วิวัฒนาการชาติพันธุ์ระดับโมเลกุลของราเอคโตไมคอร์ไรซาในวงศ์ Boletaceae จากภาคเหนือ และภาคตะวันออกเฉียงเหนือของประเทศไทย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาพฤกษศาสตร์ ภาควิชาพฤกษศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2554
ลิขสิทธิ์ของจฬาลงภรณ์มหาวิทยาลัย
 เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่ส่งผ่านทางบัณฑิตวิทยาลัย

> A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Botany
> Department of Botany
> Faculty of Science
> Chulalongkorn University

Academic Year 2011
Copyright of Chulalongkorn University

ปวราย์ ปาจิตร์ : วิวัฒนาการชาติพันธุระดับโมเลกุลของราเอคโตไมคอร์ไรซาในวงศ์ Boletaceae จากภาคเหนือและภาคตะวันออกเฉียงเหนือของประเทศไทย.
(MOLECULAR PHYLOGENY OF ECTOMYCORRHIZAL FUNGI IN THE FAMILY BOLETACEAE FROM NORTH AND NORTHEASTERN OF THALLAND)
อ.ที่ปรึกษาวิทยานิพนธ์หลัก : ผศ.ดร.จิตรตรา เพียภูเขียว, อ.ที่ปรึกษาวิทยานิพนธ์ร์วม : อาจารย์ ดร.เชิดชัย โพธิ์ศรี, 140 หน้า.

ทำการเก็บตัวอย่างดอกเห็ดของราเอคโตไมคอร゙ไฐๆาในวงศ์ Boletaceae จากแหล่งต่างๆ ใน 5 จังหวัด คือ ศัยภูมิ เีียงใหม่ น่าน พิษณุโลก และอุบลราชฉานี่ได้ต้วอย่างดอกเห็ดเป็นจำนวน 95 ตัวอย่าง ถูกจัดจำแนก อยู่ใน 8 สกุล Boletus (24 ชนิด) Tylopilus (14 ชนิด) Boletelus (5 ๆนิด) Strobilomyces (4 ชนิด) Heimioporus (3 ชนิด) Lecinum (2 2 ชนิด) Palveroboletus (1 ๆนิด) และ Zangia (1 ฯนิด)

ศึกษาความลัมพันธ์โชิงวิวัฒถารชาดีพันโุ์ของราเอคโตไมคอร์ไรซาในวงศ์ Boletaceae จากตำแหน่ง ของไริบโซมอลีีเอ็นเอ 2 ตำแหน่ง คือ internal transcribed spacer (ITS) และ large subunit (LSU) ทำการ เปรียบเทียบลำดับนิวคลีไอไทด์ทั้งสอองตำแหน่งของตัวอย่างที่ได้กับลำดับนิวคลีไอไทด์จากฐานข้อมูล GenBank
 Heimioporus Pulveroboletus และ Strobilomyces เป็นกลุ่มแบบวงศ์วานเดี่ยวในขณะที่สกุล Boletus และ Ty/opius ไม่ใช่กลุ่มแบบวงศ์วานเดี่ยว จึ่งแแตตต่างจากผลลาาววิเควาะน์ความสัมพันธ์เชิงวิวัผนาการชาติพันธุ์ จากตำแหน่ง LSU ที่แสดงให้เห์นว่าเฉพาะสุุล Heimioporus Pulveroboletus และ Strobilomyces เป็นกลุ่ม แบบวงศ์วานเดี่ยว โดยความแตกต่างนี้อาจมาจากจำนวนลำดับนิวคลีไอไทด์ในแต่ละสกุลที่ไช้วิเคราะห์จาก ตำแหน่ง $1 T S$ มีน้อยเกินไป แต่อย่างไร็็ตาม ความสัมพันธ์ระหว่างสกุจในวงศ์นี้ยังไม่ชัดเจน นอกจากนี้ ทำการสึกษาวิวัฒนาการชาดิพันโุโใดยใช้ไรโบโซมอลทั้งสองตำแหน่งของสกุล Ty/opilus พึ่งเป็นสกุุที่มี่จำนวน สมาชิกมาก จากผลการวิเคราะห์ชิิิวิววพนาการชาดิพันโุ๊ของทั้งสองตำแหน่งมีความสอดคล้องกันและแสดงให้ เห็นว่า Tylopius สามารณแบ่งเป็นอย่างน้อย 4 กลุ่ม นอกจากนี้ความสัมพันธ์ระหว่างชนิดของสกุล Tylopius ยังมัมพันธ์กับวงศ์ขงอพืชจาनัยด้วย จากการศึกษาคงั้งนี้ พบว่า มีราสกุล Tylopius อย่างน้อย 14 ชนิดใน ประเทคไไยย นอกจากนี้การศึกษาในครั้งน้้ย้งให้ข้อมูลของงาในวงศ์ Boletaceae ในเขตร้อนทั้งงางด้านสันฐาน วิทยาและข้อมูลเชิงโมเฉกุล แต่อย่าไไรก็ตาม ควรมีการึึกษาราในวงศี้เพิ่มเติมโดยเฉพาะอย่างยิ่งในเขต้อ้อน เพื่อเตินเด็มองค์ความรู้ไางด้านระบบวิทยาของราวงศ์ Boletaceae

ภาควิชา พ พถกษศาสตร์ ลายมี ลื่อนิสิต
สาขาวิชา.... พถกษษาสตร์ . \qquad ปีการศึกษา.... 2554 ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธ์ร์วม \qquad
\# \# 5272412323 : MAJOR BOTANY

KEYWORDS : ECTOMYCORRHIZA / BOLETACEAE / PHYLOGENY

PAWARA PACHIT : MOLECULAR PHYLOGENY OF ECTOMYCORRHIZAL FUNGI IN THE FAMILY BOLETACEAE FROM NORTH AND NORTHEASTERN OF THAILAND. ADVISOR : ASST.PROF. JITTRA PIAPUKIEW, Ph.D., CO-ADVISOR : CHERDCHAI PHOSRI, Ph.D., 140 pp.

The ectomycorrhizal basidiocarps in the family Boletaceae were collected from various forests and plantations in five provinces, Chiang Mai, Chaiyaphum, Nan, Phitsanulok and Ubon Ratchathani. Ninety-five basidiocarps were classified in 8 genera, Boletus (24 species), Tylopilus (14 species), Boletellus (5 species), Strobilomyces (4 species), Heimioporus (3 species), Lecinum (2 species), Pulveroboletus (1 species) and Zangia (1 species).

Phylogenetic relationships among ectomycorrhizal Boletaceae were studied based on both ribosomal DNA regions, internal transcribed spacer (ITS) and large subunit (LSU). ITS and LSU sequences of Thai specimens were compared with some species in Boletaceae available in GenBank database. Phylogenetic analysis based on ITS suggested that Boletellus, Heimioporus, Pulveroboletus and Strobilomyces were monophyletic groups while Boletus and Tylopilus were not monophyletic groups. It was dissimilar to phylogenetic tree based on LSU which indicated that only Heimioporus, Pulveroboletus and Strobilomyces were monophyletic groups. This inconsistence might be from the few ITS sequences in each genus. However, the relationships among genera were still unclear. In addition, the phylogeny of the large genus, Tylopilus was investigated based on both rDNA regions. Two similar phylogenetic analyses showed that Tylopilus could be clearly divided into at least 4 clades. Moreover, the relationships among Tylopilus species corresponded to their host plant families. Fourteen Tylopilus species existed in Thailand. Moreover, this study provided the important morphological and molecular database of tropical Boletaceae. Nevertheless, more information both morphology and molecular studies in this family especially in tropical region is significantly needed to fulfill the systematic study of Boletaceae.

Department : ..-..-Botany	Student's Signature
Field of Study : ...Botany	Advisor's Signature
Academic Year : 2011	Co-advisor's Signatu

ACKNOWLEDGEMENTS

I would like to express my greatest appreciation to my thesis advisor, Assistant Professor Jittra Piapukiew, Ph.D. and my thesis coadvisor, Cherdchai Phosri, Ph.D. for their valuable advice and encouragements throughout this study.

My appreciation is also expressed to Assistant Professor Chumpol Khunwasi, Ph.D., Teerada Wangsomboondee, Ph.D. and Assistant Professor Ek Sangvichien, Ph.D. for their kindness and helpful suggesting for the complements of this and serving as thesis committee.

I also wish to express my appreciation to the Department of Botany, Faculty of Science, Chulalongkorn University for providing facilities during my study. The financial supports from CU.Graduate School Thesis Grant and The Thai government budget 2011, under the Research Program on Conservation and Utilization of Biodiversity and the Center of Excellence in Biodiversity, Faculty of Science, Chulalongkorn University. I also thank member of Room 212, Department of Botany for their friendship, help and kindness.

CONTENTS

Page
ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF TABLES ix
LIST OF FIGURES x
LIST OF ABBREVIATIONS xiii
CHAPTER
I INTRODUCTION 1
II LITERATURE REVIEW 3
2.1 Overview of Ectomycorrhiza 3
2.2 Diversity of Host Plants 5
2.3 Diversity of Ectomycorrhizal Fungi 6
2.4 Boletales 9
2.5 Boletaceae: Diversity and Biology 10
2.6 Systematics of Boletaceae 12
III MATERIALS AND METHODS 16
3.1 Chemicals Used in This Study 16
3.2 Instruments Used in This Study 16
3.3 Basidiocarp Sampling 17
3.4 Morphological Study 17
3.5 DNA Extraction and Sequencing 18
3.6 Phylogenetic Analysis 19
IV RESULTS 20
4.1 Collecting Sites 20
4.2 Diversity of Boletaceae and Morphological Identification 22
4.3 Identification of the Basidiocarps Based on ITS and LSU Regions 46
CHAPTER Page
4.4 Phylogeny of Boletaceae 55
4.5 Phylogeny of Tylopilus 63
V DISCUSSION 77
IV CONCLUSIONS 83
REFERENCES 85
APPENDICES 90
APPENDIX A CHEMICAL REAGENTS 91
APPENDIX B SEQUENCES OF THE SPECIMENS 94
BIOGRAPHY 140

LIST OF TABLES

Table Page
2.1 Distribution of host taxa in biogeographic realms 5
2.2 Genera of ectomycorrhizal fungi 6
2.3 Some ectomycorrhizal genera and their host plant families 11
4.1 The list of collecting sites in each province 20
4.2 The number of specimens in Boletaceae from 5 provinces 22
4.3 Specific morphological characters of genera in Boletaceae 25
4.4 Sequence affinity of basidiocarps in this study based on Genbank Database 48
4.5 Sequence affinity of basidiocarps in this study based on UNITE Database 53
4.6 ITS sequences of Tylopilus and Retiboletus from Genbank Database 63
4.7 LSU sequences of Tylopilus and Zangia from Genbank Database 64

LIST OF FIGURES

Figure Page
2.1 Section of Populus tremuloides ectomycorrhizal root 4
2.2 Morphological diversity of basidiocarps in Boletales 9
2.3 The organization of ribosomal DNA 13
4.1 The collecting sites include coniferous plantation 21
4.2 Basidiospores of Boletaceae 26
4.3 basidiocarps of Boletellus ananas 27
4.4 basidiocarps of Boletellus sp. 1 27
4.5 basidiocarps of Boletellus sp. 2 28
4.6 basidiocarps of Boletellus sp. 3 28
4.7 basidiocarps of Boletellus sp. 4 29
4.8 basidiocarps of Bolets sp. 1 29
4.9 basidiocarps of Bolets sp. 2 30
4.10 basidiocarps of Bolets sp. 3 30
4.11 basidiocarps of Bolets sp. 4 31
4.12 basidiocarps of Bolets sp. 5 31
4.13 basidiocarps of Bolets sp. 7 32
4.14 basidiocarps of Bolets sp. 8 32
4.15 basidiocarps of Bolets sp. 9 33
4.16 basidiocarps of Bolets sp. 10 33
4.17 basidiocarps of Bolets sp. 11 34
4.18 basidiocarps of Bolets sp. 12 34
4.19 basidiocarps of Bolets sp. 13 35
4.20 basidiocarps of Bolets sp. 14 35
4.21 basidiocarps of Bolets sp. 15 36
4.22 basidiocarps of Bolets sp. 16 36
4.23 basidiocarps of Bolets sp. 17 37
4.24 basidiocarps of Bolets sp. 18 37
Figure Page
4.25 basidiocarps of Bolets sp. 19 38
4.26 basidiocarps of Bolets sp. 20 38
4.27 basidiocarps of Bolets sp. 21 39
4.28 basidiocarps of Bolets sp. 22 39
4.29 basidiocarps of Bolets sp. 23 40
4.30 basidiocarps of Bolets sp. 24 40
4.31 basidiocarps of Heimioporus sp. 1 41
4.32 basidiocarps of Heimioporus sp. 2 41
4.33 basidiocarps of Heimioporus sp. 3 42
4.34 basidiocarps of Leccinum extremiorientale 42
4.35 basidiocarps of Leccinum sp 43
4.36 basidiocarps of Pulveroboletus sp 43
4.37 basidiocarps of Strobilomyces mirandus 44
4.38 basidiocarps of Strobilomyces sp. 1 44
4.39 basidiocarps of Strobilomyces sp. 2 45
4.40 basidiocarps of Strobilomyces sp. 3 45
4.41 PCR product of ITS sequences in gel electrophoresis 46
4.42 PCR product of LSU sequences in gel electrophoresis 46
4.43 Phylogenetic tree based on ITS sequences of Boletaceae 57
4.44 Phylogenetic tree based on LSU sequences 61
4.45 Phylogenetic tree based on ITS sequences of Tylopilus 66
4.46 Phylogenetic tree based on LSU sequences of Tylopilus 68
4.47 basidiocarp characteristics of Tylopilus ballouii 69
4.48 basidiocarp characteristics of Tylopilus sp. 1 70
4.49 basidiocarp characteristics of Tylopilus sp. 2 70
4.50 basidiocarp characteristics of Tylopilus sp. 3 71
4.51 basidiocarp characteristics of Tylopilus sp. 4 71
4.52 basidiocarp characteristics of Tylopilus sp. 5 72
Figure Page
4.53 basidiocarp characteristics of Tylopilus sp. 6 72
4.54 basidiocarp characteristics of Tylopilus sp. 7 73
4.55 basidiocarp characteristics of Tylopilus sp. 8 73
4.56 basidiocarp characteristics of Tylopilus sp. 9 74
4.57 basidiocarp characteristics of Tylopilus sp. 10 74
4.58 basidiocarp characteristics of Tylopilus sp. 11 75
4.59 basidiocarp characteristics of Tylopilus sp. 12 75
4.60 basidiocarp characteristics of Tylopilus eximius 76
4.61 basidiocarp characteristics of Zangia sp 76

LIST OF ABBREVIATIONS

${ }^{\circ} \mathrm{C}$	Degree Celsius
G	Gram
$\mu \mathrm{l}$	Microliter
mg	Milligram
ml	Milliliter
M	Molar
S	Second
h	Hour
ITS	Internal Transcribed Spacer \square
LSU	Nuclear Large Subunit
BS	Bootstrap supported

CHAPTER I

INTRODUCTION

Ectomycorrhiza is a mutualistic relationship between higher plants (Angiosperms and Gymnosperms) and soil-borne fungi which are not plant pathogen (Brundrett and Cairney, 2002; Tagu et al., 2002). Two partners reciprocate advantages. The plants allocate photosynthetic carbohydrates to the heterotrophic fungi. The hyphae of the fungi explore the soil and absorb both water and minerals which are particularly a low mobility in the soil such as phosphorous and nitrogen and then water and these elements are transferred to the roots (Tagu et al., 2002; Taylor and Alexander, 2005; Courty et al., 2010). Apart from the ectomycorrhizal fungi are essential to the health and growth of host plants by nutrient uptake; they can protect root systems from pathogenic attacks, and adverse abiotic soil conditions like water-stress and heavy metal contamination (Tagu et al., 2002; Ray et al., 2005).

