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Real-time streaming applications with multiple 

heterogeneous data streams have become increasingly popular 
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the deployment of multiple heterogeneous data stream 

processing in a single Spark application. Our framework can 

reduce deployment difficulties, coding redundancy, monitoring 

difficulties, and solve the problem of inefficient job queueing 

in multi-stream applications. 
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1 Introduction 

 

1.1 Motivations 

Internet-of-Thing (IoT) has been widely used in many industries. 

Such as energy, manufacturing, and many others which involve the use of 

complex machinery. These sensors provide us with high volume of data 

and often at a very high velocity. Data generated from these devices are 

typically varied and heterogeneous. For example, power generators are 

being constantly monitored to prevent failures in many power plants. 

These generators usually have over 2000 sensors. Many of these sensors 

generate heterogeneous data which requires their own independent stream 

processing. Deploying real-time application such as anomaly detection in 

this case is very difficult as the processing need to be in real-time and the 

number of stream processing needed to be deployed is large. There are 

many definitions of heterogeneous data as mentioned in [1]. In this 

research, we shall define heterogeneous data as data that is generated 

from different sources with variety of sampling periods and independent 

machine learning models, such as anomaly detection, for each data 

stream. 

Currently, there are many issues related to real-time analytics of 

multiple heterogeneous data, especially when deadlines are different. In 

Apache Spark [2], the conventional way to perform a streaming job is to 

run one Spark application per data stream. This can be a problem when 

we are dealing with multiple streams from different sources as the 

number of applications that needed to be launched grows. In addition, 

when there are multiple applications running simultaneously, the default 

resource scheduling between applications in Spark is FIFO (First-in-First-

Out) policy. This, while give more priority to jobs which arrive first, 

causes problems when multiple streaming jobs are concurrently running. 

For example, a large size job may be the first in the queue and consume 

all available resources blocking smaller jobs with more immediate 

deadline. This caused the smaller job to be delayed and missed its 

deadline. At this moment, there is no proposed solution to these practical 

problems, especially for multiple heterogeneous data stream in Spark. 

To solve these problems, this research introduces a framework for 

Spark which can launch multiple streaming jobs in a scalable manner, 

reduce coding redundancy involved, ease monitoring difficulty, and 

provide a proper solution to resource scheduling. This will provide a 
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more suitable solution to use cases such as real-time anomaly detection of 

large number of sensors 

1.2 Objectives 

To develop a framework for spark streaming which allow efficient 

coding and deployment of multiple streaming process and provide proper 

scheduling methods for these jobs. 

1.3 Scope of Work 

• To develop an efficient and scalable coding framework to allow 

efficient coding and deployment of large amount of machine 

learning model on heterogenous data and handles configurating the 

appropriate job scheduling policy. 

1.4 Research Procedure 

1. Studies of knowledge involved and related works. 

2. Analysis of research problems. 

3. Experiment with options to find solution for research problem. 

4. Development of proposed solution. 

5. Experiment and evaluation. 

6. Conclude research result. 

7. Write research papers and thesis. 

1.5 Expected Benefits 

A Coding framework which allow efficient coding and deployment 

of large-scale multiple stream processing. As well as provide an 

appropriate job scheduling policy. 

1.6 Content Structure 

This thesis consists of 6 Chapters. The 6 chapters are the following: 

1. Introduction 

2. Technical background and related works 

3. Spark Streaming Framework for Large-Scale Multi-Stream Data 

Analytics  

4. Job Scheduling for Multi-Stream  

5. Conclusion 
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1.7 Published Paper 

• Spark Steaming Framework for Large-Scale Heterogeneous Data 

Analytics. Published at 2019 2nd International Conference on 

Communication Engineering and Technology (ICCET). Held on 

12-15 April 2019 in Nagoya Institute of Technology, Nagoya, 

Japan.  
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2 Technical Backgrounds and Related Works 

 

2.1 Technical Backgrounds 

2.1.1 IoT Streaming Data 

IoT (Internet of things) is the term commonly used for a network of 

interconnected devices, such as sensors as well as, devices, social media, 

health care applications, temperature sensors, various other software 

applications and digital devices. Data generated from IoT comes from 

various sensors. This creates heterogeneity, noise, variety, and rapid 

growth in size [3]. There are many applications for big IoT data, such as 

E-commerce, Smart cities, healthcare, and retail & logistic as shown in  

Figure  1. 

 
Figure  1 – Example of use cases and opportunities for big IoT data analytics 

architecture. 

 

IoT data is usually generated in the form of streaming data from 

sensors of various type and from vast number of sources. There are 

several characteristics of IoT streaming data. First, streaming data have 

sampling periods, the time difference between two consecutive samples, 

i.e. new data is generated periodically creating a constant stream of data. 

