

Spark Steaming Framework for Large-Scale Multi-Stream Data

Analytics

Mr. Tanwa Sirisakdiwan

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Computer Science

Department of Computer Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2018

Copyright of Chulalongkorn University

เฟรมเวอร์คสปาร์คสตรีมม่ิงส าหรับการวิเคราะห์มลัติสตรีมขนาดใหญ่

นายธนัวา ศิริศกัดิวรรณ

วทิยานิพนธ์น้ีเป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวทิยาศาสตรมหาบณัฑิต
สาขาวชิาวทิยาศาสตร์คอมพิวเตอร์ ภาควชิาวศิวกรรมคอมพิวเตอร์

คณะวศิวกรรมศาสตร์ จุฬาลงกรณ์มหาวทิยาลยั
ปีการศึกษา 2561

ลิขสิทธ์ิของจุฬาลงกรณ์มหาวทิยาลยั

Thesis Title Spark Steaming Framework for Large-

Scale Multi-Stream Data Analytics

By Mr. Tanwa Sirisakdiwan

Field of Study Computer Science

Thesis Advisor Assistant Professor NATAWUT

NUPAIROJ, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn

University in Partial Fulfillment of the Requirement for the

Master of Science

Dean of the Faculty of

Engineering

 (Professor SUPOT

TEACHAVORASINSKUN, Ph.D.)

THESIS COMMITTEE

Chairman

 (Assistant Professor KRERK

PIROMSOPA, Ph.D.)

Thesis Advisor

 (Assistant Professor NATAWUT

NUPAIROJ, Ph.D.)

Examiner

 (Duangdao Wichadakul, Ph.D.)

External Examiner

 (Kanchana Silawarawet, Ph.D.)

iii

ABSTRACT (THAI) ธนัวา ศิริศกัดิวรรณ : เฟรมเวอร์คสปาร์คสตรีมม่ิงส าหรับการวเิคราะห์มลัติสตรีม

ขนาดใหญ่. (Spark Steaming Framework for Large-Scale

Multi-Stream Data Analytics) อ.ท่ีปรึกษาหลกั : ผศ. ดร.ณฐัวุฒิ หนู
ไพโรจน์

โปรแกรมการประมวลผลขอ้มูลแบบสตรีมในเวลาจริงดว้ยขอ้มูลท่ีไม่เหมือนกนัไดรั้บ
ความสนใจเป็นอย่างมาก โดยเฉพาะในอินเทอร์เน็ตของส่ิงต่างๆซ่ึงผลิตข้อมูลจากเซนเซอร์
จ านวนมากในรูปแบบของขอ้มูลสตรีมม่ิง ทั้งน้ียงัคงมีปัญหามากมายโดยเฉพาะอย่างยิ่งปัญหา
ในการเปิดใช้และการบ ารุงรักษาของ Spark Structured Streaming งานวิจยัน้ีขอ
เสนอ กรอบการท างานของสปาร์คเพื่อการประมวลผลของข้อมูลท่ีไม่เหมือนกันแบบหลาย
สตรีมโดยเนน้ความง่ายในการเปิดใชแ้ละการจดัการการก าหนดอนัเหมาะสม โดยจะเป็นไลบรา
ร่ีช่วยให้สามารถปรับใช้การประมวลผลของขอ้มูลท่ีไม่เหมือนกนัแบบหลายสตรีมโดยใชส้ปาร์
คเพียงโปรแกรมเดียวซ่ึงสามารถลดความยากในการปรับใช้ การตรวจสอบ ลดความฟุ่มเฟือย
ของโคด้และแกปั้ญหาความไม่มีประสิทธิภาพในการเขา้คิวของงานในการประมวลผลของขอ้มูล
ท่ีไม่เหมือนกนัแบบหลายสตรีม

สาขาวชิา วทิยาศาสตร์คอมพิวเตอร์ ลายมือช่ือนิสิต
..

ปีการศึกษา 2561 ลายมือช่ือ อ.ท่ีปรึกษาหลกั
..............................

iv

ABSTRACT (ENGLISH) # # 5970199021 : MAJOR COMPUTER SCIENCE

KEYWO

RD:

Real-Time, Apache Spark, Multiple Stream, Data

Stream Processing, Heterogeneous Data

 Tanwa Sirisakdiwan : Spark Steaming Framework for

Large-Scale Multi-Stream Data Analytics. Advisor:

Asst. Prof. NATAWUT NUPAIROJ, Ph.D.

Real-time streaming applications with multiple

heterogeneous data streams have become increasingly popular

especially in IoT applications where huge amount of sensors

produce large amount of data in the form of data streams.

However, many issues still exist, especially in deploying and

maintaining these large amounts of data streams. Using Spark

Structured Streaming, this research introduces a Spark

Streaming framework for multiple heterogeneous data streams

which focuses on the ease of deployment and proper

scheduling. Our proposed framework is a library that allows

the deployment of multiple heterogeneous data stream

processing in a single Spark application. Our framework can

reduce deployment difficulties, coding redundancy, monitoring

difficulties, and solve the problem of inefficient job queueing

in multi-stream applications.

Field of

Study:

Computer Science Student's Signature

...............................

Academic

Year:

2018 Advisor's Signature

..............................

v

ACKNOWLEDGE MENTS

ACKNOWLEDGEMENTS

First I would like to thank the most important person my

advisor Asst. Prof. Natawut Nupairoj for his expert advice and

insight into overseeing this research. Even though he is a very

busy person, he always contribute to me the times he has

available. His dedication to advising me during this research gave

me hope and wills to fight on during hard times.

Finally I would like to thank both of my parent for being

there for me during difficult times, providing my with much

needed emotional support.

Thank you all very much.