The major group of ectomycorrhizal fungi is family Boletaceae which represent $18-25 \%$ of all (Halling et al., 2008). The diversity of Boletaceae has long been researched worldwide, especially in North America and Europe. Recently, family Boletaceae consists of approximate 39 genera and more than 700 species. The basidiocarps of Boletaceae are diverse forms. The fruiting bodies include conspicuous stipitate-pileate forms that mostly have tubular hymenophores and some genera have lamellate or intermediate hymenophores. In several genera, the fruiting bodies are gasteroid (puffball-like forms). This fungal family distributes across temperate and tropical regions (Halling et al., 2007; Kirk et al., 2008; Desjardin et al., 2009; Orihara et al., 2010; Li et al., 2011).

In Thailand, the diversity of Boletaceae is abundant particularly in Northern and Northeastern (Klinhom and Klinhom, 2007; Thangklam, 2008). Chantorn et al. (2007) reported the diversity of Boletaceae in Nam Nao and Phu Rua National Parks during rainy seasons of 2005 and 2006. There were fifty-two specimens which belonged to nine genera. Nine species were new records to Thailand. One hundred and three species of Boletaceae from 11 genera in Northeast part were reported and described by Klinhom and Klinhom (2007). Forty-four species of Boletaceae in Thailand were described and illustrated by Chandrasrikul et al. (2008). Thongklam (2008) studied Boletes diversity in eight national parks of upper northern Thailand during year 2005-2006. Eighty-three species from 13 genera were found. Twenty-nine species were new recorded in Thailand. Moreover, new genus, Spongiforma, was found in Khao Yai National Park (Desjardin et al., 2009). Although several reports demonstrated high diversity in Boletaceae in Thailand but they have never been well studied owning to lack of experienced experts (Chantorn et al., 2007). Moreover, little knowledge of the systematics of this family based on molecular phylogeny has been obtained.

According to molecular phylogeny of Boletales (Binder and Hibbett, 2006), the family Boletaceae was monophyletic group but the relationship among this family was unclear and the large genera such as Boletus, Xerocomus and Tylopilus were not monophyletic group. As the phylogeny of Boletes (Drehmel et al., 2008), Leccinum and Suillus were monophyletic group but Boletus, Xerocomus and Tylopilus were not. Aside from the relationship among genera in this family, the phylogeny between the species in each genus was investigated.

Therefore, the main objectives of this study are
To study phylogenetic relationships between the genera and species of ectomycorrhizal fungi in the family Boletaceae in Thailand based on nuclear large subunit rDNA and Internal transcribed spacer.

CHAPTER II

LITERATURE REVIEW

2.1 Overview of Ectomycorrhiza

Ectomycorrhiza is a mutualistic association between higher plants (Angiosperms and Gymnosperms) and soil-borne fungi which are not plant pathogen. This mutualism is beneficial to plants. The fungal mycelium increases the absorptive surface of the root and intensifies the entry of water and nutrients such as phosphorus and nitrogen into the plant, as a consequence, promotes plant growth. In return, the plant allocates photosynthetic carbohydrates such as glucose to the fungus. (Brundrett and Cairney, 2002; Tagu et al., 2002; Taylor and Alexander, 2005; Courty et al., 2010).

Ectomycorrhizas consist of three structural components: (1) a sheath or mantle of fungal tissues which encloses the root tip; (2) a labyrinthine inward growth of hyphae between the epidermal and cortical cells called the Hartig net (Figure 2.1); (3) an outwardly growing system of hyphal elements called an extraradical mycelium which forms essential connections of the Hartig net both with the soil and reproductive structures (Smith and Read, 1997). These relationships are formed predominantly on the fine root tips of the host plants. The fungal differentiation processes in the plant induce architectural changes at the tissues and organ levels of root (e.g. enhanced formation of root tips, root hair suppression) as well as cellular differentiation that includes cell-wall and cytoskeleton reorganization. These roots are usually short and rise to racemose system of branching. Ectomycorrhizal development is also accompanied with the differentiation of specialized interfaces between the hosts and mycobionts, resulting in a highly coordinated metabolic interplay. (Lakhanpal, 2000; Brundrett and Cairney, 2002; Tagu et al., 2002; Taylor and Alexander, 2005).

Figure 2.1 Section of Populus tremuloides ectomycorrhizal root, the mantle (M), cortex (C), endodermis (En) and Hartig net (arrows) are visible. (Brundrett and Cairney, 2002)

According to the modification of morphology and physiology of ectomycorrhizal roots, the ectomycorrhizal fungi can provide several non-nutritional benefits to the host plants particularly the seedlings. Ectomycorrhizal plants are often more resistant to diseases, such as those caused by microbial soil-borne pathogens, and are also more resistant to the effects of drought. Moreover, several ectomycorrhizal fungi can ameliorate the toxicity of heavy metal and increase the tolerance of their hosts (Carnery and Chambers, 1999; Tagu et al., 2002; Ray et al., 2005).

Ectomycorrhizal fungi serve many important roles in forest ecosystem. They contribute to a number of key ecosystem functions such as carbon cycling and nutrient cycling (Taylor and Alexander, 2005; Courty et al., 2010). Since ectomycorrhizal fungi play an important role in seedling establishment (Tedersoo et al., 2010), these fungi are used as inocula in reforestation programs. The inoculated seedlings of host plants exhibit better growth than non-inoculated seedlings in the nurseries as well as the survival rate of inoculated seedlings is higher than non-inoculated seedlings after transplanting (Lakhanpal, 2000).

2.2 Diversity of Host Plants

Around 8,000 species or approximately 3% of seed plants form ectomycorrhizas (Taylor and Alexander, 2005). Eventhough number of plant species is minor; these plant families, Pinaceae, Abietaceae, Fagaceae, Betulaceae, Nothofagaceae, Myrtaceae, Dipterocarpaceae and Caesalpiniaceae, are ecologically and economically important forest trees by dominating woodland and forest communities in boreal, Mediterranean, and temperate forests of the Northern Hemisphere and parts of South America, seasonal savanna and rain forest habitats in Africa, India and Indo-Malay as well as temperate rain forest and seasonal woodland communities of Australia (Table 2.1) (Tedersoo et al., 2010).

Table 2.1 Distribution of host taxa in biogeographic realms (Tedersoo et al., 2010)

Host taxon	Europe	North America	Temperate Asia	South- East Asia	India and Sri Lanka	Africa	Northern South America	Southern South America	Australia	New Zealand
Acacia									X	
Arbutoideae	x	X		(0)			X			
Betulaceae	x	X		- x				X		
Bossiaeeae									x	
Caesalpinioideae				x		X	x		x	
Casuarinaceae				X					X	
Cistaceae	X									
Coccoloba							X			
Dipterocarpaceae				x	-	x	x			
Fagaceae	X	x	X	x			X			
Leptospermoideae				x					x	x
Nothofagaceae								x	X	X
Pinaceae	X	X	X	X			x			
Pisoniae							X		x	
Pomaderreae									X	x
Salicaceae	x	x	x	x			X	x		
Uapacaceae						X				

Wide taxonomic distribution of ectomycorrhizal plants and fungi in all continents (except Antarctica) and large continental islands suggests an ancient evolution of the ectyomycorrhiza. Pinaceae is certainly the oldest extant plant family that associates with ectomycorrhizal fungi. The oldest Pinaceae fossils originated 156 million years ago and the oldest ectomycorrhizal root fossils were found with the roots of Pinus from the middle Ecocene Princeton chert (Raina et al., 2000; Tedersoo et al., 2010).

2.3 Diversity of Ectomycorrhizal Fungi

For the mycobionts, the number of fungal species in ectomycorrhizal symbiosis is estimated to be approximately 20,000-25,000. Most of ectomycorrhizal fungi belong to Phylum Basidiomycota and other belong to Phylum Ascomycota and Zygomycota (only 1 genus, Endogone) (Agerer, 2006; Tedersoo et al., 2010). The list of ectomycorrhizal fungal genera is shown in Table 2.2. Tedersoo et al. (2010) have reported that 216 fungal genera were considered ectomycorrhizal fungi and the largest number of ectomycorrhizal fungi was found in the order Pezizales, Agaricales, Boletales, Cantharellales and Helotiales. Molecular phylogenetic and identification studies suggest that ectomycorrhiza has arisen independently and persisted at least 66 times in 3 fungal phyla.

Table 2.2 Genera of ectomycorrhizal fungi (Agerer, 2006)

Phyla	Families	Genera
Zygomycota	Endogonaceae	Endogone
Ascomycota	Discinaceae	Gymnohydnotria, Gyromitra
	Elaphomycetaceae	Elaphomyces
	Geoglossaceae	Geoglossum, Spathularia
	Helotiaceae	Hymenoscyphus, Neocudoniella
	Helvellaceae	Balsamia, Barssia, Fischerula, Helvella, Hydnotria,
		Leucangium, Underwoodia, Picoa, Wynnella
	Morchellaceae	Morchella, Verpa
		Amylascus, Boudiera, Hydnobolites, Hydnotryopsis,
		Pachyphloeus, Peziza, Plicaria, Ruhlandiella,
		Sphaerozone, Tirmania

Table 2.2 (continued) Genera of ectomycorrhizal fungi (Agerer, 2006)

Table 2.2 (continued) Genera of ectomycorrhizal fungi (Agerer, 2006)

Phyla	Families	Genera
Basidiomycota	Gomphidiaceae	Brauniellula, Chroogomphus, Cystogomphus, Gomphidius, Gomphogaster
	Gyroporaceae	Gyroporus, Rubinoboletus
	Hydnaceae	Hydnum
	Hydnangiaceae	Hydnangium, Laccaria, Maccangia, Podohydnangium
	Hygrophoraceae	Camarophyllus, Hygrophorus
	Hymenochaetaceae	Coltricia
	Hymenogastraceae	Hymenogaster, Quadrispora
	Hysterangiaceae Leucogastraceae	Hysterangium, Trappea Leucogaster, Leucophlebs
	Marasmiaceae	Rhodocollybia
	Melanogastraceae	Alpova, Corditubera, Hoehnelogaster, Melanaogaster
	Mesophelliaceae	Andebbia, Castoreum, Gummiglobus, Mesophellia
	Octavianiaceae	Octaviania, Sclerogaster
	Paxillaceae	Austrogaster, Austropaxillus, Gymnopaxillus, Gyrodon, Paxillus
	Ramariaceae	Austrogautieria, Gautieria, Ramaria
	Rhizopogonaceae	Rhizopogon
	Russulaceae	Arcangeliella, Cystangium, Elasmomyces, Gymnomyces, Lactarius, Macowanites, Martellia, Russula, Zelleromyces
	Sebacinaceae	Sebacina INIVERSITY
	Sclerodermataceae	Astraeus, Calostoma, Pisolithus, Scleroderma
	Suillaceae	Boletinus, Gastrosuillus, Psiloboletinus, Suillus
	Thelephoraceae	Amaurodon, Lenzitopsis, Pseudotomentella, Thelephora, Tomentella, Tomentellopsis
	Tricholomataceae	Catathelasma, Leucopaxillus, Lyophyllum, Tricholoma
	Truncocolumellaceae	Truncocolumella

2.4 Boletales

Boletales is the one of major group of mushroom-forming fungi that worldwide distribution in various forest ecosystems. Currently, this order is classified in Kingdom Fungi, Phylum Basidiomycota and Class Agaricomycetes (Binder and Hibbett, 2006; Kirk et al., 2008). The basidiocarps of Boletales are in diverse forms (Figure 2.2). The fruiting bodies include conspicuous stipitate-pileate forms that mostly have tubular hymenophores and some genera have lamellate or intermediate hymenophores. In several genera, the fruiting bodies are gasteroid (puffball-like forms) or resupinate. Moreover, species in Boletales pursue various habits. Saprotrophs among this order have developed a unique mode of brown-rot while white-rot saprotrophy is absent in this group. Ectomycorrhiza are established by the greater of Boletales. This group is associated with various plant families such as Betulaceae, Casuarinaceae, Dipterocarpaceae, Ericaceae, Fabaceae, Fagaceae, Mimosaceae, Myrtaceae, Pinaceae and Salicaceae. Few species in Boletales are mycoparasites (Binder and Hibbett, 2006).

Figure 2.2 Morphological diversity of basidiocarps in Boletales, A. stipitate-pileate with pores (tubular hymenophores), B. stipitate-pileate with gills (lamellate hymenophores) and C. gasteroid.

According to molecular systematic studies, Binder and Hibbett (2006) found that the Boletales was strongly supported as monophyletic group and had closely relationship with Agaricales and Atheliales. Six major lineages of Boletales that currently were recognized on subordinal level, Boletineae, Paxillineae, Sclerodermatineae, Suillineae, Tapinellineae, and Coniophorineae received varied support values. Boletineae and Suillineae received the highest support values but other lineages were not consistently resolves as monophyly. The basal group in the Boletales was Tapinellineae which consists of brown-rotting fungi. However, the relationships among genera in Boletinae were poorly resolved and most of the larger genera were not monophyletic

2.5 Boletaceae: Diversity and Biology

Boletaceae is the one of main genera in Boletales. This family includes obvious stipitate-pileate forms which mainly have tubular hymenophores (Binder and Hibbett, 2006; Halling et al., 2007). But the basidiocarps of some genera may be gasteroid (Yang et al., 2007; Kirk et al., 2008). Moreover, some species in Boletaceae are saprotrophs or parasites (Binder and Hibbett, 2006). But most of all are ectomycorrhizal fungi (Halling et al., 2008)

Family Boletaceae is the major group of ectomycorrhizal fungi and may represent $18-25 \%$ of all ectomycorrhizal fungi (Halling et al., 2008). Agerer (2006) reported the genera of ectomycorrhizal fungi and several genera in family Boletaceae were recorded as follows: Afroboletus, Aureoboletus, Austroboletus, Boletellus, Boletus, Chalciporus, Chamonixia, Fistulinella, Gastroboletus, Gastroleccinum, Leccinum, Paxillogaster, Phylloboletellus, Phylloporus, Pulveroboletus, Royoungia, Strobilomyces, Tubosaeta, Tylopilus, Veloporphyrellus and Xerocomus. In addition, 4 newly genera in Boletaceae, Bothia (Halling et al., 2007), Heliogaster (Orihara et al., 2010), Spongiforma (Desjardin et al., 2009) and Zangia (Li et al., 2011) have been recognized as ectomycorrhizal fungi. The morphology, distribution and host plant families of some genera in Boletaceae were described by Halling (2011) (Table2.3).

