
Figure 27. If users have install a driver from the ACS website (Advanced Card
Systems), please remove and roll back driver from window. Update then WUDF
to ACR122U interface as Figure 28 and the driver becomes libusb-win32. as
Figure 29.

L¥ Network adapters
= Print queues
D Processors
. [T Sensors
«£» Smart card readers
|.$; Microsoft Usbccid Smartcard Reader (WUDF)\
1) Software devices
w Sound, video and game controllers
£; Storage controllers
& System devices

Figure 27: Microsoft Usbccid Smartcard Reader driver in DM

a2

Select the device driver you want to install for this hardware.

Select the manufacturer and model of your hardware device and then click Next. If you
J have a disk that contains the driver you want to install, click Have Disk.

Show compatible hardware

Model
| Microsoft Usbccid Smartcard Reader (WUDF)

ACR122U PICC Interface

& This driver is not digitally signed! Have Disk...

Tell me why driver signing is important

Next || Cancel

Figure 28: Updating from WUDF to ACR122U PICC Interface

> & Human Interface Devices
> Cg |IDE ATA/ATAPI controllers
b a IEEE 1394 host controllers
> ﬁ Imaging devices
[> == Keyboards
4 | i libusb-win32 devicesl
ACR122U PICC Interface
I> . Mice and other pointing devices
» B/ Monitors
3 ? Network adapters

—1 -
|> f= Print queues
L Draraccnrc

Figure 29: ACR122U PICC Interface from libusb-win32

® Finally, the test-setup for ACR122 is completed. Next, we may run the file

“apcu_extended reader” from \”libnfc-build\examples\” in command prompt.

The result is shown in Figure 30. From this illustration, it was observed that the
extended work from libnfc open library may process following the specification in [34]
using ISO/IEC 7816-4 [31]. Firstly, apdu_extended reader checks the reader over USB

port. If NFC reader is compatible with it, a message shows the name of device and it

43

jumps to detect a cards. At this state, reader is waiting for a card (Type 4 Tag). Secondly,

tapping the Galaxy Note 4 phone, while running the NFC application Figure 31, then

reader detects and shows the next result (in Section 3.3.1):

a.

First of all, NDEF Tag Application select procedure starts and sends C-APDU [00,
Ad 04 00 07, FO, 39, 41, 48, 14, 81, 00, 00], then the card respond [90, 00]. With
this response, it means this procedure is successful then go to next step.
Secondly, the CC file select process by sending a C-APDU [00, A4, 00, 0C, 02, E1,
03] and its response is [90, 00].

Next step, CC file read procedure starts by transmit C-APDU [00, BO, 00, 00, OF];
and the card replies that [00, OF, 20, 00, 3B, 00, 34, 04, 06, E1, 04, 00, 32, 00, 00,
90, 00].

Thereafter, [00, A4, 00, 0C, 02, E1, 04] is sent and [90, 00] is back.

NDEF Length state sends C-APDU and gets a data [00, 33, 90, 00].

Lastly, after NDEF data using ReadBinary C-APDU [00, BO, 00, 00, OF}, the gotten
data is [00, 1F, D9, 01, 18, 02, 54, E1, 04, 42, 4D, 30, 6D, 6E, 79, 4D, 48, 66, 77, 66,
2B, 48, 4F, 6E, 45, 61, 32, 6D, 42, 77, 77, 3D, 3D, 90, 00].

=N C\Windows\system32\cmd.exe

C:\Tools\libnfc-build\examples>apdu_extended_reader.exe

Running checks. ..

apdu_extended_reader.exe uses libnfc 1.7.1

NFC reader: ACS / ACR122U PICC Interface opened

The proposed app is to be a reader side of NFC Forum type 4
Waiting for a card...

Card detected! Procedure below. ..

1. Select the NDEF Tag Application...

=> 00 a4 04 00 O7 fO 39 41 48 14 81 00 0O
<= 90 00

APDU selected!

. Select the Capability Container (CC) file...
00 a4 00 Oc 02 el 03
90 00
selected!?