Tanwa Sirisakdiwan

TABLE OF CONTENTS

 Page

ABSTRACT (THAI) ... III

ABSTRACT (ENGLISH) .. IV

ACKNOWLEDGEMENTS .. V

TABLE OF CONTENTS ... VI

LIST OF TABLES ... IX

LIST OF FIGURES .. X

1 INTRODUCTION ... 1

1.1 MOTIVATIONS .. 1

1.2 OBJECTIVES .. 2

1.3 SCOPE OF WORK ... 2

1.4 RESEARCH PROCEDURE .. 2

1.5 EXPECTED BENEFITS .. 2

1.6 CONTENT STRUCTURE .. 2

1.7 PUBLISHED PAPER .. 3

2 TECHNICAL BACKGROUNDS AND RELATED WORKS 4

2.1 TECHNICAL BACKGROUNDS ... 4

2.1.1 IoT Streaming Data .. 4

2.1.2 Heterogeneous Data ... 6

2.1.3 Apache Spark .. 6

2.1.4 Spark Streaming ... 7

2.1.5 Spark Structured Streaming ... 7

2.2 RELATED WORKS ... 9

2.2.1 Hybrid big data architecture for high-speed log anomaly detection 9

2.2.2 Real-time High-Performance Anomaly Detection over Data Streams:

Grand Challenge .. 11

vii

2.2.3 Adaptive Scheduling of Parallel Jobs in Spark Streaming 12

2.2.4 The 8 Requirements of Real-time Stream Processing 14

3 SPARK STREAMING FRAMEWORK FOR LARGE-SCALE MULTI-

STREAM DATA ANALYTICS.. 15

3.1 MULTI-STREAM DEFINITION .. 15

3.2 N-APPLICATION MULTI-STREAM PROCESSING ... 16

3.2.1 Application Submission .. 16

3.2.2 Resource Overhead .. 16

3.2.3 Monitoring Difficulty .. 16

3.2.4 Coding Redundancy ... 16

3.2.5 Job Scheduling ... 16

3.3 DIFFICULTIES IN MULTI-STREAM IN SINGLE APPLICATION 17

3.3.1 Blocking Action in Multi-Stream in Single Application 17

3.3.2 Redundant Data Reading in Spark Streaming ... 18

3.3.3 Redundant Data Reading in Spark Structured Streaming 19

3.4 MULTI-STREAM APPLICATIONS IN SPARK STREAMING VS SPARK STRUCTURED

STREAMING .. 20

3.5 SPARK STREAMING FRAMEWORK FOR REAL-TIME ANALYTICS OF MULTIPLE

HETEROGENEOUS DATA STREAMS ... 22

3.5.1 Satisfy Streaming Function Requirements. .. 22

3.5.2 API and Functions .. 23

3.5.2.1 Initialize Function ... 24

3.5.2.2 Register Function .. 24

3.5.2.3 Execute Function .. 24

3.5.2.4 Get Function ... 24

3.5.3 Framework Example .. 25

3.5.4 Advantages of Single Application for Multi-Stream 27

3.6 FRAMEWORK EXPERIMENTAL RESULTS ... 28

4 SCHEDULING FOR MULTI-STREAM .. 29

4.1 JOB SCHEDULING IN SPARK .. 29

viii

4.2 MICRO-BATCH BEHAVIOR OF SPARK STREAMING AND STRUCTURED STREAMING

 30

4.3 SCHEDULING MODES IN SPARK .. 31

4.3.1 FIFO Scheduling .. 31

4.3.1.1 Job Queuing issues in FIFO .. 33

4.3.2 FAIR Scheduling ... 34

4.3.2.1 FAIR Scheduling limitation .. 35

4.4 ALTERNATIVES FOR SOLVING JOB QUEUING IN MULTI-STREAM 36

• Increase computing power ... 36

• Resource Partitioning ... 36

• Dynamic Resource Allocation .. 36

• FAIR scheduling ... 36

4.5 SOLVING JOB QUEUING AND RESOURCE SCHEDULING IN MULTI-STREAM 37

4.6 ADVANTAGES OF USING FAIR SCHEDULER IN MULTI-STREAM 37

4.7 EXPERIMENTS ... 38

4.7.1 Experimental Environment ... 38

4.7.2 Experiment Data ... 38

4.7.3 Testing Scenario ... 39

4.7.4 Test Cases ... 39

4.7.5 Result Collection Method ... 40

4.7.6 Performance Results ... 40

4.7.7 Result Discussion ... 42

5 CONCLUSION ... 45

6 APPENDIX ... 46

6.1 FRAMEWORK CODE .. 46

REFERENCES .. 48

VITA .. 50

LIST OF TABLES

 Page

Table 1 - Framework Function Description .. 23

Table 2 - Comparison of the Difference between Our Framework and N-Application

Method ... 27

Table 3 - Test Environment and Configuration .. 38

Table 4 - Test Cases .. 39

LIST OF FIGURES

 Page

Figure 1 – Example of use cases and opportunities for big IoT data analytics

architecture. .. 4

Figure 2 - Data from Combined Cycle Power Generator ... 5

Figure 3 – Spark Framework .. 6

Figure 4 - High level overview of Spark Streaming API. Taken from [9] 7

Figure 5 - Components of Structured Streaming. Taken from [10] 8

Figure 6 - State Management of Structured Streaming during execution, Taken from

[10] ... 8

Figure 7 - SARIMA-based Anomaly Detection System... 9

Figure 8 - Hybrid Big Data Architecture .. 10

Figure 9 - Bi-Modal SARIMA-Based Anomaly Detection System 10

Figure 10- Architecture of Multi-Threaded/Multi-Processed Anomaly Detection

System .. 11

Figure 11 - Architecture of Anomaly Detection System. ... 11

Figure 12 - Micro-batch Dependency ... 12

Figure 13 - Overview of Adaptive Scheduler ... 13

Figure 14 - Adaptive scheduler Workflow ... 13

Figure 15 - The 8 Requirements of Real-Time Stream Processing 14

Figure 16 – Single Stream... 15

Figure 17- Multi-Stream ... 15

Figure 18 - Blocking action of multi-stream in single application 17

Figure 19 – Expected Workflow of Multi-Stream Behavior 18

Figure 20 – Actual Workflow of Spark Streaming with Multi-Stream 18

Figure 21 - Spark Streaming context and batch interval setting 20

Figure 22 – Grouped Window Operation on Dstreams .. 20

Figure 23 – Trigger Setting in Structured Streaming showing micro-batch interval

setting ... 21

xi

Figure 24 – Example of Streaming Function .. 22

Figure 25 – Example of Framework: Single Function.. 25

Figure 26 – Example of Framework: Multiple Functions .. 26

Figure 27 – Spark Web UI showing how multi-stream can now be run in a single

application .. 28

Figure 28 – Spark Cluster Component.. 29

Figure 29 – Job Scheduling in Spark (Single Application, Single Job)...................... 30

Figure 30 – FIFO Job Scheduling (Single Application, Multi-Stream)...................... 31

Figure 31 – FIFO Job Scheduling (Multi-Application, Single Stream)...................... 32

Figure 32 - Job Queuing / Head-of-Line Blocking ... 33

Figure 33 – Blocking Effect in Multi-Stream from Spark Web UI 33

Figure 34 – FAIR Scheduling ... 34

Figure 35 - Behavior of 8 Concurrent Streams with FAIR ... 35

Figure 36 - a record in KDD1999 ... 38

Figure 37 – Processing Time (FAIR vs FIFO) (Worst-Case) 40

Figure 38 – Processing Time FAIR vs FIFO (best-case) .. 41

Figure 39 - Processing Time vs Number of Concurrent Streams 42

Figure 40 - Scheduling difference of FAIR vs FIFO in Spark Web UI 43

Figure 41 - Diagram of Job scheduling of FIFO vs FAIR .. 44

1 Introduction

1.1 Motivations

Internet-of-Thing (IoT) has been widely used in many industries.

Such as energy, manufacturing, and many others which involve the use of

complex machinery. These sensors provide us with high volume of data

and often at a very high velocity. Data generated from these devices are

typically varied and heterogeneous. For example, power generators are

being constantly monitored to prevent failures in many power plants.