Table2.3 Some ectomycorrhizal genera and their host plant families (Halling, 2011)

Fungal Genera	Host Plant Families								
	Fagaceae	Dipterocarpaceae	Pinaceae	Myrtaceae	Casuarinaceae	Caesalpinoidae	Betulaceae	Nothofagaceae	Sapotaceae
Afroboletus	x	x				x			
Aureoboletus	x		x						
Austroboletus	x	x	x	x	x				
Boletellus	x	x	x	x	x	x			
Boletochaete		x				x			
Boletus	x	x	x	x	x	x	x		
Bothia	x								
Chalciporus	x		x						
Chamonixia			x						
Fistulinella	x			x		x		x	x
Heimioporus	x	x		x	x				
Leccinellum	x						x		
Leccinum	x	x				x	x		
Phylloporus	x	x	x		x				
Pulveroboletus	x	x	X	\times		x			
Retiboletus	x		,						
Rhodactina		x							
Royoungia									
Spongiforma									
Strobilomyces	x	x		x		x			
Tuboseta	x	x				x			
Tylopilus	x	x		x	\times	x	x	x	
Veloporphyrellus	x			$\text { C6- }-2222$					
Xanthoconium	x		x	x	x				
Zangia	x			c					

The diversity of Boletaceae has long been researched worldwide, especially in North America and Europe. Recently, family Boletaceae consists of approximate 39 genera and more than 700 species. This fungal family distribute across temperate and tropical regions (Halling et al., 2007; Kirk et al., 2008; Desjardin et al., 2009; Orihara et al., 2010; Li et al., 2011). In Thailand, the diversity of Boletaceae is abundant particularly in Northern and Northeastern (Klinhom and Klinhom, 2007; Thangklam, 2008) but it has never been well studied owning to lack of experienced experts (Chantorn et al.,2007). Chantorn et al. (2007) reported the diversity of Boletaceae in Nam Nao and Phu Rua National Parks during rainy seasons of 2005 and 2006. There were fifty-two specimens which belonged to nine genera as follows: Boletellus, Boletus, Heimiella (Heimioporus), Leccinum, Phylloporus, Pulveroboletus, Strobilomyces, Tylopilus and Xerocomus. Nine species were new records to Thailand. One hundred
and three species of Boletaceae from 11 genera in Northeast part were reported and described by Klinhom and Klinhom (2007). Forty-four species of Boletaceae in Thailand were described and illustrated by Chandrasrikul et al. (2008). Thongklam (2008) studied Boletes diversity in eight national parks of upper northern Thailand during year 20052006. Eighty-three species from 13 genera (Aureoboletus, Austroboletus, Boletellus, Boletus, Chalciporus, Heimioporus, Leccinum, Porphyrellus, Pulveroboletus, Rubinoboletus, Strobilomyces, Tylopilus, and Xerocomus) were found. Twenty-nine species were new recorded in Thailand. Moreover, new genus, Spongiforma, was found in Khao Yai National Park (Desjardin et al., 2009).

2.6 Systematics of Boletaceae

The systematic of Boletales/(include Boletaceae) have been widely studied in recent years (Binder and Hibbett, 2006) based on morphology (Corner,1972; Moser,1978; Agerer, 1999) and/pigment chemistry (Besl and Bresinsky, 1997). But the relationships of some group of fungi were controversial and unresolved. For example, chemosystematic study of Boletinus, Suillus, Gastroboletus, Gomphidius, and Chroogomphus suggested that Suillus is more closely related to the Gomphidiaceae and Rhizopogonaceae than to other boletes. Therefore, a new family, Suillaceae was established and combined with Gomphidiaceae and Rhizopogonaceae into new suborder based on pigment (Besl and Bresinsky, 1997) although their morphology of basidiocarps were different. For the relationship resovling, since 1990, phylogenetic studies of various groups of fungi began to appear (Hibbett, 2007). These phylogenetic studies based on molecular data almost have used ribosomal gene, both of mitochondrial and nuclear origin such as LSU (nuclear large subunit rDNA), SSU (nuclear small subunit rDNA), ITS (Internal transcribed spacer) and atp6 (ATPase subunit 6 gene) (Hibbett, 2007).

Figure 2.3 The organization of ribosomal DNA. (Schlötterer and Tautz, 2004)
rDNA (ribosomal DNA) encode 5S, 5.8S, small subunit (SSU), and large subunit (LSU) rDNAs (Figure 2.3). rDNA has been shown to be remarkably conserved between different organisms and highly repetitive. Thus, they are widely used for the inference of phylogenetic relationships among both closely and distantly related species. Among them, LSU rDNA gene is the largest one carrying a wide range of informative characters for phylogenetic study at higher taxonomic levels (Gupta and Satyanarayana, 2000; Hwang and Kim, 2000). The other well known nuclear region in the field of molecular ecology and fungal systematic is ITS. This region lies between SSU and LSU rDNA and contains two noncoding spacer regions separated by the 5.8 S rDNA. In fungi it is typically about 650-900 bp in size, including the 5.8 S gene (Horton and Bruns, 2001).

According to molecular phylogeny of Boletales (Binder and Hibbett, 2006), the family Boletaceae was monophyletic group but the relationship among this family was unclear and the large genera such as Boletus, Xerocomus and Tylopilus were not monophyletic group. As the phylogeny of Boletes (Drehmel et al., 2008), Leccinum and Suillus were monophyletic group but Boletus, Xerocomus and Tylopilus were not. Aside from the relationship among genera in this family, the phylogeny between the species in each genus was investigated.

In genus Leccinum, phylogeny of European Leccinum species was investigated based on ITS and LSU by maximum parsimony, maximum likelihood and Bayesian approaches. The results suggested that several traditional sections were artificial. Furthermore, the minisatellite in first internal transcribed spacer (ITS1) region was unsuitable for phylogenetic analysis of relations above the species level in this genus (den Bakker et al., 2004a). Moreover, the level of host specificity of some Leccinum was assessed by phylogenetic analysis. den Bakker et al. (2004b) determined the phylogenetic relationships among Leccinum species from Europe and North America based on second internal transcribed spacer (ITS2) and glyceraldehyde 3-phosphate dehydrogenase (Gapdh) by maximum likelihood and parsimony analyses. The results showed that most of all Leccinum species were highly host tree specific, except L. aurantiacum.

In genus Tylopilus, one cryptic species, T. bllouii, was studied by using LSU rDNA and largest subunit of DNA-dependent RNA polymerase II (RPB1) sequence data. The LSU data suggested geographic structuring of the tested accessions. However, RPB1 data indicated that long-distance dispersal events are possible (Halling et al., 2007).

In genus Strobilomyces, the phylogeny of some cryptic species, S. confuses, S. seminudus, S. strobilaceus and S. mirandus was analysed using ITS2, RPB1 and ATPase subunit 6 (atp6). The results indicated that Strobilomyces was monophyletic group and this genus related to Fagaceae species over Pinaceae species as host plants. In addition, this study demonstrated that molecular data could help to detect species boundaries. (Sato et al., 2008)

The widely investigated genus is Boletus (include Xerocomus) especially in Europe. Dentinger et al. (2010) studied the phylogeny of Boletus section Boletus using LSU, atp6 and RPB1. The phylogenetic study from RPB1 dataset showed that this section was monophyletic group. Molecular phylogeny of Boletus section Boletus was also studied by Beugelsdijk et al. (2008) using ITS and glyceraldehyde 3-phosphate dehydrogenase gene (Gapdh). The phylogenetic tree of European Boletus suggested
that Boletus edulis was a variable species with a wide morphological, ecological and geographic range, and includes several specific and subspecific taxa, while, three other European species (B. aereus, B. pinophilus and B. reticulatus) were well delimited species based on morphology and molecular data. This result conformed to the studies of Leonardi et al. (2005). Other study of species delimitation was Xerocomus chrysenteron complex (Peintner et al., 2003). This phylogenetic analyses based on LSU demonstrated that the X. chrysenteron complex is a monophyletic group and clearly confirmed species concept.

CHAPTER III

MATERIALS AND METHODS

3.1 Chemicals Used in This Study

- Agarose molecular biology grade (ISC Bio Express)
- Cetyltrimethylammonum bromide (CTAB) (Serva)
- Chloroform (Merck, Germany)
- EmeraldAmp GT PCR Master Mix (Takara)
- Ethanol (Merck, Germany)
- Ethylenediamine tetraacetic acid (EDTA) (Scharlau)
- Gel star (Lonza, USA)
- Isoamyl alcohol (Carbo Erba)
- Iso-propylthio- β-galactoside (IPTG) (Fermentas)
- Silica gel
- Sterile distilled water
- 10X Tris Boric acid Disodium Ethylenediamine Tetracetic Acid (10X TBE buffer)
- 100 bp+1.5 Kb DNA lader (ISC Bio Express)

3.2 Instruments Used in This Study

- Compound microscope (Model CH30, Olympus, Japan)
- Gel-Doc (Model ECX-26.MX, Vilber Lourmat, France)
- Micro refrigerated centrifuge (Model 3700/Kubota, Kubota Corporation, Japan)
- Authorized thermal cycler (Model TP 600 ,TAKARA)
- pH meter (Model 2000, Cyberscan)
- Electrophoresis chamber set (Mupid-ex, Bruker BioSpin, Switzerland)
- Vortex mixer (Model G-560E, Scientific Industries, USA)

3.3 Basidiocarp Sampling

The putative ectomycorrhizal basidiocarps in family Boletaceae were collected during the rainy season, July to August, in 2010 and 2011 from various localities in four Provinces namely Chiang Mai, Phitsanulok, Nan and Chaiyaphum. Some samples were provided by Natural Medicinal Mushroom Museum, Faculty of Science, Mahasarakram University. Young and mature individual basidiocarps were collected as many as possible and placed in the paper bags. The fresh collected basidiocarps were photographed and characterized some morphological characters. Host plant families were also recorded.

All collected basidiocarps were divided into two parts. One part of collected basidiocarps was dried in hot-air oven at $70-80^{\circ} \mathrm{C}$ in $24-48$ hours or until the basidiocarps were completely dried. Then, the dried basidiocarps were kept in the plastic boxes with silica gel for voucher specimens and deposited in herbarium at Department of Botany, Faculty of Science, Chulalongkorn University. For the remaining part of the basidiocarps, several tissue pieces of stem from each basidiome were cut into small pieces $\left(1 \times 1 \mathrm{~cm}^{2}\right)$ and dried with silica gel in a polyethylene bag for DNA extraction.

3.4 Morphological Study

The collected basidiocarps were conventionally assighed to morphospecies based on morphological characters, both macroscopic and microscopic features. Identification of ectomycorrhizal fungi in Baletaceae was followed the key described by Corner (1972) and Moser (1978).

Most of macroscopic features of the basidiocarps such as color, shape, margin, surface and sizes of the stems and caps were evaluated by eye observation before drying. In addition to a spore print, a small piece of cap was cut from the mature fresh basidiome and placed on the slide in the petridish then the piece of cap was removed in the next day and the color of spore mass the slide was also noted.

The microscopic features especially hymenophores were study from dried basidiocarps. Free hand longitudinal and transverse of approximately 0.1 mm thick were
made from dried basidiocarps with a sharp razor blade. The sections were rehydrated by soaking in $3 \% \mathrm{KOH}$ and water, respectively before analyzing their morphology. The sections were then stained with 1\% Congo Red (Largent et al., 1977). The thininest sections were selected and placed on glass slides and covered with cover slips. Low power ($\times 40$) objectives of a standard light microscope were used to observe the sections. Internal basidiome regions including basidia, basidiospores, cystidia and hymenophoral trama were recorded by mounted photography. Basidiospore size was determined by measuring the diameter of 30 spores and calculating their size ranges. Characteristics of hymenophores and basidiospores were critically analysed using scanning electron microscopy (SEM). Samples were air-dried and sputter-coated with gold with a JSM-5410 LV scanning electron microscope.

3.5 DNA Extraction and Sequencing

Genomic DNA was extracted from dried pieces of stem tissue with cetyltrimethylammonium bromide (CTAB) method as described in Zhou et al. (1999). Briefly, each sample was grinded to powder in a 2 ml microtube containing 5 beads using a homogenizer (VX-100) for 2 min . The powdered samples were homogenized in washing buffer (Appendix A). After centrifugation at $15,000 \mathrm{rpm}$ for 2 min , the pellet was washed 1-2 times by homogenization in the washing buffer and centrifuged at 15,000 rpm for 3 min . The washed pellet was suspended and incubated in CTAB buffer (Appendix A) at $65^{\circ} \mathrm{C}$ for 1 hour, and added an equal volume of chloroform-isoamyl alcohol mixture ($24: 1, \mathrm{v} / \mathrm{v}$). After centrifuged at $1,500 \mathrm{rpm}$ for 8 min ., the supernatant was removed into a new 1.5 ml microtube and added an equal volume of chloroform-isoamyl alcohol mixture ($24: 1, \mathrm{v} / \mathrm{v}$) again. DNA was precipitated by adding an equal volume of isopropanol and was incubated in $-20^{\circ} \mathrm{C}$ for 30 min . After centrifugation at $8,000 \mathrm{rpm}$ for 10 min., DNA was washed by 70% ethanol and resuspended in 50μ of sterilized distilled water. DNA solution was stored at $-20^{\circ} \mathrm{C}$ until use.

Two regions of nuclear ribosomal DNA, internal transcribed spacer (ITS) and large subunit (LSU) rDNA, of each sample were amplified with two pairs of primers

ITS1F (Gardes and Bruns, 1993) and ITS 4 (White et al., 1990) for ITS region or LROR and LR7 (Vilgalys and Hester, 1990) for LSU region. PCR amplification was performed in a $30 \mu \mathrm{l}$ of reaction mixture containing $15 \mu \mathrm{l}$ of EmeraldAmp GT PCR Master Mix , $11.4 \mu \mathrm{l}$ of sterilized distilled water, 0.3μ of each $20 \mu \mathrm{M}$ primer and 3μ of DNA solution by a TP600 Authorized thermal cycler. Amplification was started with a heat of $98^{\circ} \mathrm{C}$ for 1 min., followed by 38 cycles of a denaturing step at $98^{\circ} \mathrm{C}$ for 10 sec , an annealing $51^{\circ} \mathrm{C}$ for 30 sec in ITS reaction and for $45^{\circ} \mathrm{C}$ in LSU reaction, and extension step at $72^{\circ} \mathrm{C}$ for 1 min and ended with an additional 5 min-extension step at $72^{\circ} \mathrm{C}$. All of PCR products were sent to Macrogen (Soul, Korea) for sequencing.

3.6 Phylogenetic Analysis

All ITS and LSU sequences were compared with the available sequences in GenBank database (http://www.ncbi.nlm.nih.gov/) or the UNITE database (http://www.unite.zbi.ee/) using BLAST version 2.2.18. The sequences were automatically aligned with some sequences obtained from the DNA database. The alignment was carried out using MUSCLE (Edgar, 2004) in Mega 5 program and then manually improved. ITS and LSU sequences of Rhizopogon species were included as outgroup species. The phylogenetic trees between genera in Boletaceae or among species in two large genera, Boletus and Tylopilus were constructed by using Maximum Likelihood of Mega 5 (Tamura et al., 2011). Maximum Likelihood analysis was performed after suitable model. Bootstrap values were calculated by 100 replications.

CHAPTER IV

RESULTS

4.1 Collecting Sites

The collecting sites in this study were in four Provinces: Chaiyaphum, Chiang Mai, Nan and Phitsanulok. The putative host trees were the member of Dipterocarpaceae, Eucalyptus (Myrtaceae), Fagaceae and Pinaceae. The details of the study sites in each location were represent in Table 4.1 and Figure 4.1. Moreover, some basidiocarps were brought from the local market in Ubon Ratchathani province.

Table 4.1 The list of collecting sites in each province

Provinces	Sites	Forest Types	Location	Altitudes (m-amsl)	Ectomycorrhizal Host Plants
Chaiyaphum	Nong Bua Daeng District	Dipterocarp	N 1611.085	360	Dipterocarpaceae
		forest	$\text { E101 } 30.152$		
		Eucalyptus	N 1610.398	280	Eucalyptus
		plantation	E10141.406		
	Thep Sathit	evergreen forest	N1541.832	290	Fagaceae
	District		E101 24.115		
	Nam Nao	Hill evergreen	N16 73.964	830	Fagaceae
		forest 1158	E101 57.378		
Chiang Mai	Mae Jam District	Dipterocarp forest	N 1831.374 E 9823.496	550-570	Dipterocarpaceae
		Dipterocarp and	N 1831.981	860-870	Dipterocarpaceae
		Pinus forest	E 9824.939		Pinus
Nan	Wiang Sa	Dipterocarp	N 1833.661	220	Dipterocarpaceae
	District	forest	E 10047.883		
Phitsanulok	Phu Hin Rong	Pinus Plantation	N 1700.184	550	Pinus
	Khla		E100 59.597		
		evergreen forest	N 1712.056	480	Fagaceae
			E100 63.788		
Ubon	unknown	unknown	unknown	unknown	unknown
Ratchathani					

Figure 4.1 The collecting sites include coniferous plantation (A), evergreen forest (B), Eucalyptus plantation (C) and diptercarp forest (D).