Second, they are generated from many data sources, usually come in 

massive in numbers, making each stream heterogeneous. In addition, 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 

 

depending on the usage, some data may have deadlines. Deadline is the 

time that the data processing is expected to be completed. In general, this 

is usually the sampling period of the sensor. The time of each deadlines 

varies and is usually context dependent, therefore each sensor can have 

different deadline. Figure  2 shows data taken from a sensor in a 

combined cycle power generator. A typical generator of this type usually 

contains over thousands of sensors of various type. 

 

 
Figure  2 - Data from Combined Cycle Power Generator 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 

 

2.1.2 Heterogeneous Data 

There are many definitions of heterogeneous data as mentioned in [1].  

These definitions are: 

• Syntactic heterogeneity – when two data sources are not 

expressed in the same language. 

• Conceptual heterogeneity – difference in modelling the same 

domain of interest. Also known as semantic heterogeneity.  

• Terminological heterogeneity – variation in name when referring 

to the same object from difference sources. 

• Semiotic heterogeneity – different interpretation of entities by 

people. Also known as pragmatic heterogeneity. 

As these definitions does not really fit with our experiment, for this 

research, we shall define heterogeneous data as data that is generated 

from different sources, having variety of sampling periods, and 

independent machine learning models, such as anomaly detection, for 

each data stream. 

2.1.3 Apache Spark  

Spark is a unified analytic engine for processing large-scale data, 

with built-in modules for streaming, SQL, machine learning, and graph 

processing as presented in Figure  3. Spark’s core is RDD (resilient 

distributed dataset). An RDD [4] is a distributed memory abstraction of 

data partitioned across set of machines that can be rebuilt if a partition is 

lost. We will explain Spark Streaming in further detail in Section 3. 

 

 
Figure  3 – Spark Framework 
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2.1.4 Spark Streaming  

Spark’s stream processing API, called Spark streaming, treats 

streaming data as a continuous series of unbounded micro-batches where 

available data is processed at every interval. This is called Dstreams or 

discretized stream [5]. Figure  4 shows the illustration of the high-level 

overview of spark streaming.   

 

 
Figure  4 - High level overview of Spark Streaming API. Taken from [9]  

2.1.5 Spark Structured Streaming 

Spark Structured Streaming [6] is Spark’s next API for stream 

processing. It aims to make stream processing easier and more accessible 

by allowing developer to create streaming application without having to 

reasons with streaming related configurations. Structured streaming offers 

much more processing methods than its predecessor Spark’s Streaming. 

Most Spark’s Data-frame Operations can be directly applied to Structured 

Streaming. As shown in Figure 5,Spark Structured Streaming operates on 

Spark’s new Data Frame API and treats streaming data as unbounded 

tables of data instead, where every trigger (intervals) spark read all new 

data available from the data source. Figure 6 explains how Spark keeps 

track of old/new data by using its state management,  

Our framework is based on Spark Structured Streaming, from this 

point on we will refer to Spark Structured Streaming as Spark Streaming 

as it is the new streaming API promoted by Spark and the old Spark 

Streaming is no longer in development. 
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Figure  5 - Components of Structured Streaming. Taken from [10] 

 
Figure  6 - State Management of Structured Streaming during execution, Taken  from 

[10] 
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2.2 Related Works 

2.2.1 Hybrid big data architecture for high-speed log anomaly 

detection 

Real-time anomaly detection on streaming data has been 

previously achieved by [7] where network log data is analyzed in real-

time using SARIMA anomaly detection. SARIMA (Seasonal 

Autoregressive Integrated Moving Average) is a statistical model 

commonly used for anomaly detection in time-series data with 

seasonality components. The reason SARIMA model could not be apply 

directly to streaming data is because SARIMA requires historical data to 

be preprocessed to create its model making it inapplicable. 

 
Figure  7 - SARIMA-based Anomaly Detection System 

 

This research proposed a hybrid data processing architecture based 

on lambda architecture as presented in Figure  8, which allow SARIMA 

to be applied on to streaming data in real-time. Their approach to 

applying SARIMA in real-time is to use a bi-model approach instead,   

shown in Figure  9. This bi-model solution uses their proposed 

architecture to train SARIMA model with historical data in batch 

processing. The model is then applied onto streaming data in real-time.  
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Figure  8 - Hybrid Big Data Architecture 

 
Figure  9 - Bi-Modal SARIMA-Based Anomaly Detection System 
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2.2.2 Real-time High-Performance Anomaly Detection over Data 

Streams: Grand Challenge 

Real-time anomaly detection on N-number of data streams was 

proposed in [8]. It handles multiple data streams by dividing incoming 

data into data windows based on their time intervals. After each interval, 

all window from each stream is then processed in parallel using multi-

threading as shown in Figure  10. However, this framework has limitation 

as it assumes identical period for all stream.  