These generators usually have over 2000 sensors. Many of these sensors

generate heterogeneous data which requires their own independent stream

processing. Deploying real-time application such as anomaly detection in

this case is very difficult as the processing need to be in real-time and the

number of stream processing needed to be deployed is large. There are

many definitions of heterogeneous data as mentioned in [1]. In this

research, we shall define heterogeneous data as data that is generated

from different sources with variety of sampling periods and independent

machine learning models, such as anomaly detection, for each data

stream.

Currently, there are many issues related to real-time analytics of

multiple heterogeneous data, especially when deadlines are different. In

Apache Spark [2], the conventional way to perform a streaming job is to

run one Spark application per data stream. This can be a problem when

we are dealing with multiple streams from different sources as the

number of applications that needed to be launched grows. In addition,

when there are multiple applications running simultaneously, the default

resource scheduling between applications in Spark is FIFO (First-in-First-

Out) policy. This, while give more priority to jobs which arrive first,

causes problems when multiple streaming jobs are concurrently running.

For example, a large size job may be the first in the queue and consume

all available resources blocking smaller jobs with more immediate

deadline. This caused the smaller job to be delayed and missed its

deadline. At this moment, there is no proposed solution to these practical

problems, especially for multiple heterogeneous data stream in Spark.

To solve these problems, this research introduces a framework for

Spark which can launch multiple streaming jobs in a scalable manner,

reduce coding redundancy involved, ease monitoring difficulty, and

provide a proper solution to resource scheduling. This will provide a

2

more suitable solution to use cases such as real-time anomaly detection of

large number of sensors

1.2 Objectives

To develop a framework for spark streaming which allow efficient

coding and deployment of multiple streaming process and provide proper

scheduling methods for these jobs.

1.3 Scope of Work

• To develop an efficient and scalable coding framework to allow

efficient coding and deployment of large amount of machine

learning model on heterogenous data and handles configurating the

appropriate job scheduling policy.

1.4 Research Procedure

1. Studies of knowledge involved and related works.

2. Analysis of research problems.

3. Experiment with options to find solution for research problem.

4. Development of proposed solution.

5. Experiment and evaluation.

6. Conclude research result.

7. Write research papers and thesis.

1.5 Expected Benefits

A Coding framework which allow efficient coding and deployment

of large-scale multiple stream processing. As well as provide an

appropriate job scheduling policy.

1.6 Content Structure

This thesis consists of 6 Chapters. The 6 chapters are the following:

1. Introduction

2. Technical background and related works

3. Spark Streaming Framework for Large-Scale Multi-Stream Data

Analytics

4. Job Scheduling for Multi-Stream

5. Conclusion

3

1.7 Published Paper

• Spark Steaming Framework for Large-Scale Heterogeneous Data

Analytics. Published at 2019 2nd International Conference on

Communication Engineering and Technology (ICCET). Held on

12-15 April 2019 in Nagoya Institute of Technology, Nagoya,

Japan.

4

2 Technical Backgrounds and Related Works

2.1 Technical Backgrounds

2.1.1 IoT Streaming Data

IoT (Internet of things) is the term commonly used for a network of

interconnected devices, such as sensors as well as, devices, social media,

health care applications, temperature sensors, various other software

applications and digital devices. Data generated from IoT comes from

various sensors. This creates heterogeneity, noise, variety, and rapid

growth in size [3]. There are many applications for big IoT data, such as

E-commerce, Smart cities, healthcare, and retail & logistic as shown in

Figure 1.

Figure 1 – Example of use cases and opportunities for big IoT data analytics

architecture.

IoT data is usually generated in the form of streaming data from

sensors of various type and from vast number of sources. There are

several characteristics of IoT streaming data. First, streaming data have

sampling periods, the time difference between two consecutive samples,

i.e. new data is generated periodically creating a constant stream of data.

Second, they are generated from many data sources, usually come in

massive in numbers, making each stream heterogeneous. In addition,

5

depending on the usage, some data may have deadlines. Deadline is the

time that the data processing is expected to be completed. In general, this

is usually the sampling period of the sensor. The time of each deadlines

varies and is usually context dependent, therefore each sensor can have

different deadline. Figure 2 shows data taken from a sensor in a

combined cycle power generator. A typical generator of this type usually

contains over thousands of sensors of various type.

Figure 2 - Data from Combined Cycle Power Generator

6

2.1.2 Heterogeneous Data

There are many definitions of heterogeneous data as mentioned in [1].

These definitions are:

• Syntactic heterogeneity – when two data sources are not

expressed in the same language.

• Conceptual heterogeneity – difference in modelling the same

domain of interest. Also known as semantic heterogeneity.

• Terminological heterogeneity – variation in name when referring

to the same object from difference sources.

• Semiotic heterogeneity – different interpretation of entities by

people. Also known as pragmatic heterogeneity.

As these definitions does not really fit with our experiment, for this

research, we shall define heterogeneous data as data that is generated

from different sources, having variety of sampling periods, and

independent machine learning models, such as anomaly detection, for

each data stream.

2.1.3 Apache Spark

Spark is a unified analytic engine for processing large-scale data,

with built-in modules for streaming, SQL, machine learning, and graph

processing as presented in Figure 3. Spark’s core is RDD (resilient

distributed dataset). An RDD [4] is a distributed memory abstraction of

data partitioned across set of machines that can be rebuilt if a partition is

lost. We will explain Spark Streaming in further detail in Section 3.

Figure 3 – Spark Framework

7

2.1.4 Spark Streaming

Spark’s stream processing API, called Spark streaming, treats

streaming data as a continuous series of unbounded micro-batches where

available data is processed at every interval. This is called Dstreams or

discretized stream [5]. Figure 4 shows the illustration of the high-level

overview of spark streaming.

Figure 4 - High level overview of Spark Streaming API. Taken from [9]

2.1.5 Spark Structured Streaming

Spark Structured Streaming [6] is Spark’s next API for stream

processing. It aims to make stream processing easier and more accessible

by allowing developer to create streaming application without having to

reasons with streaming related configurations. Structured streaming offers

much more processing methods than its predecessor Spark’s Streaming.

Most Spark’s Data-frame Operations can be directly applied to Structured

Streaming. As shown in Figure 5,Spark Structured Streaming operates on

Spark’s new Data Frame API and treats streaming data as unbounded

tables of data instead, where every trigger (intervals) spark read all new

data available from the data source. Figure 6 explains how Spark keeps

track of old/new data by using its state management,

Our framework is based on Spark Structured Streaming, from this

point on we will refer to Spark Structured Streaming as Spark Streaming

as it is the new streaming API promoted by Spark and the old Spark

Streaming is no longer in development.