4.2 Diversity of Boletaceae and Morphological Identification

The results of this study have provided overviews of the diversity of ectomycorrhizal fungi in family Boletaceae in some part of Thailand over a two-year period from 2010 and 2011 during rainy season (July-Semtember). Approximately 95 collections were identified in 54 species based on morphology. A summary of the classification and distribution of the identified boletes was presented in table 4.2.

In this study, most basidiocarps were classified in 7 genera of Boletaceae, The most abundant genus was the Boletus (24 species), and the second and third abundances were the Tylopilus (15 species) and the Boletellus (5 species). The number of species in other genera, Strobilomyces and Heimioporus and Leccinum were 4, 3 and 2 species respectively while Pulveroboletus species represented only 1 species. The most numerous collections of boletes taxa were found in Chaiyaphum Province particularly forests which dominated by the Fagaceae and Dipterocarpaceae.

Table 4.2 The number of specimens in Boletaceae from 5 provinces.

Species	Chaiyaphum	Chiang Mai	Nan	Phitsanulok	Ubon Ratchathani
Boletellus ananas	2			1	2
Boletellus sp. 1				1	
Boletellus sp. 2		2			
Boletellus sp. 3		1			
Boletellus sp. 4		2	1	1	
Boletus sp. 1	2			1	
Boletus sp. 2	2				
Boletus sp. 3	1				
Boletus sp. 4	3				
Boletus sp. 5		1			
Boletus sp. 6	1				
Boletus sp. 7		1			
Boletus sp. 8	1				
Boletus sp. 9	1				
Boletus sp. 10	1				
Boletus sp. 11	1				
Boletus sp. 12				1	

Table 4.2 (continued) The number of specimens in Boletaceae from 5 provinces.

Species	Chaiyaphum	Chiang Mai	Nan	Phitsanulok	Ubon Ratchathani
Boletus sp. 13	3				
Boletus sp. 14				1	
Boletus sp. 15	1				
Boletus sp. 16	1				
Boletus sp. 17				2	1
Boletus sp. 18		1			
Boletus sp. 19	1				
Boletus sp. 20	1				
Boletus sp. 21	1				
Boletus sp. 22	1				
Boletus sp. 23	1				
Boletus sp. 24	1				
Heimioporus sp. 1					1
Heimioporus sp. 2	4	2.			
Heimioporus sp. 3	1				
Leccinum	1				
extremiorientale					
Leccinum sp.	1				
Pulveroboletus sp.	3	1			
Strobilomyces				1	
mirandus					
Strobilomyces sp. 1				1	
				2	
Strobilomyces sp. 3	1				
Tylopilus eximius	1				
Tylopilus sp. 1	1				
Tylopilus sp. 2	1				
Tylopilus sp. 3				1	
Tylopilus sp. 4	4	1			
Tylopilus sp. 5	1				
Tylopilus sp. 6	1		1		
Tylopilus sp. 7	2	1			
Tylopilus sp. 8	1				
Tylopilus sp. 9	1				
Tylopilus sp. 10	3				
Tylopilus sp. 11	1				

Table 4.2 (continued) The number of specimens in Boletaceae from 5 provinces.

Species	Chaiyaphum	Chiang Mai	Nan	Phitsanulok	Ubon Ratchathani
Tylopilus sp.12	1				
Tylopilus sp. 13	5		1		
Tylopilus sp. 14					

The results of morphological study of eight genera in Boletaceae were shown in Table 4.3. and Figure 4.2

Table 4.3 Specific morphological characters of genera in Boletaceae

Figure 4.2 Basidiospores of Boletaceae. Boletellus spp. (A-B); Boletus sp. (C);
Heimioporus sp.(D); Leccinum sp. (E); Pulveroboletus sp. (F); Tylopilus sp. (G);
Strobilomyces sp. (H)

Boletellus ananas (CP12, MJ03, NN4, P13, UB7, and UB10)
Pileus 5-11 cm, convex, pale yellow, appressed-squamulose, fuscous tan, margin irregularly appendiculated with the woolly remains of the veil; tubes 8-20 mm, sinuate, golden yellow; pores $0.5-1 \mathrm{~mm}$, subrounded, golden yellow, cyanescent. Stem 5-9 cm x 8-18mm, equal, longitudinally fibrillose, pale fuscous downwards, and apex reddish

Figure 4.3 basidiocarps of Boletellus ananas, scale bar $=2 \mathrm{~cm}$

Boletellus sp. 1 (PH34)
Pileus 7 cm , convex, crimson, areolate, margin entire; tubes 8-10 mm, yellow; pores 0.8-1 mm, subrounded, yellow. Stem $6.5 \mathrm{~cm} \times 15 \mathrm{~mm}$, equal, longitudinally fibrillose, pale red, base pallid and white.

Figure 4.4 basidiocarps of Boletellus sp.1, scale bar $=2 \mathrm{~cm}$

Boletellus sp. 2 (MJ12 and MJ15)
Pileus 5-6.5 cm, convex to broadly convex, reddish brown, fine appressedsquamose when young, margin entire or rimose; tubes 5-8 mm, yellow; pores 0.8-1 mm, subrounded, yellow, cyanescent. Stem $4 \mathrm{~cm} \times 6-10 \mathrm{~mm}$, equal, longitudinally fibrillose, minutely pubescent, dark reddish brown, yellow at apex, cyanescent.

Figure 4.5 basidiocarps of Boletellus sp.2, scale bar $=2 \mathrm{~cm}$

Boletellus sp. 3 (MJ26)
Pileus 4-5.3 cm, convex, pale reddish brown, smooth, entire; tubes $5-8 \mathrm{~mm}$, decurrent, yellow; pores 0.3-1 mm, subrounded to angular, yellow. Stem 8-9 $\mathrm{cm} \times 10-20$ mm at apex, 15-25 mm at base, slightly clavate, pale yellow, reddish reticulate.

จุพาลงกรณัมหาวิทยาลัย

Figure 4.6 basidiocarps of Boletellus sp.3, scale bar $=2 \mathrm{~cm}$

Boletellus sp. 4 (CH02,MJ04, P00, and WS02)
Pileus 6-7.5 cm, convex, pale yellow, appressed-squamulose, reddish brown, margin irregularly appendiculated with the woolly remains of the veil; tubes $8-15 \mathrm{~mm}$, yellow; pores 0.5 mm , rouded to subrounded, yellow. Stem $8-10 \mathrm{~cm} \times 15 \mathrm{~mm}$ at apex, 20 mm at base, slightly clavate, reticulate, dark red.

Figure 4.7 basidiocarps of Boletellus sp.4, scale bar $=2 \mathrm{~cm}$

Boletus sp. 1 (CP31, CP47, P12)

Pileus 5-15 cm, convex to broadly convex, orange to brown, smooth, margin entire; tubes 5-8 mm, greenish yellow; pores 0.8-1 mm, subrounded, greenish yellow. Stem 4-11 cm x 13-20 mm, equal, glabrous, orange to brown, yellow at apex, base pallid and white.

Figure 4.8 basidiocarps of Boletus sp.1, scale bar $=2 \mathrm{~cm}$

Boletus sp. 2 (CP18 and CP25)
Pileus 3.5-6.5 cm, convex to broadly convex, orange brown, smooth, margin entire; tubes 5-8 mm, yellow; pores 0.3-0.5 mm, subrounded, white then yellow. Stem 4$6 \mathrm{~cm} \times 10-13 \mathrm{~mm}$, equal, longitudinally fibrillose, minutely pubescent, pale orange brown, base pallid and white.

Figure 4.9 basidiocarps of Boletus sp.2, scale bar $=2 \mathrm{~cm}$

Boletus sp. 3 (CP01)
Pileus 5.5 cm , broadly convex, cream, smooth, margin entire; tubes $3-5 \mathrm{~mm}$, yellow; pores 0.3-0.5 mm, subrounded, red, cyanescent. Stem $3.5 \mathrm{~cm} \times 18 \mathrm{~mm}$, equal, dark red, cyanescent.

Figure 4.10 basidiocarps of Boletus sp.3, scale bar $=2 \mathrm{~cm}$

Boletus sp. 4 (CP15, CP20 and CP51)
Pileus 2-5 cm, convex to broadly convex, yellowish brown or reddish brown to dark brown, smooth, margin entire; tubes 3-5 mm, yellow; pores 0.3 mm , subrounded, white then yellow. Stem 4-6 cm $\times 8-15 \mathrm{~mm}$, equal to clavate, cream, reticulate, brown ridge.

Figure 4.11 basidiocarps of Boletus sp. 4 , scale bar $=2 \mathrm{~cm}$

Boletus sp. 5 (MJ23)
Pileus 3.5-4 cm, convex, pale reddish brown, smooth, margin entire; tubes 5 mm , yellow; pores 0.2 mm , subrounded, cream. Stem $3.5 \mathrm{~cm} \times 21 \mathrm{~mm}$ at apex, 18 mm at base, slightly clavate, cream at apex, pale brown at base, reticulate.

Figure 4.12 basidiocarps of Boletus sp.5, scale bar $=2 \mathrm{~cm}$

Boletus sp. 6 (CP03)
Pileus 5.5 cm , convex, reddish brown, smooth, margin entire; tubes 5 mm , yellow; pores $0.8-1 \mathrm{~mm}$, subrounded, yellow, cyanescent. Stem $2.5 \mathrm{~cm} \times 8 \mathrm{~mm}$, equal, longitudinally fibrillose, dark reddish brown, yellow at apex, cyanescent.

Boletus sp. 7 (MJ27)
Pileus 2.8 cm , convex, reddish brown, rivulose, margin entire; tubes 3 mm , cream; pores 0.25 mm , subrounded, cream. Stem $3 \mathrm{~cm} \times 12 \mathrm{~mm}$, flatten, equal, longitudinally fibrillose, cream, base pallid and white.

Figure 4.13 basidiocarps of Boletus sp.7, scale bar $=2 \mathrm{~cm}$

Boletus sp. 8 (CP40)
Pileus 3-3.5 cm, convex, orange brown, smooth, margin entire; tubes 5 mm , yellow; pores 1-1.2 mm, subrounded, yellow. Stem 2.5-3 $\mathrm{cm} \times 5-8 \mathrm{~mm}$, equal, longitudinally fibrillose, pale brown, yellow at apex, base pallid and white.

Figure 4.14 basidiocarps of Boletus sp.8, scale bar $=2 \mathrm{~cm}$

Boletus sp. 9 (NN05)
Pileus 7 cm , convex, dark brown, smooth, margin entire; tubes 8 mm , bright yellow; pores 0.3-0.5 mm, subrounded, bright yellow, cyanescent. Stem $9.5 \mathrm{~cm} \times 18$ mm , equal, longitudinally fibrillose, minutely pubescent at apex, pale reddish brown, pale yellow at apex, base pallid and white.

Figure 4.15 basidiocarps of Boletus sp.9, scale bar $=2 \mathrm{~cm}$

Boletus sp. 10 (CP11)
Pileus 2.5 cm , convex, orange, rivulose, margin entire; tubes 5 mm , orange; pores 0.3 mm , subrounded, orange, cyanescent. Stem $2.5 \mathrm{~cm} \times 7 \mathrm{~mm}$, equal, minutely pubescent, dark orange, yellow at apex, cyanescent.

Figure 4.16 basidiocarps of Boletus sp.10, scale bar $=2 \mathrm{~cm}$

Boletus sp. 11 (CP8)

Pileus 9.5 cm , broadly convex, creamy brown, fine areolate, margin entire; tubes 15-20 mm, yellow; pores $0.8-1 \mathrm{~mm}$, subrounded, pale reddish brown. Stem $7 \mathrm{~cm} \times 25$ mm at apex, 40 mm at base, clavate, longitudinally fibrillose, dark reddish brown.

Figure 4.17 basidiocarps of Boletus sp.11, scale bar $=2 \mathrm{~cm}$

Boletus sp. 12 (P05)
Hececormex
Pileus 6-9 cm, convex, reddish brown to dark brown, smooth, margin entire or rimose; tubes 5 mm , white; pores $0.3-0.5 \mathrm{~mm}$, subrounded, white. Stem $4 \mathrm{~cm} \times 25-30$ mm , tapered at base, reticulate at apex, olive-green at apex, dark brown at base.

Figure 4.18 basidiocarps of Boletus sp.12, scale bar $=2 \mathrm{~cm}$

Boletus sp. 13 (CP17, CP21and CP49)

Pileus $5-7.5 \mathrm{~cm}$, convex to broadly convex, cream to pale gray, smooth, margin entire; tubes 5-8 mm, yellow; pores 0.3-0.5 mm, subrounded, white then yellow. Stem 3$6 \mathrm{~cm} \times 15-18 \mathrm{~mm}$, equal, longitudinally fibrillose, concolorous with pileus.

Figure 4.19 basidiocarps of Boletus sp.13, scale bar $=2 \mathrm{~cm}$

Boletus sp. 14 (PH37)
Pileus 2-3 cm, broadly convex, reddish brown, smooth, margin incurve; tubes 23 mm , yellow; pores 0.3 mm , subrounded, yellow. Stem $3 \mathrm{~cm} \times 5 \mathrm{~mm}$, equal, Iongitudinally fibrillose, dark brown, yellow at apex.

Figure 4.20 basidiocarps of Boletus sp.14, scale bar $=2 \mathrm{~cm}$

Boletus sp. 15 (NN12)
Pileus 13 cm , broadly convex, orange brown, smooth, margin entire; tubes 20 mm, yellow; pores 0.8-1 mm, subrounded, yellow. Stem $9 \mathrm{~cm} \times 20-23 \mathrm{~mm}$, equal, longitudinally fibrillose, reticulate at apex, pale orange.

Figure 4.21 basidiocarps of Boletus sp.15, scale bar $=2 \mathrm{~cm}$

Boletus sp. 16 (NN16)
Pileus 10 cm , broadly convex, pale brown, smooth, margin entire; tubes 5-8 mm, yellow; pores 0.5 mm , subrounded, yellow, cyanescent. Stem $13 \mathrm{~cm} \times 15-18 \mathrm{~mm}$, equal, longitudinally fibrillose, cream, pale brown at base, cyanescent.

Figure 4.22 basidiocarps of Boletus sp.16, scale bar $=2 \mathrm{~cm}$

Boletus sp. 17 (P15, PH41 and UB04)
Pileus $5-6 \mathrm{~cm}$, convex to broadly convex, reddish brown to dark brown, smooth, margin entire; tubes 5 mm , pale brown; pores 0.5 mm , subrounded, pale brown. Stem 6$8 \mathrm{~cm} \times 10 \mathrm{~mm}$, equal, longitudinally fibrillose, white to pale brown.

Figure 4.23 basidiocarps of Boletus sp.17, scale bar $=2 \mathrm{~cm}$

Boletus sp. 18 (MJ16)
Pileus 12-14 cm, broadly convex, dark brown, slightly uneven, margin entire or rimose; tubes 8 mm , yellow; pores 1-1.2 mm, subrounded, yellow, cyanescent. Stem 7 $\mathrm{cm} \times 20 \mathrm{~mm}$ at apex, 23 mm at base, slightly clavate, longitudinally fibrillose, minutely pubescent, dark brown, yellow at apex, pale cyanescent.

Figure 4.24 basidiocarps of Boletus sp.18, scale bar $=2 \mathrm{~cm}$

Boletus sp. 19 (CP34)
Pileus 5.5 cm , broadly convex, purplish brown, smooth, margin entire; tubes 5 mm , yellow; pores 0.8-1.2 mm, subrounded, yellow. Stem $5 \mathrm{~cm} \times 5 \mathrm{~mm}$, equal, Iongitudinally fibrillose, cream, pale brown at apex.