In Figure 11 the input component receives data from message 

broker in RDF format which is then parsed for the data window manager 

to build data window. The anomaly detector component receives the list 

of windows data and processes them in parallel. The processing includes 

clustering the data inside the window and calculating the Markov chain 

transition matrix and transition threshold which is then compared with 

data for detection result. The result of the anomaly detection component 

is forwarded to the output component for reporting. 

 

 
Figure  10- Architecture of Multi-Threaded/Multi-Processed Anomaly Detection 

System 

 
Figure  11 - Architecture of Anomaly Detection System. 
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2.2.3 Adaptive Scheduling of Parallel Jobs in Spark Streaming 

An adaptive scheduler for Spark streaming was introduced by [9]. 

This adaptive scheduler dynamically adjusts resource scheduling for each 

stream. They have achieved this through extending Spark Streaming and 

uses “spark.concurrentJob”, a config which control the amount of 

parallelism, to allow more than one micro-batch of each stream to be 

processed at a time.  

This configuration is however not recommended by Spark and is 

not documented into Spark’s official API. The problem of using this 

configuration is that it will cause some micro-batch to be processed 

incorrectly in the case that a batch-to-batch dependency exists. A batch-

to-batch dependency is when the result of a micro-batch is not only 

determined by the data contained but also prior micro-batch e.g. window 

operation as shown in Figure  12. 

 
Figure  12 - Micro-batch Dependency 

 

This research implemented a solution which classifies jobs by their 

job dependency then assigning them into appropriate job pools; as shown 

in Figure  13. Jobs without micro-bath dependency is put into the same 

pool to utilize the concurrent job setting and jobs with dependency is 

separated into another pool as they are not compatible with the setting. 

Classification is done by checking the job’s directed acyclic graph 

(DAG). The Adaptive Optimizer takes performance statistic from Spark 

Engine and adaptively adjust the pool resource weight and the amount of 

parallelism through reinforcement learning after each micro-batch of 

execution. The workflow of Adaptive scheduler is shown in Figure  14. 
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Figure  13 - Overview of Adaptive Scheduler 

 

 
Figure  14 - Adaptive scheduler Workflow 
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2.2.4 The 8 Requirements of Real-time Stream Processing 

 

In research [10],  the 8 requirements of real-time stream processing is 

purposed. We want to emphasize on the 8th requirement which states that 

“a stream processing must be able to keep up a highly-optimized, 

minimal-overhead execution engine   to   deliver   real-time   response   

for   high-volume applications”. As the tools being used in this research, 

Spark Structured Streaming, can satisfy most requirements by default. 

 

 
 

Figure  15 - The 8 Requirements of Real-Time Stream Processing 
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3 Spark Streaming Framework for Large-Scale Multi-

Stream Data Analytics. 

 

In this chapter, we provide more information on what Multi-Stream 

is, as well as, the problems it introduces, previously solutions to the 

problems, and finally we introduce our solution. Spark Streaming 

Framework for Large-Scale Multi-Stream Data Analytics. This 

framework aims to provide a more suitable solution to use cases such as 

real-time anomaly detection of large number of sensors.  

3.1 Multi-Stream Definition 

We defined a single-streams as a streaming process where all data 

passes through a single processing function before it is then send to the 

data sink. Figure  16 shows diagram of our definition of a single stream. 

 

 
Figure  16 – Single Stream 

Multi-stream is a streaming process where incoming data is divided 

into multiple streams and processed through its unique processing 

function before it is then sent to the data sink. Figure  17 shows diagram 

of our definition of a multi-stream.  

 
 

Figure  17- Multi-Stream 
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3.2 N-Application Multi-Stream Processing 

Previously, the only way to operate multi-stream is to use N-

application approach, where N is the number of streams. In N-application 

method, an application developed and deployed for each data stream.  

Each application is responsible for its own data stream.  There are many 

issues related to managing large amount of these applications. 

3.2.1 Application Submission 

In Spark, it is impossible to submit multiple applications at once. 

Applications must be submitted one at a time via spark-submit. This can 

be very hard to manage when the number of applications grow 

sufficiently large. The only way to ease up this process is by preparing a 

cron script, a time-based job scheduler in Unix-like computer operating 

systems, to submit each application. This can cause many problems when 

running large amount of Spark applications. 

3.2.2 Resource Overhead 

A Spark application requires its own Spark executor. A Spark 

executor consumes, additional resource. By default, a Spark Driver 

program consume a minimum of 300mb of memory. Using an application 

per data stream in large scale multi streaming system can be very costly. 

3.2.3 Monitoring Difficulty 

Monitoring difficulty also increases as most spark monitoring tool, 

such as Spark web user-interface, only provide monitoring of individual 

application; leaving cluster-wide monitoring-tools like Ganglia [11] as 

the only few options.  

3.2.4 Coding Redundancy 

Deploying large amount of applications also causes a lot of 

redundant coding of configuring and instantiating Spark sessions. 