8

Figure 5 - Components of Structured Streaming. Taken from [10]

Figure 6 - State Management of Structured Streaming during execution, Taken from

[10]

9

2.2 Related Works

2.2.1 Hybrid big data architecture for high-speed log anomaly

detection

Real-time anomaly detection on streaming data has been

previously achieved by [7] where network log data is analyzed in real-

time using SARIMA anomaly detection. SARIMA (Seasonal

Autoregressive Integrated Moving Average) is a statistical model

commonly used for anomaly detection in time-series data with

seasonality components. The reason SARIMA model could not be apply

directly to streaming data is because SARIMA requires historical data to

be preprocessed to create its model making it inapplicable.

Figure 7 - SARIMA-based Anomaly Detection System

This research proposed a hybrid data processing architecture based

on lambda architecture as presented in Figure 8, which allow SARIMA

to be applied on to streaming data in real-time. Their approach to

applying SARIMA in real-time is to use a bi-model approach instead,

shown in Figure 9. This bi-model solution uses their proposed

architecture to train SARIMA model with historical data in batch

processing. The model is then applied onto streaming data in real-time.

10

Figure 8 - Hybrid Big Data Architecture

Figure 9 - Bi-Modal SARIMA-Based Anomaly Detection System

11

2.2.2 Real-time High-Performance Anomaly Detection over Data

Streams: Grand Challenge

Real-time anomaly detection on N-number of data streams was

proposed in [8]. It handles multiple data streams by dividing incoming

data into data windows based on their time intervals. After each interval,

all window from each stream is then processed in parallel using multi-

threading as shown in Figure 10. However, this framework has limitation

as it assumes identical period for all stream.

In Figure 11 the input component receives data from message

broker in RDF format which is then parsed for the data window manager

to build data window. The anomaly detector component receives the list

of windows data and processes them in parallel. The processing includes

clustering the data inside the window and calculating the Markov chain

transition matrix and transition threshold which is then compared with

data for detection result. The result of the anomaly detection component

is forwarded to the output component for reporting.

Figure 10- Architecture of Multi-Threaded/Multi-Processed Anomaly Detection

System

Figure 11 - Architecture of Anomaly Detection System.

12

2.2.3 Adaptive Scheduling of Parallel Jobs in Spark Streaming

An adaptive scheduler for Spark streaming was introduced by [9].

This adaptive scheduler dynamically adjusts resource scheduling for each

stream. They have achieved this through extending Spark Streaming and

uses “spark.concurrentJob”, a config which control the amount of

parallelism, to allow more than one micro-batch of each stream to be

processed at a time.

This configuration is however not recommended by Spark and is

not documented into Spark’s official API. The problem of using this

configuration is that it will cause some micro-batch to be processed

incorrectly in the case that a batch-to-batch dependency exists. A batch-

to-batch dependency is when the result of a micro-batch is not only

determined by the data contained but also prior micro-batch e.g. window

operation as shown in Figure 12.

Figure 12 - Micro-batch Dependency

This research implemented a solution which classifies jobs by their

job dependency then assigning them into appropriate job pools; as shown

in Figure 13. Jobs without micro-bath dependency is put into the same

pool to utilize the concurrent job setting and jobs with dependency is

separated into another pool as they are not compatible with the setting.

Classification is done by checking the job’s directed acyclic graph

(DAG). The Adaptive Optimizer takes performance statistic from Spark

Engine and adaptively adjust the pool resource weight and the amount of

parallelism through reinforcement learning after each micro-batch of

execution. The workflow of Adaptive scheduler is shown in Figure 14.

13

Figure 13 - Overview of Adaptive Scheduler

Figure 14 - Adaptive scheduler Workflow

14

2.2.4 The 8 Requirements of Real-time Stream Processing

In research [10], the 8 requirements of real-time stream processing is

purposed. We want to emphasize on the 8th requirement which states that

“a stream processing must be able to keep up a highly-optimized,

minimal-overhead execution engine to deliver real-time response

for high-volume applications”. As the tools being used in this research,

Spark Structured Streaming, can satisfy most requirements by default.

Figure 15 - The 8 Requirements of Real-Time Stream Processing

15

3 Spark Streaming Framework for Large-Scale Multi-

Stream Data Analytics.

In this chapter, we provide more information on what Multi-Stream

is, as well as, the problems it introduces, previously solutions to the

problems, and finally we introduce our solution. Spark Streaming

Framework for Large-Scale Multi-Stream Data Analytics. This

framework aims to provide a more suitable solution to use cases such as

real-time anomaly detection of large number of sensors.

3.1 Multi-Stream Definition

We defined a single-streams as a streaming process where all data

passes through a single processing function before it is then send to the

data sink. Figure 16 shows diagram of our definition of a single stream.

Figure 16 – Single Stream

Multi-stream is a streaming process where incoming data is divided

into multiple streams and processed through its unique processing

function before it is then sent to the data sink. Figure 17 shows diagram

of our definition of a multi-stream.

Figure 17- Multi-Stream

16

3.2 N-Application Multi-Stream Processing

Previously, the only way to operate multi-stream is to use N-

application approach, where N is the number of streams. In N-application

method, an application developed and deployed for each data stream.

Each application is responsible for its own data stream. There are many

issues related to managing large amount of these applications.

3.2.1 Application Submission

In Spark, it is impossible to submit multiple applications at once.

Applications must be submitted one at a time via spark-submit. This can

be very hard to manage when the number of applications grow

sufficiently large. The only way to ease up this process is by preparing a

cron script, a time-based job scheduler in Unix-like computer operating

systems, to submit each application. This can cause many problems when

running large amount of Spark applications.

3.2.2 Resource Overhead

A Spark application requires its own Spark executor. A Spark

executor consumes, additional resource. By default, a Spark Driver

program consume a minimum of 300mb of memory. Using an application

per data stream in large scale multi streaming system can be very costly.

3.2.3 Monitoring Difficulty

Monitoring difficulty also increases as most spark monitoring tool,

such as Spark web user-interface, only provide monitoring of individual

application; leaving cluster-wide monitoring-tools like Ganglia [11] as

the only few options.

3.2.4 Coding Redundancy

Deploying large amount of applications also causes a lot of

redundant coding of configuring and instantiating Spark sessions.

3.2.5 Job Scheduling

The default job scheduling is not suitable for handling multiple

heterogeneous streams.

17

3.3 Difficulties in Multi-Stream in Single Application

Our final approach is to launch multiple stream simultaneously on a

different thread. By running each stream on a different thread, the stream

process continues to be a blocking action but does not block any

execution as it is isolated within its own thread allowing the program to

continue. We will go into more detail of our implementation later in this

chapter. First, we will explain the difficulty of deploying multi-stream in

single application.

3.3.1 Blocking Action in Multi-Stream in Single Application

Previously, when we try to fit multiple streaming process into a

single application, some processes will not launch. In Spark, a stream

processing is a blocking action. This meant that applications will wait

until the streaming process finishes before moving on to the next line of

code. Therefore, in a normal manner of coding the first streaming process

that starts will block the rest of the code in the program from running,

hence other stream process cannot start as shown in Figure 18.