Figure 4.25 basidiocarps of Boletus sp.19, scale bar $=2 \mathrm{~cm}$

Boletus sp. 20 (NN02)
Pileus 8.5 cm , broadly convex, orange brown, smooth, margin recurved; tubes 3-5 mm, yellow; pores $0.8-1 \mathrm{~mm}$, subrounded, cream to yellow. Stem $6.5 \mathrm{~cm} \times 10 \mathrm{~mm}$, equal, longitudinally fibrillose, pale reddish brown, yellow at base.

Figure 4.26 basidiocarps of Boletus sp.20, scale bar $=2 \mathrm{~cm}$

Boletus sp. 21 (CP53)

Pileus 9 cm , broadly convex, dark brown, fine areolate, margin entire; tubes 8 mm , yellow; pores $0.5-0.8 \mathrm{~mm}$, subrounded, yellow. Stem $7 \mathrm{~cm} \times 40 \mathrm{~mm}$, clavate, reticulate, cream to pale brown, pale brown at apex.

Figure 4.27 basidiocarps of Boletus sp. 21, scale bar $=2 \mathrm{~cm}$

Boletus sp. 22 (CP44)
Pileus 7.5 cm , convex to broadly convex, dark brown, smooth, margin entire; tubes $5-8 \mathrm{~mm}$, purplish brown; pores 0.5 mm , subrounded, purplish brown. Stem $6 \mathrm{~cm} \times$ $10-15 \mathrm{~mm}$, equal to slightly clavate, minutely pubescent, pale brown to dark brown.

Figure 4.28 basidiocarps of Boletus sp.22, scale bar $=2 \mathrm{~cm}$

Boletus sp. 23 (CP19)
Pileus 3-3.5 cm, convex, yellowish brown, rivulose, margin entire; tubes 5 mm , yellow; pores 0.3-0.5 mm, subrounded, yellow. Stem 3.5-4 cm x 8 mm , equal, longitudinally fibrillose, pale brown.

Figure 4.29 basidiocarps of Boletus sp.23, scale bar $=2 \mathrm{~cm}$

Boletus sp. 24 (SN01 and NN11)
Pileus 4-5 cm, convex, brown, dark brown in the center, fine areolate, margin entire; tubes 5 mm , yellow; pores $0.8-1 \mathrm{~mm}$, subrounded, yellow, cyanescent. Stem 5 $\mathrm{cm} \times 8 \mathrm{~mm}$, equal, longitudinally fibrillose, dark brown, yellow at apex.

Figure 4.30 basidiocarps of Boletus sp.24, scale bar $=2 \mathrm{~cm}$

Heimioporus sp. 1 (UB01)
Pileus 4-7 cm, convex, crimson, smooth, entire; tubes 5-8 mm, yellow; pores 0.51 mm , subrounded, yellow. Stem $8-12 \mathrm{~cm} \times 8-10 \mathrm{~mm}$ at apex, $15-18 \mathrm{~mm}$ at base, slightly clavate, crimson, fuscous at base, reticulate.

Figure 4.31 basidiocarps of Heimioporus sp.1, scale bar $=2 \mathrm{~cm}$

Heimioporus sp. 2 (CP13, CP13.2, CP48, CP52, MJ06 and MJ25)
Pileus 6-11.5 cm, convex, crimson to yellowish pink, entire; tubes $10-20 \mathrm{~mm}$, yellow; pores 0.5-1 mm, subrounded, yellow. Stem $8-16 \mathrm{~cm} \times 15-20 \mathrm{~mm}$ at apex, 18-27 mm at base, equal, longitudinally fibrillose, crimson to pale pink, yellow at apex.

Figure 4.32 basidiocarps of Heimioporus sp.2, scale bar $=2 \mathrm{~cm}$

Heimioporus sp. 3 (NN03)
Pileus 7 cm , convex, crimson, smooth, entire; tubes 8 mm , yellow; pores 0.5-1 mm , subrounded, yellow. Stem $10.5 \mathrm{~cm} \times 18 \mathrm{~mm}$ at apex, 22 mm at base, equal, reticulate, crimson, yellowish red at apex.

Figure 4.33 basidiocarps of Heimioporus sp.3, scale bar $=2 \mathrm{~cm}$

Leccinum extremiorientale (NN18)
Pileus 10 cm , convex, orange brown, areolate, margin appendiculated with the remains of the veil; tubes $15-20 \mathrm{~mm}$, yellow; pores $0.8-1 \mathrm{~mm}$, subrounded, yellow. Stem $6 \mathrm{~cm} \times 25 \mathrm{~mm}$, equal, orange brown, longitudinally fibrillose, finely scabrous, brown scale.

Figure 4.34 basidiocarps of Leccinum extremiorientale, scale bar $=2 \mathrm{~cm}$

Leccinum sp. (NN13)
Pileus 4-4.5 cm, convex, dark reddish brown, margin entire; tubes 5 mm , purplish brown; pores $0.5-1 \mathrm{~mm}$, subrounded, purplish brown. Stem 5.5-6 cm $\times 10-12$ mm, equal, cream, scabrous, dark brown scale.

Figure 4.35 basidiocarps of Leccinum sp., scale bar $=2 \mathrm{~cm}$

Pulveroboletus sp. (039, CP16, MJ33 and NN21)
Pileus 5-7 cm, convex, pulverulent, brilliant sulphur yellow, margin appendiculate with fragments of the yellow and friable veil; tubes 5 mm , yellowish to rufescent; pores 0.5-1 mm, subrounded, yellow to rufescent, pale cyanescent. Stem 5-6 $\mathrm{cm} \times 10-12 \mathrm{~mm}$, equal, pulverulent, brilliant sulphur yellow, apical annulus.

Figure 4.36 basidiocarps of Pulveroboletus sp., scale bar $=2 \mathrm{~cm}$

Strobilomyces mirandus (PH32)

Pileus 6-8 cm, convex to broadly convex, golden tawny, appressed-squamulose, fuscous tan, margin irregularly appendiculated with the woolly remains of the veil; tubes white, blackening at maturity; pores 0.5 mm , subrounded, white then blackening. Stem 6-9 cm x 10 mm , equal, golden orange, covered with irregular elongate shallow reticulations more or less thinly floccoso-squamulose. All parts of the basidiocarp reddening slightly, then blackening on bruising.

Figure 4.37 basidiocarps of Strobilomyces mirandus, scale bar $=2 \mathrm{~cm}$

Strobilomyces sp. 1 (P04)
Pileus 17 cm , broadly convex, cracked, brown, black in the center, appressedsquamulose, fuscous, margin irregularly appendiculated with the woolly remains of the veil; tubes cream then blackening; pores $0.8-1 \mathrm{~mm}$, subrounded, cream then blackening. Stem $2 \mathrm{~cm} \times 40 \mathrm{~mm}$, equal, reticulate, black at apex, white at base. All parts of the basidiocarp reddening slightly, then blackening on bruising.

Figure 4.38 basidiocarps of Strobilomyces sp.1, scale bar $=2 \mathrm{~cm}$

Strobilomyces sp. 2 (P01 and P14)
Pileus 5-7 cm, convex, dark brown, finely appressed-squamulose, black; tubes 10 mm , cream then blackening; pores $1-2 \mathrm{~mm}$, subrounded to angular, cream then blackening. Stem $5.5-8 \mathrm{~cm} \times 5-15 \mathrm{~mm}$, equal, dark gray, covered with irregular elongate shallow reticulations more or less thinly floccoso-squamulose. All parts of the basidiocarp reddening slightly, then blackening on bruising.

Figure 4.39 basidiocarps of Strobilomyces sp.2, scale bar $=2 \mathrm{~cm}$

Strobilomyces sp. 3 (CP43)
Pileus 11 cm , plane, pale gray, finely appressed-squamulose, black; tubes cream then blackening; pores $1-2 \mathrm{~mm}$, subrounded to angular, cream then blackening. Stem $6.5 \mathrm{~cm} \times 15 \mathrm{~mm}$, equal, dark gray to black, reticulate. All parts of the basidiocarp reddening slightly, then blackening on bruising.

Chulalongkorn University

Figure 4.40 basidiocarps of Strobilomyces sp.3, scale bar $=2 \mathrm{~cm}$

4.3 Identification of the Basidiocarps Based on ITS and LSU Regions

Ninety-one of 95 collected basidiocarps were successfully amplified ITS (ITS1, 5.8 S and ITS2) regions. The size of ITS fragments varied in length from 500 to 1000 nucleotides (Figure 4.41). Only 61 ITS sequences were obtained. LSU amplification of 95 samples was successful and 84 LSU amplified products were successfully sequenced. The lengths of LSU fragments were approximately 1500 nucleotides (Figure 4.42). Generally, the ITS amplification resulted in less amount DNA product than LSU. Totally, 52 sequences of both ITS and LSU regions were obtained.

Figure 4.41 PCR product of ITS sequences in gel electrophoresis. M was marker.

Figure 4.42 PCR product of LSU sequences in gel electrophoresis. M was marker.

The similarity comparisons of ITS and LSU sequences in this study with available sequences in GenBank database are given in Table 4.4. The BLAST results of sequence affinity showed that all sequences of both regions were identical for the members of Boletaceae with $80 \%-99 \%$ similarity for ITS sequences and $85 \%-99 \%$ similarity for LSU sequences. The closest species matches included genera Aureoboletus, Boletellus, Boletus, Leccinum, Phylloporus, Pulveroboletus, Strobilomyces, Tylopilus, Xanthoconium, Xerocomus, and Zangia.

The ITS sequences in this study were also compared with the sequences of known species in the taxonomic reliable database, UNITE, as shown in Table 4.5. The result represented that most sequences shared high percentages of similarity (90\%100\%) with various members of Boletaceae such as Aureoboletus Boletus, Buchwaldoboletus, Leccinum, Porphyrellus, Strobilomyces and Xerocomus. However the low overlap value of all sequences reflected that the closest species matches did not closely related with the sequences in this study.

Table 4.4 Sequence affinity of basidiocarps in this study based on Genbank Database

Species	code	ITS region					LSU region				
		base pair	closest species match	accession no.	overlap	\%similarity	base pair	Closest species match	accession no.	overlap	\%similarity
Boletellus ananas	UB07	618	Unculture ectomycorrhiza	DQ146391	617/618	99\%	795	Zangia olivacea	HQ326946	744/804	93\%
Boletellus ananas	UB10	-	-	-	-	-	795	Zangia olivacea	HQ326946	744/804	93\%
Boletellus ananas	CP12	-	-	-	-		789	Boletellus ananas	AY612799	689/733	94\%
Boletellus ananas	NN04	-	-	-	-		790	Boletellus ananas	AY612799	692/735	94\%
Boletellus ananas	MJO3	-	-	-			789	Boletellus ananas	AY612799	690/733	94\%
Boletellus ananas	P13	-	-	-			790	Boletellus ananas	AY612799	692/735	94\%
Boletellus sp. 1	PH34	834	Boletellus obscurococcineus	AB509989	488/508	97\%	786	Boletellus projectellus	NG027638	733/791	93\%
Boletellus sp. 2	MJ15	913	Boletus sp.	FJ480441	$787 / 916$	86\%	782	Boletellus projectellus	NG027638	746/788	95\%
Boletellus sp. 2	MJ12	-	-	-			782	Boletellus projectellus	NG027638	745/788	95\%
Boletellus sp. 3	MJ26	582	Unculture ectomycorrhiza	AM113453	373/437	85\%	791	Tylopilus ballouii	EU430732	748/794	94\%
Boletellus sp. 4	WS02	846	Unculture Boletaceae	GQ268578	797/863	92\%	-	-	-	-	-
Boletellus sp. 4	P00	445	Uncultured Boletaceae	GQ268578	432/458	94\%	789	Boletellus projectellus	NG027638	733/791	93\%
Boletellus sp. 4	MJ04	$\underline{635}$	Uncultured Boletaceae	GQ268578	601/642	94\%	789	Boletellus projectellus	NG027638	733/791	93\%
Boletellus sp. 4	CH02	-	-	-			789	Boletellus projectellus	NG027638	733/791	93\%
Boletus sp. 1	P12	804	Boletus queletii	JF907785	388/461	84\%	788	Boletellus projectellus	NG027638	736/790	93\%
Boletus sp. 1	CP31	-	-	-	U, -	H.	788	Boletellus projectellus	NG027638	736/790	93\%
Boletus sp. 1	CP47	328	Uncultured ectomycorrhizal fungus	AM412264	261/296	90\%	790	Aureoboletus thibetanus	AY700189	744/801	93\%
Boletus sp. 2	CP18	502	Boletus bicolor	GQ166877	371/414	90\%	788	Boletellus projectellus	NG027638	753/789	95\%
Boletus sp. 2	CP25	-	-	-	-	-	788	Boletellus projectellus	NG027638	753/789	95\%
Boletus sp. 3	CP01	770	Boletus bicolor	GQ166877	656/779	84\%	787	Tylopilus ballouii	EU430737	749/792	95\%
Boletus sp. 4	CP15	659	Boletus bicolor	GQ166877	373/442	84\%	799	Boletellus projectellus	NG027638	726/809	90\%
Boletus sp. 4	CP51	516	Boletus bicolor	GQ166877	373/442	84\%	799	Boletellus projectellus	NG027638	727/809	90\%

[^0]Table 4.4 (continued) Sequence affinity of basidiocarps in this study based on Genbank Database

Species	code	ITS region					LSU region				
		base pair	closest species match	accession no.	overlap	\%similarity	base pair	Closest species match	accession no.	score (bit)	\%similarity
Boletus sp. 4	CP20	-	-	-	-	-	799	Boletellus projectellus	NG027638	726/809	90\%
Boletus sp. 5	MJ23	-	-	-	-	-	798	Boletellus projectellus	NG027638	727/809	90\%
Boletus sp. 6	CP03	783	Boletus brunneissimus	DQ407249	630/673	94\%	782	Xerocomus pruinatus	AF514827	725/745	97\%
Boletus sp. 7	MJ27	860	Boletus edulis subsp.	EU231978	281/322	87\%	793	Tylopilus felleus	HQ326934	740/802	92\%
			Aurantioruber								
Boletus sp. 8	CP40	720	Boletus erythropus	HM347643	486/5	84\%	783	Tylopilus felleus	HQ326934	746/788	95\%
Boletus sp. 9	NN05	699	Uncultured Boletus clone	HM146797	521/604	86\%	783	Tylopilus felleus	HQ326934	754/790	95\%
Boletus sp. 10	CP11	941	Boletus fragrans	JF907800	404/466	87\%	787	Tylopilus ballouii	EU430732	709/801	89\%
Boletus sp. 11	CP08	573	Boletus pallidus	JN020986	202/215	94\%	787	Tylopilus felleus	HQ326934	745/795	94\%
Boletus sp. 12	P05	629	Boletus pinophilus	DQ679803	357/421	85\%	787	Tylopilus felleus	HQ326934	735/798	92\%
Boletus sp. 13	CP17	728	Boletus pinophilus	DQ131626	447/535	84\%	786	Zangia erythrocephala	HQ326943	750/795	94\%
Boletus sp. 13	CP21	731	Boletus pinophilus	DQ131626	448/536	84\%		-	-	-	-
Boletus sp. 13	CP49	717	Boletus sp.	JN020990	604/663	91\%		-	-	-	-
Boletus sp. 14	PH37	370	Boletus rubellus	EU819460	330/360	91\%	503	Tylopilus ballouii	EU430737	489/504	97\%
Boletus sp. 15	NN12	848	Boletus sp.	EU569236	579/694	83\%	789	Boletellus projectellus	NG027638	753/791	95\%
Boletus sp. 16	NN16	826	Boletus sp.	AB509789	462/474	97\%	783	Boletellus projectellus	NG027638	743/785	95\%
Boletus sp. 17	P15	621	Boletus sp.	FJ480436	563/657	86\%	783	Boletellus projectellus	NG027638	748/785	95\%
Boletus sp. 17	PH41	617	Boletus sp.	FJ480436	561/655	86\%	502	Boletellus shichianus	NG027636	490/502	98\%
Boletus sp. 17	UB04	637	Boletus sp.	FJ480436	560/650	87\%	783	Xanthoconium affine	AY612838	705/720	98\%
Boletus sp. 18	MJ16	537	Boletus sp.	EU569236	299/334	90\%	793	Boletellus projectellus	NG027638	749/790	94\%
Boletus sp. 19	CP34	813	Uncultured ectomycorrhizal fungus	AB218099	592/685	87\%	793	Xerocomus illudens	AY612840	686/705	97\%
Boletus sp. 20	NN02	741	Uncultured fungus	FM999554	441/485	85\%	787	Boletellus projectellus	NG027638	735/791	93\%