3.2.5 Job Scheduling 

The default job scheduling is not suitable for handling multiple 

heterogeneous streams.  
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3.3 Difficulties in Multi-Stream in Single Application 

Our final approach is to launch multiple stream simultaneously on a 

different thread. By running each stream on a different thread, the stream 

process continues to be a blocking action but does not block any 

execution as it is isolated within its own thread allowing the program to 

continue. We will go into more detail of our implementation later in this 

chapter. First, we will explain the difficulty of deploying multi-stream in 

single application. 
 

3.3.1 Blocking Action in Multi-Stream in Single Application 

Previously, when we try to fit multiple streaming process into a 

single application, some processes will not launch. In Spark, a stream 

processing is a blocking action. This meant that applications will wait 

until the streaming process finishes before moving on to the next line of 

code. Therefore, in a normal manner of coding the first streaming process 

that starts will block the rest of the code in the program from running, 

hence other stream process cannot start as shown in Figure  18. 

 

 
Figure  18 - Blocking action of multi-stream in single application 
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3.3.2 Redundant Data Reading in Spark Streaming 

In Spark Streaming, when multiple stream processing shares the 

same data, it is commonly understood that data from the input stream is 

read once and distributed amongst each stream process as shown Figure  

19.  

 

 
Figure  19 – Expected Workflow of Multi-Stream Behavior 

 

However, after testing and tracing the execution DAG, we have 

found that multiple readings occurred at the input stage. Figure  20 

illustrated what happened during execution. Input is read once per 

output/streaming process even though they share the same data.  

 

 
Figure  20 – Actual Workflow of Spark Streaming with Multi-Stream 

 

From this finding, we tried to solve the issue by having spark cache 

the input data immediately after it is read to avoid repeated reading. This 

does not solve the problem. Instead causes Spark to cache the same data 

multiple time. 
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3.3.3 Redundant Data Reading in Spark Structured Streaming 

In Structured Streaming, we applied the same approach onto Spark 

Structured Streaming to test whether the problem persists but yielded the 

same results. This is because Spark Structured Streaming treats an output 

operation as one query, where a query consists of inputs, processing 

action, and an output. There is currently no way to mitigate this as it is a 

part of Spark’s design. 
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3.4 Multi-Stream Applications In Spark Streaming vs Spark 

Structured Streaming 

For Spark Streaming (D-Stream), even though we can use threading 

to allow multiple stream processing, only one shared micro-batch interval 

is possible as it is controlled by the spark context; as presented in Figure  

21. In multi-stream with heterogeneous data, this is not practical as data 

does not always have the same period. 

 

 
Figure  21 - Spark Streaming context and batch interval setting 

Source: https://spark.apache.org/ 
 

A workaround for this problem is to group each stream process into 

a windowed computation instead which can help mimic multiple batch 

intervals, Figure  22. This provides very limited options for micro-batch 

interval since only intervals that is a multiple of the micro-batch interval 

defined in spark-context is allowed.  

 

 
Figure  22 – Grouped Window Operation on Dstreams 

Source: https://spark.apache.org/ 
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This problem is, however, not an issue in Spark Structured 

Streaming as micro-batch interval is no longer defined inside spark-

context but within the output of the streaming query, as illustrated in 

Figure  23. This allow each streaming query to define its own micro-

batch interval even when sharing spark-context. We implemented our 

framework using Spark Structured Streaming. 

 

 
Figure  23 – Trigger Setting in Structured Streaming showing micro-batch interval 

setting 

Source: https://spark.apache.org/ 
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3.5 Spark Streaming Framework for Real-Time Analytics of 

Multiple Heterogeneous Data Streams 

We proposed a Spark Streaming framework for multiple 

heterogeneous data streams. This framework integrates multiple data 

streams into one single Spark application using python’s threading 

package to allow simultaneous launching of multiple stream. This 

framework is an API operates on top of existing Spark Streaming.  

Our framework is designed to address the problem that is generated 

from the need to deploy a large amount of smaller sized stream 

processing within an environment with limited resources such that 

streams are forced to compete or queue for resource. Stream processing 

that requires multiple stream processing such as real-time anomaly 

detection of large amount of sensor data is a great example.   

3.5.1 Satisfy Streaming Function Requirements. 

The requirement which streaming function need to be satisfied to 

work with our framework; Example shown in Figure  24. Function to be 

register will need to contain the following: 

1. Data Source – clear and defined streaming input source in which 

further transformation/action will be applied to. The data source 

maybe defined either inside the function itself, or anywhere within 

the application where the transformation/action can access the 

data-frame that read the streaming data. 

2. Processing command (transformation/action) – a transformation or 

action to transform the input stream. 