Figure 18 - Blocking action of multi-stream in single application

18

3.3.2 Redundant Data Reading in Spark Streaming

In Spark Streaming, when multiple stream processing shares the

same data, it is commonly understood that data from the input stream is

read once and distributed amongst each stream process as shown Figure

19.

Figure 19 – Expected Workflow of Multi-Stream Behavior

However, after testing and tracing the execution DAG, we have

found that multiple readings occurred at the input stage. Figure 20

illustrated what happened during execution. Input is read once per

output/streaming process even though they share the same data.

Figure 20 – Actual Workflow of Spark Streaming with Multi-Stream

From this finding, we tried to solve the issue by having spark cache

the input data immediately after it is read to avoid repeated reading. This

does not solve the problem. Instead causes Spark to cache the same data

multiple time.

19

3.3.3 Redundant Data Reading in Spark Structured Streaming

In Structured Streaming, we applied the same approach onto Spark

Structured Streaming to test whether the problem persists but yielded the

same results. This is because Spark Structured Streaming treats an output

operation as one query, where a query consists of inputs, processing

action, and an output. There is currently no way to mitigate this as it is a

part of Spark’s design.

20

3.4 Multi-Stream Applications In Spark Streaming vs Spark

Structured Streaming

For Spark Streaming (D-Stream), even though we can use threading

to allow multiple stream processing, only one shared micro-batch interval

is possible as it is controlled by the spark context; as presented in Figure

21. In multi-stream with heterogeneous data, this is not practical as data

does not always have the same period.

Figure 21 - Spark Streaming context and batch interval setting

Source: https://spark.apache.org/

A workaround for this problem is to group each stream process into

a windowed computation instead which can help mimic multiple batch

intervals, Figure 22. This provides very limited options for micro-batch

interval since only intervals that is a multiple of the micro-batch interval

defined in spark-context is allowed.

Figure 22 – Grouped Window Operation on Dstreams

Source: https://spark.apache.org/

21

This problem is, however, not an issue in Spark Structured

Streaming as micro-batch interval is no longer defined inside spark-

context but within the output of the streaming query, as illustrated in

Figure 23. This allow each streaming query to define its own micro-

batch interval even when sharing spark-context. We implemented our

framework using Spark Structured Streaming.

Figure 23 – Trigger Setting in Structured Streaming showing micro-batch interval

setting

Source: https://spark.apache.org/

22

3.5 Spark Streaming Framework for Real-Time Analytics of

Multiple Heterogeneous Data Streams

We proposed a Spark Streaming framework for multiple

heterogeneous data streams. This framework integrates multiple data

streams into one single Spark application using python’s threading

package to allow simultaneous launching of multiple stream. This

framework is an API operates on top of existing Spark Streaming.

Our framework is designed to address the problem that is generated

from the need to deploy a large amount of smaller sized stream

processing within an environment with limited resources such that

streams are forced to compete or queue for resource. Stream processing

that requires multiple stream processing such as real-time anomaly

detection of large amount of sensor data is a great example.

3.5.1 Satisfy Streaming Function Requirements.

The requirement which streaming function need to be satisfied to

work with our framework; Example shown in Figure 24. Function to be

register will need to contain the following:

1. Data Source – clear and defined streaming input source in which

further transformation/action will be applied to. The data source

maybe defined either inside the function itself, or anywhere within

the application where the transformation/action can access the

data-frame that read the streaming data.

2. Processing command (transformation/action) – a transformation or

action to transform the input stream.

3. Output – an output with defined sink, output mode, and start call.

Figure 24 – Example of Streaming Function

Source: https://spark.apache.org/

23

3.5.2 API and Functions

To combine each streaming process, our framework provides three

functions; Initialize, Register, and Execute. The Initialize function setups

Spark with the required configurations. These include importing

framework dependency, initializing spark sessions, and configuring

scheduling mode. The Register function takes in a python function object

and append it to a function list which will be called and executed by the

Execute function. The Execute function launches all functions registered

with the Register function in parallel by calling these functions using

python’s Threading package. Table 1 summarize the functions of our

framework. In addition, we provide a get function to allow the user to

access the streaming query object for further management.

Table 1 - Framework Function Description

24

To use this framework, user must call Initialize, registers required

function with the Register function, then start all stream processing with

Execute. Please refer to the appendix for the complete code and example.

3.5.2.1 Initialize Function

The Initialize function will setup Spark with the configuration

required for our framework. Inside the function, we import framework

dependency, initialize spark sessions, and configure it to use FAIR

scheduling mode. The user can provide their own spark config by passing

the spark config object to the function. In addition, this function also

fetches important information such as the amount of worker available.

3.5.2.2 Register Function

The Register function takes in a python function object, a query

object, and a String name for identification. The registered function will

be called and executed by the Execute function.

3.5.2.3 Execute Function

The Execute function launches all stream processing functions

registered with the Register function in parallel. It will start all streaming

query in the function list by calling these functions using python’s

Threading so that stream processes may run concurrently without

blocking one another.

3.5.2.4 Get Function

The get() function can be used by the user to access the query

object of a streaming queries. This can be done by providing the get()

function with a name string as an argument. The function will return the

query object with matching name.

25

3.5.3 Framework Example

To use this framework, user must call Initialize to prepare the

framework, register required function with the Register function, then

start all stream processing with Execute; Figure 25 and 26 illustrate

examples of how to use our framework.

Figure 25 – Example of Framework: Single Function

26

Figure 26 – Example of Framework: Multiple Functions

27

3.5.4 Advantages of Single Application for Multi-Stream

By integrating multiple streams processing into one Spark

application, we can solve many issues. First, we reduce the complexity of

running a Spark application, since we only need to submit only one

application instead of N-application. Using more applications to achieve

the same amount of works will consume more resources. Second, we

simplify application monitoring process as we can now use Spark

monitoring tools such as Spark web user interface. Spark’s built-in

monitoring tools, Spark Web UI, only provide monitoring of single

application. In case of N-application, multiple monitoring windows will

be required. Third, we reduced lots of redundant codes such as initializing

spark context and configuration, which is needed to be written only once.

The only necessary code is one responsible for processing each data

stream. Finally, integrating all stream processing processes into one

application allows us to utilize Spark’s FAIR scheduling mode to solve

the problem of job queuing (will be discussed later in the next chapter).

Table 2 compares the difference between our framework and traditional

N-application method.

Table 2 - Comparison of the Difference between Our Framework and N-Application

Method

Despite all advantages our single application method offer, there are

also some limitations. First, our framework starts/stops all streaming

queries together and provides very little accessibility in term of individual

query management. Lastly, this framework is developed for a single

owner operation and does not support multiple owner operations.

28

3.6 Framework Experimental Results

By applying our framework which make use of threading to

concurrent launch spark streaming, we have enabled multi-stream

processing from a single application in Spark. Figure 27 shows the result

of our framework. From these results, we can clearly see that multiple job

is able to start at the same time (as seen in the “submitted” column).