[^1]Table 4.4 (continued) Sequence affinity of basidiocarps in this study based on Genbank Database

[^2]Table 4.4 (continued) Sequence affinity of basidiocarps in this study based on Genbank Database

Species	code	ITS region					LSU region				
		base pair	closest species match	accession no.	overlap	\%similarity	base pair	Closest species match	accession no.	score (bit)	\%similarity
Strobilomyces sp. 2	P14	747	Strobilomyces sp.	JF273544	720/735	98\%	776	Tylopilus ballouii	EU430737	711/796	89\%
Strobilomyces sp. 3	CP43	-	-	-	-	-	786	Strobilomyces floccopus	AY645053	707/804	88\%
Tylopilus eximius	CP35	904	uncultured Boletaceae	GQ268585	735/919	80\%	763	Boletellus projectellus	NG027638	749/795	94\%
Tylopilus sp. 1	NN22	-	-	-	-		787	Tylopilus ballouii	EU430737	749/792	95\%
Tylopilus sp. 2	CP41	705	Tylopilus felleus		591/717	83\%	783	Tylopilus felleus	HQ326934	750/787	95\%
Tylopilus sp. 3	PH40	584	Tylopilus formosus	HM060320	512/6	83\%	783	Tylopilus felleus	HQ326934	750/787	95\%
Tylopilus sp. 4	CP09	481	Tylopilus formosus	HM060320	378/477	85\%		-	-	-	-
Tylopilus sp. 4	CP10	576	Tylopilus formosus	HM060320	474/573	83\%	794	Tylopilus violatinctus	HQ326935	751/808	93\%
Tylopilus sp. 4	MJ01	-	-	-			792	Tylopilus violatinctus	HQ326935	754/806	94\%
Tylopilus sp. 4	K04	-	-	-			792	Tylopilus violatinctus	HQ326935	753/806	93\%
Tylopilus sp. 4	CP24	-	-	-	-		792	Tylopilus violatinctus	HQ326935	754/806	94\%
Tylopilus sp. 5	NN10	-	-	-			785	Tylopillus felleus	AY586723	749/788	95\%
Tylopilus sp. 6	CPB	-	-	-			783	Tylopilus felleus	HQ326934	746/788	95\%
Tylopilus sp. 6	WS01	630	Unculture Boletaceae	GQ268587	391/430	91\%		-	-	-	-
Tylopilus sp. 7	NN01	682	Xerocomus sp.	JF723274	499/611	82\%	788	Tylopilus felleus	HQ326934	758/791	96\%
Tylopilus sp. 7	PK01	664	Boletus rhodopurpureus	HM347667	361/415	87\%	788	Tylopilus felleus	HQ326934	758/791	96\%
Tylopilus sp. 7	CM03	-	-	-	-	-	788	Tylopilus felleus	HQ326934	757/791	96\%
Tylopilus sp. 8	NN07	-	-	-	-	-	797	Tylopillus neofelleus	HQ326936	749/810	92\%
Tylopilus sp. 9	CP39	-	-	-	-	-	789	Tylopilus neofelleus	HQ326936	736/804	92\%
Tylopilus sp. 10	CP23	-	-	-	-	-	795	Tylopilus violatinctus	HQ326935	745/810	92\%
Tylopilus sp. 10	CP45	-	-	-	-	-	795	Tylopilus violatinctus	HQ326935	747/810	92\%
Tylopilus sp. 10	CP46	597	Tylopilus formosus	HM060320	513/619	83\%	-	-	-	-	-
Tylopilus sp. 11	CP14	490	Retiboletus nigerrimus	AB509860	278/315	88\%	-	-	-	-	-
Tylopilus sp. 12	NN06	-	-	-	-	-	788	Tylopilus rhoadsiae	AY612836	676/718	94\%

[^3]Table 4.4 (continued) Sequence affinity of basidiocarps in this study based on Genbank Database

Species	code	ITS region					LSU region				
		base pair	closest species match	accession no.	overlap	\%similarity	base pair	Closest species match	accession no.	score (bit)	\%similarity
Tylopilus sp. 13	CP05	516	Tylopilus ballouii	AB509625	298/304	98\%	792	Tylopilus ballouii	EU430740	778/792	98\%
Tylopilus sp. 13	CP06	403	Tylopilus ballouii	AB509626	298/304	98\%	-	-	-	-	-
Tylopilus sp. 13	CP37	537	Tylopilus ballouii	AB509735	312/321	98\%	794	Tylopilus ballouii	EU430740	780/79	99\%
Tylopilus sp. 13	035	539	Tylopilus ballouii	AB509735	318/321	99\%	-	-	-	-	-
Tylopilus sp. 13	NN17	-	-	-			793	Tylopilus ballouii	EU430740	781/793	98\%
Tylopilus sp. 14	P02	-	-	-			785	Zangia citrina	HQ326941	779/785	99\%

A dashed line (-) indicates fail to amplified or sequencing in each region. The underline (_) in column base pair indicates incomplete full length in sequencing.

Table 4.5 Sequence affinity of basidiocarps in this study based on UNITE Database

Species	code	ITS region				
		base pair	closest species match	accession no.	overlap	\%similarity
Boletellus ananas	UB07	618	Boletus edulis	UDB011153	196/205	95\%
Boletellus sp. 1	PH34	834	Xerocomus cisalpinus	UDB011447	186/190	97\%
Boletellus sp. 2	MJ15	913	Buchwaldoboletus	UDB000647	249/263	94\%
			hemichrysus			
Boletellus sp. 3	MJ26	582	Leccinum pseudoscabrum	UDB011422	183/191	95\%
Boletellus sp. 4	WS02	846	Xerocomus ferrugineus	UDB011448	171/173	98\%
Boletellus sp. 4	POO	445	Xerocomus ferrugineus	UDB011448	171/173	98\%
Boletellus sp. 4	MJ04	635	Xerocomus ferrugineus	UDB011448	171/173	98\%
Boletus sp. 1	P12	804	Boletus luridus	UDB002401	174/179	97\%
Boletus sp. 1	CP47	328	Boletus queletii	UDB000760	176/184	95\%
Boletus sp. 2	CP18	502	Boletus calopus	UDB000079	301/333	90\%
Boletus sp. 3	CP01	770	Boletus rubrosanguineus	UDB000410	309/323	95\%
Boletus sp. 4	CP15	659	Xerocomus cisalpinus	UDB011447	209/219	95\%
Boletus sp. 4	CP51	516	Xerocomus cisalp	UDB011447	209/219	95\%
Boletus sp. 6	CP03	783	oletus radicans	UDB003224	550/607	90\%
Boletus sp. 7	MJ27	860	Boletus pinophilus	UDB011150	192/201	95\%
Boletus sp. 8	CP40	720	Boletus erythropus	UDB001523	296/325	91\%
Boletus sp. 9	NN05	699	Boletus erythropus	UDB001523	387/432	89\%
Boletus sp. 10	CP11	941	Boletus erythropus	UDB001523	289/318	90\%
Boletus sp. 11	CP08	573	Xerocomus ferrugineus	UDB011448	168/171	98\%
Boletus sp. 12	P05	629	Melanogaster variegatus	UDB001487	171/175	97\%
Boletus sp. 13	CP17	728	Boletus edulis	UDB011153	179/179	100\%
Boletus sp. 13	CP21	731	Boletus edulis	UDB011153	179/179	100\%
Boletus sp. 13	CP49	717	Boletus edulis	UDB011153	179/179	100\%
Boletus sp. 14	PH37	370	Boletus erythropus	UDB001523	178/180	98\%
Boletus sp. 15	NN12	848	Boletus legaliae	UDB001115	303/332	91\%
Boletus sp. 16	NN16	826	Aureoboletus gentilis	UDB000687	186/191	97\%
Boletus sp. 17	P15	621	Aureoboletus gentilis	UDB000687	178/179	99\%
Boletus sp. 17	PH41	617	Aureoboletus gentilis	UDB000687	178/179	99\%
Boletus sp. 17	UB04	637	Aureoboletus gentilis	UDB000687	234/250	93\%
Boletus sp. 18	MJ16	537	Xerocomus silwoodensis	UDB002290	176/179	98\%
Boletus sp. 19	CP34	813	Xerocomus ferrugineus	UDB011448	180/180	100\%
Boletus sp. 20	NN02	741	Boletaceae	UDB011023	199/202	98\%
Heimioporus sp. 1	UB01	495	Xerocomus cisalpinus	UDB011447	248/265	93\%
Heimioporus sp. 2	MJ06	849	Xerocomus cisalpinus	UDB011447	242/260	93\%
Heimioporus sp. 2	MJ25	720	Xerocomus cisalpinus	UDB011447	242/260	93\%
Heimioporus sp. 2	CP13	848	Xerocomus cisalpinus	UDB011447	242/260	93\%
Heimioporus sp. 2	CP13.2	846	Xerocomus cisalpinus	UDB011447	242/260	93\%
Heimioporus sp. 2	CP48	600	Xerocomus cisalpinus	UDB011447	242/260	93\%
Heimioporus sp. 3	NN03	823	Boletus satanas	UDB000419	247/265	93\%
Leccinum	NN18	633	Boletus luridus	UDB002401	303/325	93\%
extremiorientale						

The underline ($_$) in column base pair indicates incomplete full length in sequencing.

Table 4.5 (continued) Sequence affinity of basidiocarps in this study based on UNITE
Database

Species	code	ITS region				
		base pair	closest species match	accession no.	overlap	\%similarity
Pulveroboletus sp.	CP16	480	Boletus luridus	UDB002401	250/265	94\%
Pulveroboletus sp.	NN21	731	Boletus queletii	UDB000760	306/332	92\%
Pulveroboletus sp.	039	736	Boletus queletii	UDB000760	292/318	91\%
Strobilomyces	PH32	595	Strobilomyces strobilaceus	UDB000662	172/172	100\%
mirandus						
Strobilomyces sp. 1	P04	785	Boletus erythropus	UDB001523	236/258	91\%
Strobilomyces sp. 2	P01	752	Porphyrellus porphyrosporus	UDB001485	153/157	97\%
Strobilomyces sp. 2	P14	747	Porphyrellus porphyrosporus	UDB001485	150/157	95\%
Tylopilus eximius	CP35	904	Xerocomus badius	UDB011681	211/219	96\%
Tylopilus sp. 2	CP41	705	Xerocomus cisalpinus	UDB011447	243/258	94\%
Tylopilus sp. 3	PH40	584	Serpula lacrymans	UDB003334	169/174	97\%
Tylopilus sp. 4	CP09	481	rpula lacrymans	UDB003334	168/173	97\%
Tylopilus sp. 4	CP10	576	rpula lacrymans	UDB003334	168/173	97\%
Tylopilus sp. 6	WS01	630	Hygrophoropsis aurantiac	UDB011685	159/164	96\%
Tylopilus sp. 7	NN01		oletus luridus	UDB002401	179/181	98\%
Tylopilus sp. 7	PK01		oletus luridus	UDB002401	179/181	98\%
Tylopilus sp. 10	CP46	597	Leucopaxillus giganteus	UDB011853	170/174	97\%
Tylopilus sp. 11	CP14	490	s arhizus	UDB001206	158/161	98\%
Tylopilus sp. 13	CP05	516	Boletus luridus	UDB002401	171/174	98\%
Tylopilus sp. 13	CP06	403	Boletus luridus	UDB002401	171/174	98\%
Tylopilus sp. 13	CP37	- 537	Xerocomus ferrugineus	UDB011448	171/178	98\%
Tylopilus sp. 13	035	539	Xerocomus chrysonemus	UDB002257	175/181	96\%

The underline (_) in column base pair indicates incomplete full length in sequencing.

4.4 Phylogeny of Boletaceae

To study phylogenetic relationship among the family Boletaceae, ITS and LSU sequences of some Boletellus, Boletus, Heimioporus, Leccinum, Pulveroboletus, Strobilomyces and Tylopilus species were analysed with available sequences from GenBank Database. Twenty-nine sequences of twenty-two local species were used for construction of phylogenetic tree based on ITS region, while, Forty-four sequences of twenty-eight local species were use in analyses based on LSU region.

According to phylogenetic tree based on ITS regions (Figure 4.43), five genera, Boletellus, Heimioporus, Leccinum, Pulveroboletus and Strobilomyces were monophyletic groups while Boletus and Tylopilus were not. Both Boletus and Tylopilus were also separated in three clades.

Within genus Boletellus, the bootstrap value was 87%. Boletellus sp. 2 (MJ15) corresponded to B. mirabilis while Boletellus sp. 1 (PH34) closely related to B. obscurococcineus with highly supported bootstrap value (95\%). However, most relationships among this genus were unclear.

Genus Pulveroboletus in this study composed of four species with 72% bootstrap value. Within this clade, Thai Pulveroboletus sp. (NN21) showed the close relationship to Pulveroboletus ravenelii. The sister group of Pulveroboletus, Leccinum clade comprised only two species, L. extremiorientale (including NN18) and L. rugosiceps with 67 \% bootstrap supported.

Heimioporus clade had strong supported (96% BS). Thai samples were divided into 2 subclades. First subclade contained Heimioporus sp. 2 (MJ25 CP13 and MJ06) and Heimioporus sp. from Genbank with highest supported 99\% bootstrap value. Within other subclades, Heimioporus sp. 3 closely related to H. japonica with 91% bootstrap supported

Strobilomyces clade was represented with 78\% bootstrap value. Three Thai species were placed in this clade. Strobilomyces sp. 2 (P14 and P01) showed highly corresponded to S. seminudus and Strobilomyces sp. with 99\% bootstrap. S. mirandus (PH32) from Thailand closely related to the sequence of same species from GenBank and this species was sister group of Strobilomyces sp.1(P04). This Thai species closely related to other S. seminudus with highest supported 99\% bootstrap value.

Boletus clade I was separated into 2 subclades and each subclade contained one species from Thailand. Boletus sp. 19 (CP34) demonstrated closed relationship with ectomycorrhizal fungus (AB218099) with highly supported bootstrap value (96\%). The other Thai species, Boletus sp. 17 (UB04 P15 and PH41) was placed with uncultured Basidomycota clone (GU328591) and bootstrap value was 99\%

The relationship among Boletus clade II was unclear. Boletus sp. 6 (CP03) closely related to B. subvelutipes (81% bootstrap value) and Boletus sp. 3 (CP01) closely related to B. bicolor (84\% bootstrap value). While Boletus sp. 9 (NN05) and Boletus sp. 11 (NN12) show corresponded to B. erythropus and Boletus sp. respectively with weak supported.