3. Output – an output with defined sink, output mode, and start call. 

 

 
Figure  24 – Example of Streaming Function 

Source: https://spark.apache.org/ 
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3.5.2 API and Functions 

To combine each streaming process, our framework provides three 

functions; Initialize, Register, and Execute. The Initialize function setups 

Spark with the required configurations. These include importing 

framework dependency, initializing spark sessions, and configuring 

scheduling mode. The Register function takes in a python function object 

and append it to a function list which will be called and executed by the 

Execute function. The Execute function launches all functions registered 

with the Register function in parallel by calling these functions using 

python’s Threading package. Table  1 summarize the functions of our 

framework. In addition, we provide a get function to allow the user to 

access the streaming query object for further management. 

 

 
Table  1 - Framework Function Description 
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To use this framework, user must call Initialize, registers required 

function with the Register function, then start all stream processing with 

Execute. Please refer to the appendix for the complete code and example. 

 

3.5.2.1 Initialize Function 

The Initialize function will setup Spark with the configuration 

required for our framework. Inside the function, we import framework 

dependency, initialize spark sessions, and configure it to use FAIR 

scheduling mode. The user can provide their own spark config by passing 

the spark config object to the function. In addition, this function also 

fetches important information such as the amount of worker available. 

3.5.2.2 Register Function 

The Register function takes in a python function object, a query 

object, and a String name for identification. The registered function will 

be called and executed by the Execute function. 

3.5.2.3 Execute Function 

The Execute function launches all stream processing functions 

registered with the Register function in parallel. It will start all streaming 

query in the function list by calling these functions using python’s 

Threading so that stream processes may run concurrently without 

blocking one another.  

3.5.2.4 Get Function 

The get() function can be used by the user to access the query 

object of a streaming queries. This can be done by providing the get() 

function with a name string as an argument. The function will return the 

query object with matching name. 
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3.5.3 Framework Example 

To use this framework, user must call Initialize to prepare the 

framework, register required function with the Register function, then 

start all stream processing with Execute; Figure 25 and 26 illustrate 

examples of how to use our framework. 

 

 
Figure  25 – Example of Framework: Single Function 
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Figure  26 – Example of Framework: Multiple Functions 
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3.5.4 Advantages of Single Application for Multi-Stream 

By integrating multiple streams processing into one Spark 

application, we can solve many issues. First, we reduce the complexity of 

running a Spark application, since we only need to submit only one 

application instead of N-application. Using more applications to achieve 

the same amount of works will consume more resources. Second, we 

simplify application monitoring process as we can now use Spark 

monitoring tools such as Spark web user interface. Spark’s built-in 

monitoring tools, Spark Web UI, only provide monitoring of single 

application. In case of N-application, multiple monitoring windows will 

be required. Third, we reduced lots of redundant codes such as initializing 

spark context and configuration, which is needed to be written only once. 

The only necessary code is one responsible for processing each data 

stream. Finally, integrating all stream processing processes into one 

application allows us to utilize Spark’s FAIR scheduling mode to solve 

the problem of job queuing (will be discussed later in the next chapter). 

Table  2 compares the difference between our framework and traditional 

N-application method. 

 

 
Table  2 - Comparison of the Difference between Our Framework and N-Application 

Method 

 

Despite all advantages our single application method offer, there are 

also some limitations. First, our framework starts/stops all streaming 

queries together and provides very little accessibility in term of individual 

query management. Lastly,  this framework is developed for a single 

owner operation and does not support multiple owner operations.  
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3.6 Framework Experimental Results 

By applying our framework which make use of threading to 

concurrent launch spark streaming, we have enabled multi-stream 

processing from a single application in Spark. Figure  27 shows the result 

of our framework. From these results, we can clearly see that multiple job 

is able to start at the same time (as seen in the “submitted” column). 

 

 

Figure  27 – Spark Web UI showing how multi-stream can now be run in a single 

application 

 

Even though we have solved the problem of deploying multi-stream 

in a single application. We have found that the default job scheduler 

Spark provide is not designed for multi-stream and scheduled job 

inefficiently causing multiple problems. We will address this in the next 

chapter.  
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4 Scheduling for Multi-Stream 

 

In this chapter, we will provide explanation of how job scheduling is 

done in Spark, our findings of how Spark job scheduling handle multi-

stream and introduce how to optimize Spark job scheduling to achieve 

higher performance for multi-stream. 

To solve the problems of Head-of-Line blocking in multi-stream 

caused by Spark’s default job scheduler FIFO. Our proposed framework 

utilizes Spark’s FAIR Scheduling scheme to resolve the scheduling 

problem. 

4.1 Job Scheduling in Spark 

A Spark cluster component, as presented in Figure  28, involved in 

Spark’s data processing includes: 

• The driver program is the main program (application) and is 

coordinated by the SparkContext.  

• The cluster manager handles job scheduling, there are many cluster 

managers but for this research we use Spark Standalone.  

• The worker node which handles computation and stores data.  