. Read the CC file...
00 b0 00 00 OF
00 OFf 20 00 3b 00 34 04 06 o1 04 00 32 00 00 90 0O

Capability Container (CC) file (15 bytes as default):
00 OFf 20 00 3b 00 34 04 06 o1 04 0O 32 00 00

4. Select the NDEF file...

=> 00 a4 00 Oc 02 el 04

<= 90 00

the NDEF file selected!?

5. Read the NLEN (NDEF Length) field of the NDEF file...
=> 00 b0 00 0O 02

<= 00 1f 90 00

Read the NLEN completed!?

6. Read the NDEF data...

=> 00 b0 00 0O OF

<= 00 1f d9 01 18 02 5S4 el 04 42 4d 30 6d Ye 79 4d 48 66 77 66 2b 48 4f Be 45 61
32 6d 42 77 77 3d 3d 90 00

Getting the NDEF data completed??!

Procedure ended. ..

C:\Tools\libnfc-build\examples>_

Figure 30: Result of Android app with apdu_extended reader via usb on 64-bit windows
The first 2 response’s characters of NLEN read and NDEF data read is [00, 1F] refers to
the size of the data (size is 31 in decimal). After the File ID [E1, 04] in char [7] and char
[8] and before the end of value of [90, 00] is the main encrypted passcodes in the
Android application. As a result, this application is developed successfully how to

move the key management to Android smartphone without a server generating a

45

passcode or key. In addition, the test-setup on Windows platform over USB is a way

for other researchers using Windows to develop NFC on

Figure 31: Testing ACR122U with Android applciation using USB port

4.3 Test-setup with NFC Shield using Arduino

Before this experiment occurs, make sure that Android application side works
successfully while running HostApduSevice by using ISO/IEC 7816-4. According to
Section 4.2 the Android NFC app is effective. Then this Section proves the test result
of the NFC application with NFC shield connecting to Arduino Uno (in Figure 32) using
developed library in Section 3.3.1.

46

Figure 32: Arduino Uno with NFC Shield V2.0

Connect the Arduino board to computer via USB and then go to Arduino application
and upload the developed library from Section 3.3.1. Through the Serial Com. From
tool of Arduino program, it show the chipset type of NFC shield, the firmware of the
shield and waiting for a card. Tap the Android smartphone running NFC application to
the antenna of the shield then getting the result on computer. This library is built to
get the data and return the main data as output in Figure 33. After got the response,
the extract data from the NDEF data is [42, 4D, 30, 6D, 4E, 79, 4D, 48, 66, 77, 66, 2B,
48, 4F, 6k, 45, 61, 32, 6D, 42, 77, 3D, 3D] in hexadecimal. This data is the encrypted
passcodes from the Android HCE application to NFC shield’s library using Type 4 Tag
Specification over ISO/IEC 7816-4. Thus, the built library is effective to work for Arduino
board with NFC shield and based on high standardized protocol.

ar

Found chip PN532
Firmware ver. 1.6

Waiting for a card

Found something!

responselength: 2

S0 00

responselength: 24

42 4D 30 6D 4E 79 4D 48 66 77 66 2B 48 4F 6E 45 61 32 6D 42 77 77 3D 3D BMOmNyMHfwf+HOnEa2mBww==
Broken connection?

Waiting for a card

Didn't find anything!

Waiting for a card

[v] Autoscroll No line ending V| 115200 baud V|

Figure 33: Result of Android application talking with NFC shield through Serial com.

Figure 34: Android application with NFC shield using developed library

48

4.4 Comparison of process time and analysis

Sending and receiving data over the built library are not enough to perform its effect,
but the duration of processing time of APDU is also important. This duration is for the
developers to compare their method with other existing methods and to know that
which one is optimized and better. Starting from an emulated card detecting, the time
is counted to the all procedure of the exchanging data finished and 100 times of test
have done. The Figure 35 is demonstrated the duration of each time testing built ISO
7816-4 library for Arduino. The maximum duration is 130ms and its minimum is 78ms.

From this result, the average spending time is only 104.35ms.

Process time
140
120
100
80

60

Duration (ms)

40

20

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Times

Figure 35: The respond time of APDU exchange over ISO/IEC 7816-4
From [29] using HCE over ISO 14443A for Arduino Uno, they attempted 15 testing times
with their implementation of HCE application. The gotten average result is 261.33ms

in the test.