The relationship among Tylopilus was non-monophyletic group. Tylopilus clade I consisted of two species, T. eximius (CP35) from Thailand and T. felleus with 72% bootstrap support. Within Tylopilus clade II, Tylopilus sp. 4 (CP04) showed closely relationship to uncultured Boletaceae type (GQ268587) and Tylopilus sp. 10 (CP46) was placed with T. formosus. The other Tylopilus clade was the clade of T. ballouii that contain Tylopilus sp. 13 (CP05 and CP37) from Thailand. Bootstrap value of this clade was 95\%.

Figure 4.43 Phylogenetic tree based on ITS sequences of Boletaceae, closely related species and outgroups (Rhizopogon spp.) using Maximum Likelihood,The numbers at the nodes are boostrap values based 100 replications. The bold letters denote Thai samples in this study. The scale bar indicates 0.5 of the genetic distance.

Figure 4.43 (continued) Phylogenetic tree based on ITS sequences of Boletaceae, closely related species and outgroups (Rhizopogon spp.) using Maximum Likelihood,The numbers at the nodes are boostrap values based 100 replications. The bold letters denote Thai samples in this study. The scale bar indicates 0.5 of the genetic distance.

The relationship among Boletaceae based on LSU region was represented in Figure 4.44 The phylogenetic tree clearly divided into 16 clades. Only three genera, Heimioporus, Pulveroboletus and Strobilomyces were monophyletic groups.

The strong supported clade was Heimioporus with 94% bootstrap value. The relationship in this clade was clearly resolved. Heimioporus sp. 1 (UB01) closely related to H. retispora (96% BS) and was sister group of Heimioporus sp. 3 (NN03). While 2 sequences of Heimioporus sp. 2 (CP52 and MJ27) were grouped together (96\% bootstrap value).

Pulveroboletus clade contained only one Thai species (039 CP16 MJ33) which closely related to P. ravenelii (98\% bootstrap value). While Strobilomyces clade comprised 4 species from Thailand with high supported (80% BS) and was separated into 3 subclades. S. mirandus (PH32), S. floccopus and Strobilomyces sp. were place together in first subclade with 78% bootstrap value. Within second subclade, Strobilomyces sp. 3 (P01) related to Strobilomyces sp. 1 (P04) with weak supported (54\% bootstrap value). The last subclade comprised Strobilomyces sp. 2 (P01 and P04) and Strobilomyces sp. with 77\% bootstrap support.

Leccinum was non-monophyly. Leccinum sp. (NN13) from Thai sample was placed in Leccinum clade I together with L. holopus and L. rugosiceps (98\% bootstrap value) while L. extremiorientale was separated.

Boletellus could be divided into three clades. Boletellus sp. 2 (MJ12 and MJ15) related to B. chrysenteroides closely within Boletellus clade I with 95\% bootstrap value. While B. ananas (including MJ03 P13 and UB7) and Boletellus sp. 4 (CP32 MJ04 and P00) were clearly separately with strongly supported (95\% and 99\% respectively)

Boletus could be seperated into 5 clades. Within Boletus clade I, two subclades were grouped together with strongest supported (99\%). First subclade comprised B. edulis and B. rex-veris (99\% bootstrap value). While, Boletus sp. 21 (CP53) closely related to B. quercophilus and were placed together in second subclade ($99 \% \mathrm{BS}$). Within Boletus clade II, the relationship was still unclear. This clade contained two Thai samples, Boletus sp. 3 (CP01) and Boletus sp. 6 (CP03). Boletus clade III comprised only
two species. Boletus sp. 1 (CP47 and P12) demonstrated closed relationship with B. viridiflavus with highly supported (97\% BS). Boletus sp. 24 (SN1) and Boletus sp. 19 (CP34) were placed together with other two Boletus species in Boletus clade IV with 87\% bootstrap support. Within Boletus clade V, Boletus sp. 4 (CP15 CP20 and CP51) and Boletus sp. 5 (MJ23) were grouped together with strongest supported (99\% bootstrap value).

The relationship among Tylopilus, this genus could be separated into 4 clades. Tylopilus clade I was highly supported clade (92% BS) and could be divided into 2 subclades. Within first subclade with 98\% bootstrap value, Tylopilus sp. 3 (PH40) and Tylopilus sp. 4 (CP10 and MJ01) were grouped with T. violatinctus (85% bootstrap value) while Tylopilus sp. 10 (CP23 and CP45) closely related to T. formosus with highly supported (96\% bootstrap value). Tylopilus sp. 8 (NN07) was placed with T. intermedius, T. rubrobrunneus and T. neofelleus in other subclade with weakly supported. Tylopilus clade II contained only one Thai species (Tylopilus sp. 14) and the relationship in this clade was unclear. Within Tylopilus clade III, Tylopilus sp. 13 (CP05 CP37 and NN17) was closely corresponded with T. ballouii (99% bootstrap value) and this species could be separated into 2 subclades. Tylopilus clade \mathbb{V} comprised only one species, T. eximius (including CP35) with 94% bootstrap value.

Figure 4.44 Phylogenetic tree based on LSU sequences of Boletaceae, closely related species and outgroups (Rhizopogon spp.) using Maximum Likelihood,The numbers at the nodes are boostrap values based 100 replications. The bold letters denote Thai samples in this study. The scale bar indicates 0.05 of the genetic distance.

Figure 4.44 (continued) Phylogenetic tree based on LSU sequences of Boletaceae, closely related species and outgroups (Rhizopogon spp.) using Maximum Likelihood, The numbers at the nodes are boostrap values based 100 replications. The bold letters denote Thai samples in this study. The scale bar indicates 0.05 of the genetic distance.

4.5 Phylogeny of Tylopilus

To study phylogenetic relationship among one of large genus, Tylopilus, ITS and LSU sequences of some Tylopilus and Zangia species were analysed with available sequences from GenBank Database. Fourteen sequences of nine local species were used for construction of phylogenetic tree based on ITS region, while, twenty sequences of twelve local species including one Zangia species were use in analyses based on LSU region. The detail of sequences from GenBank Database including host plant families were demonstrated in Table 4.6 and 4.7.

Table 4.6 ITS sequences of Tylopilus and Retiboletus from Genbank Database

species	Accession no.	host plant families	country
Tylopilus ballouii	AB509625	unknown	Japan
Tylopilus ballouii	AB509735	unknown	Japan
Tylopilus felleus	HM190016	Pinaceae and Fagaceae	Germany
Tylopilus felleus	HM190015	Pinaceae and Fagaceae	Germany
Tylopilus rubrobrunneus	GQ166869	Fagaceae	USA
Tylopilus formosus	HM060320	Casuarinaceae and Myrtaceae	New Zealand
Uncultured Boletaceae	GQ268587	Dipterocarpaceae	Malaysia
Retiboletus nigerrimus	AB509860	unknown	Japan

Table 4.7 LSU sequences of Tylopilus and Zangia from Genbank Database

species	Accession no.	host plant families	country
Tylopilus violatinctus	HQ326935	Pinaceae and Fagaceae	China
Tylopilus formosus	HM060319	Casuarinaceae and Myrtaceae	New Zealand
Tylopilus intermedius	HQ161875	Fagaceae	USA
Tylopilus rubrobrunneus	HQ161876	Fagaceae	USA
Tylopilus neofelleus	HQ326936	Fagaceae	China
Tylopilus rhoadsiae	AY612836	Pinaceae and Fagaceae	USA
Tylopilus eximius	AF139684	Pinaceae and Fagaceae	USA
Tylopilus virens	DQ534621	Fagaceae	USA
Zangia citrina	HQ326940	Pinaceae and Fagaceae	China
Zangia citrina	HQ326941	Pinaceae and Fagaceae	China
Zangia olivaceobrunnea	HQ326947	Pinaceae and Fagaceae	China
Zangia olivaceobrunnea	HQ326948	Pinaceae and Fagaceae	China
Tylopilus ballouii	EU430731	Fagaceae	Costa Rica
Tylopilus ballouii	EU430732	Fagaceae	Costa Rica
Tylopilus ballouii	EU430734	Fagaceae	USA
Tylopilus ballouii	EU430737	\square Fagaceae	USA
Tylopilus ballouii	EU430736	- Pinaceae	Belize
Tylopilus ballouii	EU430735	Fagaceae	Belize
Tylopilus ballouii	EU430733	unknown	Mexico
Tylopilus ballouii	EU430741	Casuarinaceae and Myrtaceae	Australia
Tylopilus ballouii	EU430738	Casuarinaceae and Myrtaceae	Australia
Tylopilus ballouii	EU430740	Dipterocarpaceae	Thailand

A phylogenetic dendrogram based on ITS sequences of Tylopilus samples collected from various localities in Thailand and those of registered ones in Genbank database was represented in Figure 4.45 All sequences in the dendrogram were divided into four major clades (clade I, clade II, clade III and clade IV). Sequnces of all Thai basidiocarps were distributed in all clades.

Clade I was divided into two subclade, A and B, with highly supported value, 97%. ITS sequences of Thai samples, CP05 and CP06 were grouped together with sequence of T. ballouii (AB509625) in subclade A (80\% BS). Other Thai sample, CP37 and 035 closely related to T. ballouii (AB509735) with 83% bootstrap value in subclade B.

Clade II (64\% bootstrap value) was separated into two subclades (C and D). Thai samples, CP4, PK01 and NN01 Tylopilus sp.7, were placed in subclade D and associated with Fagaceae while T. felleus in subclade C were reported that could also associate with Pinaceae.

Clade III was separated into 3 subclades (E, F and G). The samples in this clade had different host plant families. Within subclade F, CP46 and T. formosus associated with Eucalyptus. Dipterocarpaceae was the host plant of members in subclade E (CP09 and CP10) and subclade G (WS01 and Boletaceae sequence). T. rubrobrunneus and Thai sample, PH40 associated with Fagaceae.

Members in clade IV associated with different host plants. T. eximius was found in association with Fagaceae while in subclade H, CP11 which closely related to Retiboletus nigerrimus was found in a Eucalyptus plantation.

Figure 4.45 Phylogenetic tree based on ITS sequences of Tylopilus, closely related species and outgroups (Rhizopogon spp.) using Maximum Likihood, The numbers at the nodes are boostrap values based 100 replications. The bold letters denote Thai samples in this study. The scale bar indicates 0.2 of the genetic distance.

The relationship among Tylopilus based on LSU region was represented in Figure 4.46 The phylogenetic tree clearly divided into 5 clades. The sequences of Thai basidocarps in two highly supported clades (clade III and IV) were grouped together with the sequences of T. ballouii (96% and 100% BS respectively). Our samples (CP05, NN07 and CP37) were placed within subclade M including one Thai sample from GenBank Database (EU430740). In addition, three subclades were resolved in clade IV. It was appear that each Tylopilus species was confined to host plant families.

Within strongly supported clade, clade I could be divided into 5 subclades. Subclade A (100\% BS) comprised of Thai samples, CP24, K04, CP10 and MJ01, and associated with plant family Dipterocarpaceae. Within subclade B, PH40 was related to T. violatinctus with 52% bootstrap supported and associated with Fagaceae and Pinaceae. These two subclades were separated with 99% bootstrap value. Subclade C
comprised Eucalyptus associated species, T. formosus, CP23 and CP45 while subclade D and E consisted of five species that associated with Fagaceae, T. intermedius, T.rubrobrunneus, T. neofelleus, and Thai samples (NN07 and CP09).

All species in clade II shared the same host plant family, Fagaceae and Pinaceae despite of low bootstrap supported. The two Tylopilus samples from Thailand were placed into subclade F and G . NN06 and T. rhoadsiae were represented close relationship. CP35 from this study was closely related with T. eximius. While the relationship between NN22 and other species was unresolved. Furthermore, the relationship in this clade might affirm the monophyly of new closely related genus, Zangia, with high supported bootstrap value (98\%) including Thai sample, P02 in subclade H .

The last clade wasseparated from other groups and composed of only Thai samples, CM03, PL01 and NN01 which associated with Fagaceae.

Figure 4.46 Phylogenetic tree based on LSU sequences of Tylopilus, closely related species and outgroups (Rhizopogon spp.) using Maximum Likelihood,The numbers at the nodes are boostrap values based 100 replications. The bold letters denote Thai samples in this study. The scale bar indicates 0.05 of the genetic distance.

According to phylogenetic study in Tylopilus based on ITS and LSU sequences, it reveals that at least fourteen Tylopilus species exist in Thailand as the following:

Tylopilus ballouii (Peck) Singer (CP05, CP06, CP37 and 035)
Pileus 5-7 cm, convex to broadly convex, bright ochraceous orange to reddish orange, often fulvous in the centre; tubes $3-8 \mathrm{~mm}$, adnate, cream white ; pores $1-2 \mathrm{~mm}$, subrounded, radially elongate near the stem, cream white. Stem $3-7 \mathrm{~cm} \times 15-20 \mathrm{~mm}$ at the apex, $5-8 \mathrm{~mm}$ at the base, equal, strongly attenuate downwards, orange to paler concolorous, base pallid and slightly villous with the white mycelium.

Basidia clavate, 4-spored. Basidiospores $3.91(6.09 \pm 0.77) 8.32 \mu \mathrm{~m} \times 2.77$ (3.98 ± 0.60) $5.78 \mu \mathrm{~m}$, broadly ellipsoid, smooth. Pleurocystidia ventricose-rostrate, hyaline in KOH .

Figure 4.47 basidiocarp characteristics of Tylopilus ballouii

Tylopilus sp. 1 (NN22)

Pileus 4.5 cm , convex, smooth, pale gray, dark gray in the center; tubes 7 mm pale purple; pores purplish red when young. Stem $5 \mathrm{~cm} \times 15 \mathrm{~mm}$, equal, slightly longitudinal-straite, apex purphish cream, base dark gray.

Figure 4.48 basidiocarp characteristics of Tylopilus sp. 1

Tylopilus sp. 2 (CP41)
Pileus 5.5 cm , convex, smooth, dark brown; tubes 3 mm , rufescent ; pores 0.5 mm , subrounded, rufescent, pale near the stem. Stem $4 \mathrm{~cm} \times 8 \mathrm{~mm}$ at the apex, 15 mm at the base, clavate, smooth, reddish brown, base dark brown.

Figure 4.49 basidiocarp characteristics of Tylopilus sp. 2

Tylopilus sp. 3 (PH40)

Pileus 2 cm , convex, smooth, dark purple; pores 0.2 mm subrounded, pale purplish pink. Stem $5.5 \mathrm{~cm} \times 8 \mathrm{~mm}$ at the apex, 10 mm at the base, clavate, tapered at base, apex dark purple, base pallid.

Pleurocystidia ventricose-rostrate, hyaline in KOH .

Figure 4.50 basidiocarp characteristics of Tylopilus sp. 3

Tylopilus sp. 4 (CP09, CP10, CP24, K04 and MJ01)
Pileus $4.5-7.5 \mathrm{~cm}$, convex to broadly convex, smooth, bright pinkish purple to purple, subviscid when moist; tubes $5-8 \mathrm{~mm}$, purplish cream; pores rounded to subrounded, pale purple. Stem $5-8 \mathrm{~cm} \times 12-17 \mathrm{~mm}$ at the apex, $12-20 \mathrm{~mm}$ at the base, equal or slightly clavate, pinkish purple, base pallid and slightly villous with the white mycelium.

Basidia clavate, 4-spored. Basidiospores subfusiform, smooth. Pleurocystidia ventricose-rostrate, hyaline in KOH .

Figure 4.51 basidiocarp characteristics of Tylopilus sp. 4

Tylopilus sp. 5 (NN10)

Pileus 10 cm , convex to broadly convex, smooth, dark purple with dark spots; pores $0.3-0.4 \mathrm{~mm}$ rounded, pale purple. Stem $6 \mathrm{~cm} \times 20 \mathrm{~mm}$, equal, dark purplish brown.