 

 

Figure  28 – Spark Cluster Component 

Source: http://spark.apache.org/ 
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Figure  29 – Job Scheduling in Spark (Single Application, Single Job) 

 

We illustrate how a single data processing job flows through each 

component in Figure  29. The driver program communicates with the 

cluster manager to request for worker. After the request is granted, Spark 

then connects to the executors on the allocated worker nodes. 

SparkContext then send task to each worker node to run. The worker 

node then returns the computation results to the driver program.  

4.2 Micro-batch Behavior of Spark Streaming and Structured 

Streaming 

In Spark Streaming, there is no long running process aside from a 

listener which is used to detect new data every micro-batch interval. Once 

new data is detected, Spark then submit a job to process the new data. 

Meaning that there is no long running job, but a small job every small 

interval instead.  

 

Here are 3 main micro-batch behaviors: 

1. If the previous micro-batch completes within the interval, then the 

engine will wait until the interval is over before kicking off the 

next micro-batch. 

2. If the previous micro-batch takes longer than the interval to 

complete (i.e. if an interval boundary is missed), then the next 

micro-batch will start as soon as the previous one completes (i.e., it 

will not wait for the next interval boundary). 

3. If no new data is available, then no micro-batch will be kicked off. 
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4.3 Scheduling Modes in Spark 

Spark employs two job scheduling schemes. FIFO and FAIR. FIFO 

is the default job scheduling. 

4.3.1 FIFO Scheduling 

By default, Spark schedules jobs from each application in FIFO 

(First-in-First-Out) mode. In FIFO, when there are not enough resources, 

job will start to queue up one after the other waiting for resources. This 

can happen from two scenarios, when several jobs are submitted from the 

same application concurrently (single application, multi-stream, Figure  

30) and when several applications are submitting jobs concurrently 

(multi-application, single-stream, Figure  31) Both cases are not suitable 

for real-time applications as it can cause head-of-line blocking problems 

or HoL, of which jobs with immediate deadline are queued behind a 

larger job with more relaxed deadline.  

 

 
Figure  30 – FIFO Job Scheduling (Single Application, Multi-Stream) 
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Figure  31 – FIFO Job Scheduling (Multi-Application, Single Stream) 
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4.3.1.1 Job Queuing issues in FIFO 

In FIFO when several applications are running and there are not 

enough resources, job will start to queue up one after the other waiting for 

resources, as shown in Figure  32. This is very bad for real-time 

applications as it can cause serious delay, especially when a job with 

immediate deadline is queued behind a larger job with more relaxed 

deadline. Figure  33 shows blocking effect that can be identified in Spark 

Web UI when running multi-stream in FIFO. It shows multi-streams 

processing with identical micro-batch size, but different processing time 

caused by job queuing. 

 

 
Figure  32 - Job Queuing / Head-of-Line Blocking 

 
Figure  33 – Blocking Effect in Multi-Stream from Spark Web UI 
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4.3.2 FAIR Scheduling 

In FAIR scheduling, Spark assigns resources to all jobs at the same 

time. This make all jobs in the queue start processing right away 

including job at the end of the queue. Figure  34 shows how both 

concurrent jobs get a worker node each and can start processing 

immediately as oppose to  Figure  30 – FIFO Job Scheduling (Single 

Application, Multi-Stream) or Figure  31 – FIFO Job Scheduling (Multi-

Application, Single Stream). 

This, however, does not eliminate job queue, as when the number 

of workers is not enough for sharing across jobs, some job will be 

queued. As our finding suggest in the next section. Thus, multiple jobs 

can be processed concurrently, eliminating the waiting time in the job 

queue. However, FAIR is only available when running as a single 

application as Spark does not support a FAIR scheduler for scheduling 

multiple applications. Therefore, it was necessary for our framework to 

operate in a single application. 

 

 
Figure  34 – FAIR Scheduling 
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4.3.2.1 FAIR Scheduling limitation 

After experimenting with different numbers of concurrent stream. 

We have found that even though we are using FAIR scheduling mode, 

Spark will only run concurrently processes at most N number of streams, 

where N equals the number of core available, Figure  35 presents the case 

of launching 8 concurrent streams and 4 streams finished first. This imply 

that Spark will only process as many jobs concurrently as the number of 

cores available to the system. For example, if there are 8 jobs submitted 

concurrently but only 4 cores are available, Spark will process 4 jobs at a 

time. 

 

 
Figure  35 - Behavior of 8 Concurrent Streams with FAIR 
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4.4 Alternatives for Solving Job Queuing in Multi-Stream  

There are several methods to avoid job queueing in multi-stream 

environment. The following are possible solutions 

• Increase computing power 

Increasing  number of workers can reduce job queuing. This is 

because if the first job does not take up all available resources then the 

next job may start right away with any resources that are left even if 

Spark job scheduling is in FIFO mode. Since this requires investment in 

computing power, it may not be the preferred option.  