49

Average time of process

300
261.33

250
200
150
104.35
100

50

B ISO/IECT816-4 [ISO/IEC14443A

Figure 36: Average time of APDU between ISO7816-4 and 1SO 14443A
Analysis of these two result from built ISO 7816-4 library and 1SO14443A for Arduino
are the same hardware used but Android phones are different. The process time of
the built library spends less than current ISO 14443A library. It has two factors, external
factors and internal factors. For external factors, it has position, distance, or obstacles.
And the other factors, it has CPU’s clock, firmware, delay of application, or interference
signal. It also means that this built library is optimized and faster than current existing
ISO 14443A library of Arduino. It is very effective and significant for developer using last
ISO standard in their work. In these 100 times testing, no failure of the APDU detection
occurred because the AID of smartcard is defined as constant value and it is cannot

be changed after the application executed.

50

Chapter 5
CONCLUSION

The main objectives of this research has 2 parts. First part is to develop Android NFC
emulation card application without a server and storing the all the passcodes in
credential internal storage based on security-enhanced Android and additional
encryption. Second part is to set the scene for other researchers using these test-setup
for Windows platform over USB, extended work for APDU from open NFC library, and
develop a library for NFC shield over ISO/IEC 7816-4 to test and debug in real NFC
experiment. The implication of the developed library is also to add more facilities for
users considering Type 4 Tag specification library over ISO/IEC 7816-4 for Arduino as
the NFC reader for any purpose.

Hence, the signification of Host-based Card Emulation is deployed. For example, in the
experiment in Chapter 4, the Android application have developed using Android HCE
to emulate an NFC card and store the private data in their own way for easy access,
and they have modified the credential data many times without matters. Unlike the
most previous work using a secure element, the developers had to negotiate the
manufacturer first before modifying and accessing the secure data. Also the reader side,
reader had to get the privilege to gain the data from the secure element.

To enhance this work better with current completed work, in the future work, it is
recommended that application security using password should be replaced by cloud
logging seeing as hackers could decrypt the scrambled data to original version. In case
of stolen phone, users are capable to erase the private data before the phone is
attacked into the security-enhanced mechanism. Moreover, NFC library would be open
source to all researchers and developers assess and improve to get stable version.
Since the current library is support only reader mode and using some specifications of

the ISO/IECT816-4 protocol, emulating the card and P2P mode should be considered.

REFERENCES

(12 Jan). Smartphone OS Market Share, Q3 2014. Available:

http://www.idc.com/prodserv/smartphone-os-market-share.jsp

(15 Jan). Android history. Available: http://www.android.con/

(15 Jan). NFC-Forum. Available: http://nfc-forum.org/
Ed. (19 Jan). NFC Implementation. Available:
http://www.nfcnearfieldcommunication.org/

K. OK, V. COSKUN, M. N. AYDIN, and B. OZDENIZCI, "Current Benefits and Future

Directions of NFC Services," presented at the International Conference on
Education and Management Technology (ICEMT), 2010.
S. Burkard. (2012, 15 Jan). Near Field Communication in Smartphones. Available:

www.snet.tu-berlin.de/fileadmin/fg220/courses/WS1112/snet-project/nfc-in-

smartphones_burkard.pdf

A. Dudwadkar, A. Gore, T. Nachnani, and H. Sabhnani, "Near Field
Communication in Mobile Phones," International Journal of Engineering and
Advanced Technology (JEAT), vol. 3, pp. 309-313, 2013.

(10 Nov). Near Field Communication. Available:
https://developer.android.com/guide/topics/connectivity/nfc/index.html

L. Zhang. (2013, 01 Feb). NFC Application Development on Android* with Case
Studies. Available: https://software.intel.com/en-us/android/articles/nfc-
application-development-on-android

(10 Nov). Host-based Card Emulation. Available:
https://developer.android.com/guide/topics/connectivity/nfc/hce.html

C. Saminger, S. GrUnberger, and J. Langer, "An NFC ticketing system with a new
approach of an inverse reader mode," presented at the International Workshop
on Near Field Communication (NFC), 2013.

S. M. Nasution, E. M. Husni, and A. I. Wuryandari, "Prototype of train ticketing
application using near field communication (NFC) technology on android

device," presented at the System Engineering and Technology (ICSET), 2012.