Figure 27 – Spark Web UI showing how multi-stream can now be run in a single

application

Even though we have solved the problem of deploying multi-stream

in a single application. We have found that the default job scheduler

Spark provide is not designed for multi-stream and scheduled job

inefficiently causing multiple problems. We will address this in the next

chapter.

29

4 Scheduling for Multi-Stream

In this chapter, we will provide explanation of how job scheduling is

done in Spark, our findings of how Spark job scheduling handle multi-

stream and introduce how to optimize Spark job scheduling to achieve

higher performance for multi-stream.

To solve the problems of Head-of-Line blocking in multi-stream

caused by Spark’s default job scheduler FIFO. Our proposed framework

utilizes Spark’s FAIR Scheduling scheme to resolve the scheduling

problem.

4.1 Job Scheduling in Spark

A Spark cluster component, as presented in Figure 28, involved in

Spark’s data processing includes:

• The driver program is the main program (application) and is

coordinated by the SparkContext.

• The cluster manager handles job scheduling, there are many cluster

managers but for this research we use Spark Standalone.

• The worker node which handles computation and stores data.

Figure 28 – Spark Cluster Component

Source: http://spark.apache.org/

30

Figure 29 – Job Scheduling in Spark (Single Application, Single Job)

We illustrate how a single data processing job flows through each

component in Figure 29. The driver program communicates with the

cluster manager to request for worker. After the request is granted, Spark

then connects to the executors on the allocated worker nodes.

SparkContext then send task to each worker node to run. The worker

node then returns the computation results to the driver program.

4.2 Micro-batch Behavior of Spark Streaming and Structured

Streaming

In Spark Streaming, there is no long running process aside from a

listener which is used to detect new data every micro-batch interval. Once

new data is detected, Spark then submit a job to process the new data.

Meaning that there is no long running job, but a small job every small

interval instead.

Here are 3 main micro-batch behaviors:

1. If the previous micro-batch completes within the interval, then the

engine will wait until the interval is over before kicking off the

next micro-batch.

2. If the previous micro-batch takes longer than the interval to

complete (i.e. if an interval boundary is missed), then the next

micro-batch will start as soon as the previous one completes (i.e., it

will not wait for the next interval boundary).

3. If no new data is available, then no micro-batch will be kicked off.

31

4.3 Scheduling Modes in Spark

Spark employs two job scheduling schemes. FIFO and FAIR. FIFO

is the default job scheduling.

4.3.1 FIFO Scheduling

By default, Spark schedules jobs from each application in FIFO

(First-in-First-Out) mode. In FIFO, when there are not enough resources,

job will start to queue up one after the other waiting for resources. This

can happen from two scenarios, when several jobs are submitted from the

same application concurrently (single application, multi-stream, Figure

30) and when several applications are submitting jobs concurrently

(multi-application, single-stream, Figure 31) Both cases are not suitable

for real-time applications as it can cause head-of-line blocking problems

or HoL, of which jobs with immediate deadline are queued behind a

larger job with more relaxed deadline.

Figure 30 – FIFO Job Scheduling (Single Application, Multi-Stream)

32

Figure 31 – FIFO Job Scheduling (Multi-Application, Single Stream)

33

4.3.1.1 Job Queuing issues in FIFO

In FIFO when several applications are running and there are not

enough resources, job will start to queue up one after the other waiting for

resources, as shown in Figure 32. This is very bad for real-time

applications as it can cause serious delay, especially when a job with

immediate deadline is queued behind a larger job with more relaxed

deadline. Figure 33 shows blocking effect that can be identified in Spark

Web UI when running multi-stream in FIFO. It shows multi-streams

processing with identical micro-batch size, but different processing time

caused by job queuing.

Figure 32 - Job Queuing / Head-of-Line Blocking

Figure 33 – Blocking Effect in Multi-Stream from Spark Web UI

34

4.3.2 FAIR Scheduling

In FAIR scheduling, Spark assigns resources to all jobs at the same

time. This make all jobs in the queue start processing right away

including job at the end of the queue. Figure 34 shows how both

concurrent jobs get a worker node each and can start processing

immediately as oppose to Figure 30 – FIFO Job Scheduling (Single

Application, Multi-Stream) or Figure 31 – FIFO Job Scheduling (Multi-

Application, Single Stream).

This, however, does not eliminate job queue, as when the number

of workers is not enough for sharing across jobs, some job will be

queued. As our finding suggest in the next section. Thus, multiple jobs

can be processed concurrently, eliminating the waiting time in the job

queue. However, FAIR is only available when running as a single

application as Spark does not support a FAIR scheduler for scheduling

multiple applications. Therefore, it was necessary for our framework to

operate in a single application.

Figure 34 – FAIR Scheduling

35

4.3.2.1 FAIR Scheduling limitation

After experimenting with different numbers of concurrent stream.

We have found that even though we are using FAIR scheduling mode,

Spark will only run concurrently processes at most N number of streams,

where N equals the number of core available, Figure 35 presents the case

of launching 8 concurrent streams and 4 streams finished first. This imply

that Spark will only process as many jobs concurrently as the number of

cores available to the system. For example, if there are 8 jobs submitted

concurrently but only 4 cores are available, Spark will process 4 jobs at a

time.

Figure 35 - Behavior of 8 Concurrent Streams with FAIR

36

4.4 Alternatives for Solving Job Queuing in Multi-Stream

There are several methods to avoid job queueing in multi-stream

environment. The following are possible solutions

• Increase computing power

Increasing number of workers can reduce job queuing. This is

because if the first job does not take up all available resources then the

next job may start right away with any resources that are left even if

Spark job scheduling is in FIFO mode. Since this requires investment in

computing power, it may not be the preferred option.

• Resource Partitioning

We can limit the maximum amount of resources a Spark application

can use. By limiting the number of workers an application can use,

allowing resources to be spared for other applications. Unfortunately,

applications will hold onto all resources allocated to them for the entire

duration instead of when needed.

• Dynamic Resource Allocation

Dynamic resource allocation allows resource that is no longer use by

its application to be freed and returned to the cluster after the application

is idle. The application may request more resources later when required.

This method is not fully supported on spark streaming. In stream

processing, applications are long continuous processes where small jobs

are submitted every small interval. This makes the idle time of each

application very small causing the application to never return resources to

the cluster. Therefore, dynamic resource allocation does not work for

Spark Streaming.

Similarly, 3rd party cluster management like Mesos will also not

work. When Spark application are communicating with Mesos on

resource usages, it will always ask for resources it requires and will hold

on to it. The only exception is the unlikely case where the data source is

interrupted, and the data arrival interval is extended. Spark may free up

resources until new data arrives, not in regular case where spark

streaming idle time is usually only a few seconds.