• Resource Partitioning 

We can limit the maximum amount of resources a Spark application 

can use. By limiting the number of workers an application can use, 

allowing resources to be spared for other applications. Unfortunately, 

applications will hold onto all resources allocated to them for the entire 

duration instead of when needed.  

• Dynamic Resource Allocation 

Dynamic resource allocation allows resource that is no longer use by 

its application to be freed and returned to the cluster after the application 

is idle. The application may request more resources later when required. 

This method is not fully supported on spark streaming. In stream 

processing, applications are long continuous processes where small jobs 

are submitted every small interval.  This makes the idle time of each 

application very small causing the application to never return resources to 

the cluster. Therefore, dynamic resource allocation does not work for 

Spark Streaming. 

Similarly, 3rd party cluster management like Mesos will also not 

work. When Spark application are communicating with Mesos on 

resource usages, it will always ask for resources it requires and will hold 

on to it. The only exception is the unlikely case where the data source is 

interrupted, and the data arrival interval is extended. Spark may free up 

resources until new data arrives, not in regular case where spark 

streaming idle time is usually only a few seconds. 

• FAIR scheduling  

FAIR scheduling allows jobs to start processing immediately by 

sharing resources. It can effectively eliminate job queuing. This is the 

more ideal solution to multi-stream queuing problem. 
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4.5 Solving Job Queuing and Resource Scheduling in Multi-

Stream 

When running multi-streams, we run into scheduling problem as 

described in chapter 3. To solve the job queuing and resource scheduling 

problem of Multi-Stream, we configure Spark to use a FAIR scheduling 

mode. In FAIR scheduling, Spark assigns resource to jobs in a round-

robin fashion. This allows multi-stream to equally share the cluster’s 

resources. Thus, multiple jobs can be processed concurrently, eliminating 

the waiting time in the job queue. The performance result for using FAIR 

will be presented in Section 4.7. 

4.6 Advantages of Using FAIR scheduler in Multi-Stream 

• When a stream finishes processing early, its resources will be 

relocated to other streams that are currently processing 

immediately. In a multi-application method resource will not be 

relocated. This provides better resource utilization. 

• No job queueing as all streaming job can start immediately. 

• Head-of-Line blocking is not an issue as many streams can start 

processing at once. 
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4.7 Experiments 

In this Section, we evaluate the performance of our framework while 

using FAIR scheduling.  

4.7.1 Experimental Environment  

We used a MacBook pro (2016) for this experiment. Our 

configurations and specification are shown in Table  3. 

 

 
Table  3 - Test Environment and Configuration 

4.7.2 Experiment Data 

We use KDD1999 [12] competition data, a widely used dataset for 

anomaly detection of network intrusion in all experiment. The entire 

dataset is 753.1MB in size and contains 4.3 million records. Figure  36 

shows an example of a record in KDD1999.  

During the experiment, we will be using only one percent of the 

dataset (6.4MB of data) per micro-batch, as it is closer to the size of a 

streaming data. A special case where we will use the full dataset (753.1 

mb) is when we are replicating a Head of Line blocking issue where we 

will have the first in-queue have a larger than average size (753.1mb vs 

6.4mb).   

 

 
Figure  36 - a record in KDD1999 

Source: Anomaly Detection with Apache Spark, Cloudera, Inc 
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4.7.3 Testing Scenario 

During each micro-batch, data is queried from a local file source 

using Spark file-stream. then a group-by operation is done, followed by a 

count aggregation which then output the results to a console sink. 

For this experiment, we test with 4 concurrent streams. This is 

because we have found that even though we have FAIR scheduling mode, 

Spark will only start up and concurrently process at most N number of 

streams; Where N is equal to the number of worker available, we feel that 

we should test in the scenarios where resource is a constraint as it is much 

harder to evaluate the performance of each scheduler mode if we have 

excess computing power. 

Data is then recorded for both FAIR and FIFO to compare its 

performance. 

4.7.4 Test Cases 

We perform our experiment by replicating 2 cases of scheduling. 

Worst-case and Best-Case, Table  4. Worst-case is when a large job 

(753.1mb) is in front of the job queue and is causing a HoL blocking for 

small job (6.4mb). Best-case is when there is no significantly large job in 

the queue to cause HoL blocking.  

 
Table  4 - Test Cases 

Worst-Case Best-Case 

 

• 3x Regular Stream of normal 

size (6.4mb)  

• 1x Large Stream/Job 

(753.1mb) (always queued 

first) 

 

 

• 4x Regular Stream of normal 

size (6.4mb) 

• No blocking by large head of 

queue. 
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4.7.5 Result Collection Method 

All data is collected by recording from Spark Web UI. The 

processing time recorded is taken from the “Duration” column. This 

“Duration” column is the time of job submission to the time it finished 

processing. For each test cases we record the processing time of the 

regular stream that took the longest to process for that run.  