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.android.com/
http://nfc-forum.org/
http://www.nfcnearfieldcommunication.org/
http://www.snet.tu-berlin.de/fileadmin/fg220/courses/WS1112/snet-project/nfc-in-smartphones_burkard.pdf
http://www.snet.tu-berlin.de/fileadmin/fg220/courses/WS1112/snet-project/nfc-in-smartphones_burkard.pdf

[13]

52

T.Y. Teck, P. Sebastian, and V. Asirvadam, "Card Emulator for Door Access Using
Android Platform," presented at the Control System, Computing and
Engineering (ICCSCE), 2013.

P. Urien, "A Secure Cloud of Electronic Keys for NFC Locks Securely Controlled
by NFC Smartphones," presented at the Consumer Communications and
Networking Conference (CCNC), 2014.

C.-H. Hung, Y.-W. Bai, and J.-H. Ren, "Design and Implementation of a Door Lock
Control Based on a Near Field Communication of a Smartphone," in
International Conference on Consumer Electronics - Taiwan (ICCE-TW), Taipei,
2015, pp. 45 - 46.

C.-H. Hung, Y.-W. Bai, and J.-H. Ren, "Design and implementation of a single
button operation for a door lock control system based on a near field
communication of a smartphone," in 5th International Conference on
Consumer Electronics - Berlin (ICCE-Berlin), Berlin, 2015, pp. 260 - 261.

J. Jacob, K. Jha, P. Kotak, and S. Puthran, "Mobile attendance using Near Field
Communication and One-Time Password," in International Conference on
Green Computing and Internet of Things (ICGCloT), 2015, pp. 1298 - 1303.

M. O. Derawi, S. McCallum, H. Witte, and P. Bours, "Biometric access control
using Near Field Communication and smart phones," presented at the
International Conference on Biometrics Compendium (ICB), 2012.

P.-L. Teh, H.-C. Ling, and S.-N. Cheong, "NFC Smartphone Based Access Control
System Using Information Hiding," presented at the IEEE Conference on Open
Systems (ICOS), 2013.

HIDGlobal, "NFC and Smartphone Technology Drive New Opportunities for
Smart Access Control," HID Global2013.

M. Roland, J. Langer, and J. Scharinger, "Practical attack scenarios on secure
element-enabled mobile devices," presented at the International Workshop on
Near Field Commmunication (NFC), 2012.

Christoph Busold, Ahmad-Reza Sadeghi, C. Wachsmann, A. Dmitrienko, H.

Seudié, M. Sobhani, et al., "Smart Keys for Cyber-Cars: Secure Smartphone-

53

based NFC-enabled Car Immobilizer," in Proceeding of CODASPY '13, 2013, pp.
233-242.

W. Anwar, D. Lindskog, P. Zavarsky, and R. Ruhl, "An Alternate Secure Element
Access Control for NFC Enabled Android Smartphones," International Journal
for Information Security Research (UISR), vol. 3, pp. 391-399, March/June 2013
2013.

Consult-Hypersion. (15 Feb). Host card emulation - why it matters. Available:

https://www.chyp.com/assets/uploads/Documents/2013/11/hce.pdf

N. Saparkhojayev, A. Nurtayev, A. Dauitbayeva, and G. Baimenshina, "NFC-
enabled Access Control and Management System," presented at the Web and
Open Access to Learning (ICWOAL), 2014.

(2014, 01 Mar). Telcred - affordable and secure access control with NFC.

Available: http://www.telcred.com/index.php
Google. (09 September 2015). Chrome App NFC Library. Available:
https://github.com/GoogleChrome/chrome-nfc
(25 Feb 2016). NFC Library Development. Available: http://nfc-

tools.org/index.php?title=Libnfc:Windows

R. S. Basyari, S. M. Nasution, and B. Dirgantara, "Implementation of Host Card
Emulation Mode Over Android Smartphone as Alternative ISO 14443A for
Arduino NFC Shield," in Internaation Conference on Control, Electronics,
Renewable Energy and Communications (ICCEREC), 2015.

ISO/IEC, "International Standard ISO/IEC14443-4" in Part 4: Transmission
protocol vol. 2015, ed, 2001.