• FAIR scheduling

FAIR scheduling allows jobs to start processing immediately by

sharing resources. It can effectively eliminate job queuing. This is the

more ideal solution to multi-stream queuing problem.

37

4.5 Solving Job Queuing and Resource Scheduling in Multi-

Stream

When running multi-streams, we run into scheduling problem as

described in chapter 3. To solve the job queuing and resource scheduling

problem of Multi-Stream, we configure Spark to use a FAIR scheduling

mode. In FAIR scheduling, Spark assigns resource to jobs in a round-

robin fashion. This allows multi-stream to equally share the cluster’s

resources. Thus, multiple jobs can be processed concurrently, eliminating

the waiting time in the job queue. The performance result for using FAIR

will be presented in Section 4.7.

4.6 Advantages of Using FAIR scheduler in Multi-Stream

• When a stream finishes processing early, its resources will be

relocated to other streams that are currently processing

immediately. In a multi-application method resource will not be

relocated. This provides better resource utilization.

• No job queueing as all streaming job can start immediately.

• Head-of-Line blocking is not an issue as many streams can start

processing at once.

38

4.7 Experiments

In this Section, we evaluate the performance of our framework while

using FAIR scheduling.

4.7.1 Experimental Environment

We used a MacBook pro (2016) for this experiment. Our

configurations and specification are shown in Table 3.

Table 3 - Test Environment and Configuration

4.7.2 Experiment Data

We use KDD1999 [12] competition data, a widely used dataset for

anomaly detection of network intrusion in all experiment. The entire

dataset is 753.1MB in size and contains 4.3 million records. Figure 36

shows an example of a record in KDD1999.

During the experiment, we will be using only one percent of the

dataset (6.4MB of data) per micro-batch, as it is closer to the size of a

streaming data. A special case where we will use the full dataset (753.1

mb) is when we are replicating a Head of Line blocking issue where we

will have the first in-queue have a larger than average size (753.1mb vs

6.4mb).

Figure 36 - a record in KDD1999

Source: Anomaly Detection with Apache Spark, Cloudera, Inc

39

4.7.3 Testing Scenario

During each micro-batch, data is queried from a local file source

using Spark file-stream. then a group-by operation is done, followed by a

count aggregation which then output the results to a console sink.

For this experiment, we test with 4 concurrent streams. This is

because we have found that even though we have FAIR scheduling mode,

Spark will only start up and concurrently process at most N number of

streams; Where N is equal to the number of worker available, we feel that

we should test in the scenarios where resource is a constraint as it is much

harder to evaluate the performance of each scheduler mode if we have

excess computing power.

Data is then recorded for both FAIR and FIFO to compare its

performance.

4.7.4 Test Cases

We perform our experiment by replicating 2 cases of scheduling.

Worst-case and Best-Case, Table 4. Worst-case is when a large job

(753.1mb) is in front of the job queue and is causing a HoL blocking for

small job (6.4mb). Best-case is when there is no significantly large job in

the queue to cause HoL blocking.

Table 4 - Test Cases

Worst-Case Best-Case

• 3x Regular Stream of normal

size (6.4mb)

• 1x Large Stream/Job

(753.1mb) (always queued

first)

• 4x Regular Stream of normal

size (6.4mb)

• No blocking by large head of

queue.

40

4.7.5 Result Collection Method

All data is collected by recording from Spark Web UI. The

processing time recorded is taken from the “Duration” column. This

“Duration” column is the time of job submission to the time it finished

processing. For each test cases we record the processing time of the

regular stream that took the longest to process for that run.

We also observed Spark Web UI’s job timeline to verified if

resource is being scheduled as it should according to our test cases.

4.7.6 Performance Results

To compare the results, we perform an approximate visual test [13].

The comparison of the processing time between FIFO and FAIR in the

worst-case scenario is shown in Figure 37. From these results, we can

clearly see that FAIR out-performed FIFO with a significant difference.

From these results we can calculate the speed up of Processing Time

(FIFO) / Processing Time (FAIR) = 16.14/14.59 = 1.106 or 10.6% speed

up.

Figure 37 – Processing Time (FAIR vs FIFO) (Worst-Case)

41

Next, we compare the processing time of FAIR vs FIFO in the

best-case scenario where each data stream is of identical size. In this

scenario there is no blocking caused by a large job. Only regular queuing

for resource. The result shows that the average processing time of the two

have no significant difference; as shown in Figure 38. With the average

time of FAIR being 53 seconds and FIFO being 52 seconds.

Figure 38 – Processing Time FAIR vs FIFO (best-case)

42

4.7.7 Result Discussion

From our experimental results, we have made several findings. First,

FAIR will outperform FIFO in scenario where job queueing is presence

and maintain equivalent performance otherwise. Second, there is an

increase in execution time for each individual stream in FAIR. This is

caused by resource sharing between each stream, resulting in the increase

in individual processing time. In four multi-streams processing, the

resources available is shared amongst four streams. Processing time

versus the number of multi-streams is shown in Figure 39.

Figure 39 - Processing Time vs Number of Concurrent Streams

43

While the increase in individual stream execution time make FAIR

scheduling seems worst, our test results shows that FIFO scheduling with

job queuing have worst performance than FAIR scheduling as shown in

Figure 37. Figure 40 shows the comparison of FAIR and FIFO job

scheduling timeline in Spark Web UI. From the Spark Web UI, we can

clearly see that streams 2-4, performed much better in FAIR where job

queuing is not an issue whereas in FIFO stream 4 have missed the real-

time deadline of 15s. In a real-time environment where deadline is

important the solution with the better worst-case scenario is preferred.

Please note that the start of block indicates that the job is submitted not

when it starts processing.

Figure 40 - Scheduling difference of FAIR vs FIFO in Spark Web UI

44

This behavior can be explained in further detail with Figure 41, a

graphical representation of how job is scheduled including when they

start processing. Dotted red vertical line represent micro-batch interval.

We will assume that our large stream takes twice as long as small stream

to process. Arrows represents job that is submit and is in queue but have

not started processing. Red dotted arrow represents job that are submitted

later than its interval.

Figure 41 - Diagram of Job scheduling of FIFO vs FAIR

There are a few important behaviors of micro-batch. First, even

though a micro-batch finishes processing, the next micro-batch will not

start until its interval arrived. Second, if a micro-batch have not finished

processing then the next micro-batch will not start until it is finished. This

is very important as it means that if a delay happens it will cause delay

buildup which can get out of control unless given time to recover.

45

5 Conclusion

In this research, we have introduced a framework for Spark

Structured Streaming based on Pyspark, our framework provided solution

to problems related to multiple heterogeneous data streams processing.

These problems include deployment of application, monitoring difficulty,

coding redundancy, and Job scheduling between data streams.

We have solved the problem of deploying large amount of streaming

application by providing a framework which integrate multiple stream

processing into one Spark application. With this framework, we reduced

the amount of Spark-Submit required, minimize the coding redundancy in

Spark application, reduce the monitoring difficulty caused by running a

large amount of Spark application, and finally solves the scheduling

problem of job queueing by using Spark’s FAIR scheduling mode to

assign each stream an equal share of resources.