We also observed Spark Web UI’s job timeline to verified if 

resource is being scheduled as it should according to our test cases. 

 

4.7.6 Performance Results 

To compare the results, we perform an approximate visual test [13]. 

The comparison of the processing time between FIFO and FAIR in the 

worst-case scenario is shown in Figure  37. From these results, we can 

clearly see that FAIR out-performed FIFO with a significant difference. 

From these results we can calculate the speed up of Processing Time 

(FIFO) / Processing Time (FAIR) = 16.14/14.59 = 1.106 or 10.6% speed 

up. 

 

 
Figure  37 – Processing Time (FAIR vs FIFO) (Worst-Case) 
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Next, we compare the processing time of FAIR vs FIFO in the 

best-case scenario where each data stream is of identical size. In this 

scenario there is no blocking caused by a large job. Only regular queuing 

for resource. The result shows that the average processing time of the two 

have no significant difference; as shown in Figure  38. With the average 

time of FAIR being 53 seconds and FIFO being 52 seconds. 

 

 
Figure  38 – Processing Time FAIR vs FIFO (best-case) 
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4.7.7 Result Discussion 

From our experimental results, we have made several findings. First, 

FAIR will outperform FIFO in scenario where job queueing is presence 

and maintain equivalent performance otherwise. Second, there is an 

increase in execution time for each individual stream in FAIR. This is 

caused by resource sharing between each stream, resulting in the increase 

in individual processing time. In four multi-streams processing, the 

resources available is shared amongst four streams. Processing time 

versus the number of multi-streams is shown in Figure  39. 

 

 
Figure  39 - Processing Time vs Number of Concurrent Streams 
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While the increase in individual stream execution time make FAIR 

scheduling seems worst, our test results shows that FIFO scheduling with 

job queuing have worst performance than FAIR scheduling as shown in 

Figure  37. Figure  40 shows the comparison of FAIR and FIFO job 

scheduling timeline in Spark Web UI. From the Spark Web UI, we can 

clearly see that streams 2-4, performed much better in FAIR where job 

queuing is not an issue whereas in FIFO stream 4 have missed the real-

time deadline of 15s. In a real-time environment where deadline is 

important the solution with the better worst-case scenario is preferred. 

Please note that the start of block indicates that the job is submitted not 

when it starts processing. 

 

 
Figure  40 - Scheduling difference of FAIR vs FIFO in Spark Web UI 
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This behavior can be explained in further detail with Figure  41, a 

graphical representation of how job is scheduled including when they 

start processing. Dotted red vertical line represent micro-batch interval. 

We will assume that our large stream takes twice as long as small stream 

to process. Arrows represents job that is submit and is in queue but have 

not started processing. Red dotted arrow represents job that are submitted 

later than its interval.  

 

 
Figure  41 - Diagram of Job scheduling of FIFO vs FAIR 

 

There are a few important behaviors of micro-batch. First, even 

though a micro-batch finishes processing, the next micro-batch will not 

start until its interval arrived. Second, if a micro-batch have not finished 

processing then the next micro-batch will not start until it is finished. This 

is very important as it means that if a delay happens it will cause delay 

buildup which can get out of control unless given time to recover. 
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5 Conclusion 

In this research, we have introduced a framework for Spark 

Structured Streaming based on Pyspark, our framework provided solution 

to problems related to multiple heterogeneous data streams processing. 

These problems include deployment of application, monitoring difficulty, 

coding redundancy, and Job scheduling between data streams. 

We have solved the problem of deploying large amount of streaming 

application by providing a framework which integrate multiple stream 

processing into one Spark application. With this framework, we reduced 

the amount of Spark-Submit required, minimize the coding redundancy in 

Spark application, reduce the monitoring difficulty caused by running a 

large amount of Spark application, and finally solves the scheduling 

problem of job queueing by using Spark’s FAIR scheduling mode to 

assign each stream an equal share of resources. 

Difficulties found during this research are as followed. As we 

implemented our framework using python programming language and 

coded on top of pyspark, our access to Spark’s core function is very 

limited. We cannot extend or reimplement some functionality and most 

importantly Spark’s pyspark API does not provide access to Spark 

listener, a class use to access spark’s monitoring statistic. 

With limited accessibility provided by pyspark API, we cannot 

change job scheduling pool during live operation, this stops us from being 

able to create a framework that can dynamically assigned resource to 

jobs. As we have found out later that it is possible with some method 

overwrite with the Scala API. 

For future research direction, re-implementing our framework in 

Scala would provide more research opportunity by creating a dynamic job 

prioritization, which can be done by reassigning job to job pools of 

different weight to match their performance. In addition, we could also 

implement a function to allow new stream process to be added on the fly 
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6 Appendix 

6.1 Framework Code 
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