ISO/IEC, "International Standard ISO/IEC7418-4," in Part 4: Organization, security
and commands for interchange vol. 2015, ed, 2005.

J. Six, Application Security for the Android Platform: O'Reilly Media, 2011.

(25 April 2016). Security Enhancements in Android 4.4. Available:
https://source.android.com/security/enhancements/enhancementsdd.html
"Type 4 Tag Operation Specification 2.0," vol. 2015, ed: NFC Forum, 2011.

(15 Octorber 2015). Libnfc:APDU. Available: http://nfc-

tools.org/index.php?title=Libnfc:APDU_example

http://www.chyp.com/assets/uploads/Documents/2013/11/hce.pdf
http://www.telcred.com/index.php
http://nfc-tools.org/index.php?title=Libnfc:Windows
http://nfc-tools.org/index.php?title=Libnfc:Windows
http://nfc-tools.org/index.php?title=Libnfc:APDU_example
http://nfc-tools.org/index.php?title=Libnfc:APDU_example

54

TDM-GCC bundle. Available: http://tdm-gcc.tdragon.net/

libusb. Available: https://sourceforge.net/projects/libusb-win32/
Perl Compatible Regular Expressions (PCRE). Available: http://www.pcre.org/

CMake. Available: https://cmake.org/

Doxygen. Available: www.doxygen.org/

libnfc. Available: https://github.com/nfc-tools/libnfc

http://tdm-gcc.tdragon.net/
http://www.pcre.org/
http://www.doxygen.org/

APPENDIX

56

Appendix

List of Publications

Chan Daraly Chin and Watit Benjapolakul, “NFC-enabled smartphone application
development to hide 4-digits passcode for access control system,” in International
Electrical Engineering Congress 2016 (IEECON 2016), Chiang Mai, Thailand, and
published in Journal of Procedia Computer Science, vol. 86(2016), pp. 429-432.

57

VITA

Chan Daraly Chin was born in 1990 in Phnom Penh, Cambodia. He got his
bachelor's degree in Electrical and Electronic Engineering from Institute of
Technology of Cambodia in 2013. Currently he is a master's degree student at
Electrical Engineering Department, Chulalongkorn University. His research interests
include: Mobile Application Development, = Network Protocol, and

Telecommunication Networking.

	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Chapter 1 INTRODUCTION
	1.1 Introduction
	1.2 Objectives
	1.3 Scope of thesis
	1.4 Expected outcomes and contributions
	1.5 Organization of dissertation

	Chapter 2 BACKGROUND AND LITERATURE REVIEW
	2.1 Background
	2.1.1 Android operating system
	2.1.2 Near-Field Communication (NFC)
	2.1.3 NFC-enabled phone
	2.1.3.1 Read/Write mode
	2.1.3.2 Peer-to-Peer mode
	2.1.3.3 Card emulation mode

	2.2 Literature review
	2.3 Problem statement
	2.4 Research proposal and its application

	Chapter 3 NFC-ENABLED ANDROID SOFTWARE AND HARDWARE DEVELOPMENT
	3.1 Overview of architecture
	3.2 Android Application development
	3.2.1 Android IDE
	3.2.2 User interface (UI)
	3.2.3 NFC protocol support and service selection
	3.2.3.1 HCE Service (Host Card Emulation)
	3.2.3.2 Service selection
	3.2.3.3 AID group and categories
	3.2.3.4 Key management

	3.2.4 Access passcode
	3.2.4.1 Formation
	3.2.4.2 Credential data storage

	3.2.5 Application security
	3.2.6 Cryptography
	3.2.7 Proposed method
	3.2.7.1 Implementing Host ADPU service
	3.2.7.2 Key management and security activity
	3.2.7.3 Application structure

	3.3 Hardware development
	3.3.1 Developing a library of NFC shield for Arduino
	3.3.2 Extending work from libnfc open library

	Chapter 4 EXPERIMENT AND DISCUSSION
	4.1 Credential data in internal storage
	4.2 Test-setup with ACR122U Reader
	4.3 Test-setup with NFC Shield using Arduino
	4.4 Comparison of process time and analysis

	Chapter 5 CONCLUSION
	REFERENCES
	APPENDIX
	VITA