Difficulties found during this research are as followed. As we

implemented our framework using python programming language and

coded on top of pyspark, our access to Spark’s core function is very

limited. We cannot extend or reimplement some functionality and most

importantly Spark’s pyspark API does not provide access to Spark

listener, a class use to access spark’s monitoring statistic.

With limited accessibility provided by pyspark API, we cannot

change job scheduling pool during live operation, this stops us from being

able to create a framework that can dynamically assigned resource to

jobs. As we have found out later that it is possible with some method

overwrite with the Scala API.

For future research direction, re-implementing our framework in

Scala would provide more research opportunity by creating a dynamic job

prioritization, which can be done by reassigning job to job pools of

different weight to match their performance. In addition, we could also

implement a function to allow new stream process to be added on the fly

46

6 Appendix

6.1 Framework Code

47

REFERENCES

REFERENCES

[1] L. Wang, “Heterogeneous Data and Big Data Analytics,” Automatic Control and

Information Sciences, vol. 3, no. 1, pp. 8–15, Oct. 2017.

[2] “Apache SparkTM - Unified Analytics Engine for Big Data.” [Online]. Available:

https://spark.apache.org/. [Accessed: 13-Nov-2018].

[3] M. Marjani et al., “Big IoT Data Analytics: Architecture, Opportunities, and

Open Research Challenges,” IEEE Access, vol. 5, pp. 5247–5261, 2017.

[4] M. Zaharia et al., “Resilient Distributed Datasets: A Fault-Tolerant Abstraction

for In-Memory Cluster Computing,” p. 14.

[5] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized

streams: fault-tolerant streaming computation at scale,” in Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles - SOSP ’13,

Farminton, Pennsylvania, 2013, pp. 423–438.

[6] M. Armbrust et al., “Structured Streaming: A Declarative API for Real-Time

Applications in Apache Spark,” in Proceedings of the 2018 International

Conference on Management of Data, New York, NY, USA, 2018, pp. 601–613.

[7] P. Tangsatjatham and N. Nupairoj, “Hybrid big data architecture for high-speed

log anomaly detection,” in 2016 13th International Joint Conference on

Computer Science and Software Engineering (JCSSE), 2016, pp. 1–6.

[8] D. Jankov, S. Sikdar, R. Mukherjee, K. Teymourian, and C. Jermaine, “Real-

time High Performance Anomaly Detection over Data Streams: Grand

Challenge,” 2017, pp. 292–297.

[9] D. Cheng, Y. Chen, X. Zhou, D. Gmach, and D. Milojicic, “Adaptive scheduling

of parallel jobs in spark streaming,” in IEEE INFOCOM 2017 - IEEE

Conference on Computer Communications, 2017, pp. 1–9.

[10] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 Requirements of Real-

time Stream Processing,” SIGMOD Rec., vol. 34, no. 4, pp. 42–47, Dec. 2005.

[11] “Ganglia Monitoring System.” [Online]. Available: http://ganglia.info/.

[Accessed: 13-Nov-2018].

[12] “KDD Cup 1999 Data.” [Online]. Available:

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. [Accessed: 13-Nov-

2018].

[13] R. Jain, The Art of Computer Systems Performance Analysis: Techniques For

Experimental Design, Measurement, Simulation, and Modeling, NY: Wiley.

1991.

VITA

VITA

NAME Tanwa Sirisakdiwan

DATE OF BIRTH 8 December 1995

PLACE OF BIRTH Bangkok, Thailand

INSTITUTIONS

ATTENDED

Chulalongkorn University

PUBLICATION 2019 2nd International Conference on

Communication Engineering and

Technology (ICCET 2019)

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Motivations
	1.2 Objectives
	1.3 Scope of Work
	1.4 Research Procedure
	1.5 Expected Benefits
	1.6 Content Structure
	1.7 Published Paper

	2 Technical Backgrounds and Related Works
	2.1 Technical Backgrounds
	2.1.1 IoT Streaming Data
	2.1.2 Heterogeneous Data
	2.1.3 Apache Spark
	2.1.4 Spark Streaming
	2.1.5 Spark Structured Streaming

	2.2 Related Works
	2.2.1 Hybrid big data architecture for high-speed log anomaly detection
	2.2.2 Real-time High-Performance Anomaly Detection over Data Streams: Grand Challenge
	2.2.3 Adaptive Scheduling of Parallel Jobs in Spark Streaming
	2.2.4 The 8 Requirements of Real-time Stream Processing

	3 Spark Streaming Framework for Large-Scale Multi-Stream Data Analytics.
	3.1 Multi-Stream Definition
	3.2 N-Application Multi-Stream Processing
	3.2.1 Application Submission
	3.2.2 Resource Overhead
	3.2.3 Monitoring Difficulty
	3.2.4 Coding Redundancy
	3.2.5 Job Scheduling

	3.3 Difficulties in Multi-Stream in Single Application
	3.3.1 Blocking Action in Multi-Stream in Single Application
	3.3.2 Redundant Data Reading in Spark Streaming
	3.3.3 Redundant Data Reading in Spark Structured Streaming

	3.4 Multi-Stream Applications In Spark Streaming vs Spark Structured Streaming
	3.5 Spark Streaming Framework for Real-Time Analytics of Multiple Heterogeneous Data Streams
	3.5.1 Satisfy Streaming Function Requirements.
	3.5.2 API and Functions
	3.5.2.1 Initialize Function
	3.5.2.2 Register Function
	3.5.2.3 Execute Function
	3.5.2.4 Get Function

	3.5.3 Framework Example
	3.5.4 Advantages of Single Application for Multi-Stream

	3.6 Framework Experimental Results

	4 Scheduling for Multi-Stream
	4.1 Job Scheduling in Spark
	4.2 Micro-batch Behavior of Spark Streaming and Structured Streaming
	4.3 Scheduling Modes in Spark
	4.3.1 FIFO Scheduling
	4.3.1.1 Job Queuing issues in FIFO

	4.3.2 FAIR Scheduling
	4.3.2.1 FAIR Scheduling limitation

	4.4 Alternatives for Solving Job Queuing in Multi-Stream
	 Increase computing power
	 Resource Partitioning
	 Dynamic Resource Allocation
	 FAIR scheduling

	4.5 Solving Job Queuing and Resource Scheduling in Multi-Stream
	4.6 Advantages of Using FAIR scheduler in Multi-Stream
	4.7 Experiments
	4.7.1 Experimental Environment
	4.7.2 Experiment Data
	4.7.3 Testing Scenario
	4.7.4 Test Cases
	4.7.5 Result Collection Method
	4.7.6 Performance Results
	4.7.7 Result Discussion

	5 Conclusion
	6 Appendix
	6.1 Framework Code

	REFERENCES
	VITA