Basidia clavate, 4 -spored. Basidiospores $6.76(8.09 \pm 0.80) 6.76 \mu \mathrm{~m} \times 3.70(4.61$ $\pm 0.53) 5.44 \mu \mathrm{~m}$, elipsoid, smooth. Pleurocystidia ventricose-rostrate, dark in KOH.

Figure 4.52 basidiocarp characteristics of Tylopilus sp. 5

Tylopilus sp. 6 (WS01 and CPB)
Pileus 8 cm , convex, smooth, pale purple; tubes 10 mm , rufescent; pores 1-2mm, rounded to subrounded, rufescent. Stem $7.5 \mathrm{~cm} \times 20 \mathrm{~mm}$, equal, punctuate, pinkish purple, base white and slightly villous with the white mycelium.

Basidia clavate, 4 -spored. Basidiospores $10.65(11.88 \pm 0.70) 13.73 \mu \mathrm{~m} \times 3.59$ $(4.33 \pm 0.39) 5.24 \mu \mathrm{~m}$, subfusiform, smooth. Pleurocystidia ventricose-rostrate, hyaline in KOH .

CHULALONGKORN UNIVERSITY

Figure 4.53 basidiocarp characteristics of Tylopilus sp. 6

Tylopilus sp. 7 (CM03, PK01 and NN01)
Pileus $5-7.5 \mathrm{~cm}$, convex, smooth, dark brown; tubes 5 mm , pale purple; pores rounded to subrounded, white then pale purple. Stem $5-6 \mathrm{~cm} \times 10 \mathrm{~mm}$, equal, slightly fibrillose, dark brown, apex pallid.

Basidia clavate, 4-spored. Basidiospores $9.10(10.28 \pm 0.64) 11.26 \mu \mathrm{~m} \times 3.20$ (3.74 ± 0.26) $4.37 \mu \mathrm{~m}$, subfusiform, smooth. Pleurocystidia ventricose-rostrate, hyaline in KOH .

Figure 4.54 basidiocarp characteristics of Tylopilus sp. 7

Tylopilus sp. 8 (NN07)
Pileus $5-7 \mathrm{~cm}$, convex, smooth, dark purple; tubes 4 mm , pale purple; pores rounded to subrounded, cream then pale purple. Stem $4-5 \mathrm{~cm} \times 10-15 \mathrm{~mm}$, equal, dark purple.

Figure 4.55 basidiocarp characteristics of Tylopilus sp. 8

Tylopilus sp. 9 (CP39)
Pileus 6.5-13.5 cm, convex to broadly convex, smooth, brown to yellow brown; tubes 10mm, purplish cream; pores rounded to subrounded, cream then pale purple. Stem $4-6 \mathrm{~cm} \times 12-15 \mathrm{~mm}$ at the apex, $15-20 \mathrm{~mm}$ at the base, equal or slightly clavate, dark yellow brown, base pallid and slightly villous with the white mycelium.

Basidia clavate, 4-spored. Basidiospores 5.68 (6.75 $\pm 0.49) 8.12 \mu \mathrm{~m} \times 3.91$ (4.85 $\pm 0.44) 6.20 \mu \mathrm{~m}$, ellipsoid, smooth. Pleurocystidia ventricose, dark in KOH .

Figure 4.56 basidiocarp characteristics of Tylopilus sp. 9

Tylopilus sp. 10 (CP23, CP45)
Pileus $6-8.5 \mathrm{~cm}$, broadly convex, smooth, brown to purplish brown; tubes 10 mm , pale purplish brown; pores rounded to subrounded, pale purplish brown. Stem 3-3.5cm $x \quad 15-20 \mathrm{~mm}$, equal, brown to purplish brown, base white and slightly villous with the white mycelium.

Basidia clavate, 4-spored. Basidiospores 5.59 (9.53 ± 1.01) $11.33 \mu \mathrm{~m} \times 3.39$ $(4.36 \pm 0.46) 5.37 \mu \mathrm{~m}$, subfusiform, smooth. Pleurocystidia ventricose, dark in KOH .

Figure 4.57 basidiocarp characteristics of Tylopilus sp. 10

Tylopilus sp.11(CP14)

Pileus $5-11 \mathrm{~cm}$, convex to broadly convex, smooth, appenduculate, brown; tubes pale purplish brown; pores rounded to subrounded, pale purplish brown. Stem $2.5-3 \mathrm{~cm}$ $\times 15-20 \mathrm{~mm}$, equal, brown, apex pale, base white and slightly villous with the white mycelium.

Basidia clavate, 4-spored. Basidiospores 5.74 (9.05 ± 1.24) $11.50 \mu \mathrm{~m} \times 3.25$ $(3.90 \pm 0.36) 4.56 \mu \mathrm{~m}$, subfusiform, smooth. Pleurocystidia ventricose, hyaline in KOH .

Figure 4.58 basidiocarp characteristics of Tylopilus sp. 11

Tylopilus sp. 12 (NN06)
Pileus 7 cm , convex to broadly convex, slightly alveolate, pale yellow; tubes pale cream; pores rounded to subrounded, cream. Stem $5 \mathrm{~cm} \times 18 \mathrm{~mm}$, equal, reticulate, cream.

Figure 4.59 basidiocarp characteristric of Tylopilus sp. 12

Tylopilus eximius (Peck) Singer (CP35)

Pileus 8cm, convex, smooth, purplish brown, subviscid when moist; tubes pale purple; pores rounded to subrounded, purple. Stem $3-3.5 \mathrm{~cm} \times 25 \mathrm{~mm}$ at apex, 35 at base, clavate, pale purple minutely punctate with purplish brown dots.

Basidia clavate, 4-spored. Basidiospores subfusiform, smooth. Pleurocystidia ventricose, hyaline in KOH .

Figure 4.60 basidiocarp characteristics of Tylopilus eximius

Zangia sp. (P02)
Pileus $5-7 \mathrm{~cm}$, convex, smooth, orange brown to brown; tubes pale purple; pores rounded to subrounded, purple. Stem $3-4 \mathrm{~cm} \times 15 \mathrm{~mm}$, equal, pale purple, base yellow and slightly villous with the yellow mycelium.

Basidia clavate, 4-spored. Basidiospores $10.15(12.01 \pm 0.81) 13.70 \mu \mathrm{~m} \times 3.70$ (4.50 ± 0.41) $5.56 \mu \mathrm{~m}$, subfusiform, smooth. Pleurocystidia ventricose, hyaline in KOH . Pileipellis ixohyphoepithelium.

Figure 4.61 basidiocarp characteristics of Zangia sp.

CHAPTER V

DISCUSSION

5.1 Diversity of Boletaceae and Morphological Identification

Boletaceae is the one of large genera in Boletales and consists of approximate 39 genera and more than 700 species. This fungal family distribute across temperate and tropical regions. (Binder and Hibbett, 2006; Halling et al., 2007; Kirk et al., 2008). In Thailand, the diversity of Boletaceae is abundant particularly in Northern and Northeastern (Klinhom and Klinhom, 2007; Thangklam, 2008)

In this study, the most abundant genus was Boletus which consisted of 24 species or 44.44 \% of all Boletaceae. The most abundant of Boletus was similar to Thangklam (2008). Forty-five Boletus species were recorded (54.87\% of all Boletaceae) in Northern Thailand. Boletus is the largest genus in Boletaceae and comprises of approximately 300 species around the world (Kirk et al., 2008). The other abundant genus was Tylopilus. Fourteen Tylopilus species was found in this study. Thangklam (2008) reported that the number of Tylopilus species in the North was nine as well as Leccinum species. Two large genera consist of around 75 species and widespread (Kirk et al., 2008). In contrast, only two species of Leccinum were found in this study because the collecting time might not be the time of basidiocarp formation.

Within the difference of eight genera in this study (Boletellus, Boletus, Heimioporus, Leccinum, Pulveroboletus, Strobilomyces, Tylopilus and Zangia), the morphology of basidiospores was the main character to recognize these genera. In addition, the color of pores and the change of color were still important characters. Several characters such as surface and color of pileus and stem including the margin of pileus were used to species identification but various species were variation in color.

5.2 Identification of the Basidiocarps Based on ITS and LSU Regions

When the success of sequencing in both rDNA regions was compared, more LSU sequences were successful in sequencing. Even though, two regions are close in position but LSU is more conserve while ITS also has higher variation. That may cause failure in direct sequencing and the sequences would not be clear in the position that has variation. In several previous studies (Binder and Hibbett, 2006; Sato et al., 2008; Dentinger et al., 2010), cloning technique were used to resolve this problem.

According to more accuracy in species identification based on ITS region, it indicated that ITS had become the primary genetic marker for molecular identification and other species-level pursuits in many groups of fungi (Nilsson et al., 2011). In contrast to ITS, LSU region was not discriminative at the species-level but this region could be used to assign specimens to a higher taxonomic level when a good ITS match was absent (Abarenkov et al., 2010).

In several specimens, the overlap value based on ITS was quit low. This result reflected the lack of molecular database in the family Boletaceae especially tropical Boletes. Moreover, the results of ITS demonstrated misidentified fungal species in Genbank database for example Heimioporus sp.2. Nilsson et al. (2006) reported that several fungal ITS sequences in the International Nucleotide Sequence Database comprising GenBank database did not have full species name and 10% had incorrect names. The other database which contain the taxonomic reliable sequences was UNITE database (Abarenkov et al., 2010; Nilsson et al., 2011). In 2011, UNITE holds 2968 reference sequences from 1120 fungal species in 155 genera, primarily of ectomycorrhizal fungi from North Europe and the primary genetic marker targeted is ITS region (Nilsson et al., 2011). Because of different groups of specimens from this study, the overlap value of closest species match was very low.

5.3 Phylogeny of Boletaceae

In this study, the relationship among Boletaceae was investigated based on two rDNA region, ITS and LSU. According to phylogenetic tree based on both regions, Heimioporus, Pulveroboletus and Strobilomyces were monophyletic groups

Within the relationship among Heimioporus species based on ITS region, Heimioporus sp. 2 was grouped together with Heimioporus sp. (AB453025 and AB453026) with strongest bootstrap value. This result suggested that two species might be the same species and was similar to the BLAST result (Table 4.4). While Heimioporus sp. 3 was placed with H. japonica in other subclade and both species shared the same character of stem, reticulate. The phylogenetic relationship of this genus based on LSU was similar to the ITS result. Heimioporus were separated into 2 subclades and conform to the character of stem. First subclade consisted of Heimioporus sp.1, Heimioporus sp. 3 and H. retispora which their stems were reticulate. Heimioporus sp. 2 which had fibrillose stem was placed into other subclade.

In genus Pulveroboletus, only one species was found in this study. Both the phylogentic tress based on ITS and LSU demonstrated that Thai species closely related to P. ravenelii. These two species were similar except the color of mature pileus. P. ravenelii had raddish to raddish brown pileus (Corner, 1972) while the pileus of Thai species was yellow.

According to the relationship among Strobilomyces, this genus could be divided into 3 subclades based on both ITS and LSU. Based on ITS, Strobilomyces sp. 2 was grouped together with S. seminudus and Strobilomyces sp. (JF273544) in first subclade with highest supported (99% BS). This result indicated that these samples might be the same species. In second subclade demonstrated closely relationship between Strobilomyces sp. 1 and S. seminudus. The present of S. seminudus in 2 subclades reflected that S. seminudus sequences were misidentified or this species might be complex species. In the last subclade, Thai S. mirandus corresponded to the same species from Genbank. This result could confirm correct identification. Based on LSU,
even though Strobilomyces could be separated into 3 subclades, the bootstrap supported in each subclade was not high as ITS.

The phylogenetic relationship based on ITS suggested that Boletellus and Leccinum were monophyly but their relationship based on LSU was contrast. This different result was from different number of sequences in each genus.

Boletellus could be separated into 2 subclades based on ITS. Boletellus sp. 2 was placed in first subclade but the relationship in this subclade was unclear because of weak support. While Boletellus sp. 1 closely related to B. obscurococcineus in other subclade. Dissimilar to ITS, the phylogenetic relationship based on LSU demonstrated that Boletellus was non-monophyletic group and divided into 3 clades. Boletellus clade I contained Boletellus sp. 2 and B. Chrysenteroides. The pileus of two species was not squamose like other Boletellus species. Boletellus clade II comprised only one species, B. ananas. This clade could be divided into 3 subclades and suggested that this species might be cryptic species. Contrast with this clade, Boletellus sp .4 was grouped together with highest supported (99% BS) in Boletellus clade III.

In the genus Leccinum, Thai L. extremiorientale closely related to the same species based on ITS. This result could confirm correct identification. But this species was separated to other Leccinum based on LSU.

However, the number sequences especially Heimioporus and Leccinum was fewer to investigate the phylogenetic relationship. So ITS and LSU sequences from more taxa should be add in the analysis to confirm the monophyly of genus.

Although two phylogenetic trees were inconsistent in some genera but in large genera both Tylopilus and Boletus showed the same result. Two genera were nonmonophyletic groups and could be divided at least 3 clades. This result was similar to the previous studies (Binder and Hibbett, 2006; Drehmel et al., 2008) and suggested that two genera should be revised.

5.4 Phylogeny of Tylopilus

Tylopilus is one of large genus in the family Boletaceae which composes of 75 species (Kirk et al., 2008). This genus distributes across the subtropics and tropics, especially in the America and Australia continents or East Asia including Southeast Asia. (Halling et al., 2007)

According to this study, fourteen species of Tylopilus were classified based on both morphological and molecular data. The phylogenetic analysis of Tylopilus based on ITS and LSU regions demonstrated that Tylopilus was clearly separated into at least 4 clades. These two phylogenetic trees shared most similarity particularly clade III based on ITS and clade I based on LSU which composed of almost same species. It indicated that these two regions from nuclear rDNA conformed to each other when were used for molecular phylogenetic studies.

When the dataset of two phylogenetic tree were compared, the phylogenetic tree based on LSU which larger dataset was more completed and represented two clades of cryptic species, Tylopilus ballouii. This result was similar to the study of Halling et al. (2008) which indicated that long-distance dispersal events were possible and the populations have been isolated for long periods.

Moreover, the dataset of two rDNA regions were from mostly temperate species while the molecular data of tropical species was scant. This result reflected that more molecular information especially including tropical species can resolve and provide complete and accurate phylogenetic relationships among Tylopilus.

According to phylogenetic tree of Tylopilus based on LSU region, the result demonstrated the existence of Zangia in Thailand. This genus was reported by Li et al. (2011). The basidiocarp of Zangia species are similar to genus Tylopilus such as pinkish to pink hymenophore, pink to pinkish brown spore deposit and chrome yellow to golden yellow stipe base. The consistent and unique character within Zangia species are the present of ixohyphoepithelium pileipellis. Currently, Zangia species are only known from southern parts of China and associate with Fagaceae and Pinaceae (Li et al., 2011). In the study, one Zangia species were found in coniferous plantation, Phitsanulok
provinces. This interesting result suggested the existence of Zangia species in Thailand, so the investigation of this genus in Thailand is needed.

Within morphological identification, the lack of reliable key and database in Thailand including misidentification are concerned. The monograph of Boletus in Malaysia which described by Corner (1972) could not use for species identification in this study. It emphasized the revision of this genus in Thailand is needed.

This study could provide some of important database in tropical Tylopilus based on both morphological and molecular data. However, more molecular database including morphology of Tylopilus particularly from tropical region is really needed to fulfill the systematic studies of this genus.

CHAPTER VI

CONCLUSIONS

According to ninety-five ectomycorrhizal basidiocarp samples from 5 provinces (Chaiyaphum, Chiang Mai, Nan and Phitsanulok), fifty-four species were classified in eight genera (Boletus, Boletellus, Heimioporus, Lecinum, Pulveroboletus, Strobilomyces, Tylopilus and Zangia) based on morphology and molecular data. The most abundant genera was the Boletus (24 species), and the second and third abundances were the Tylopilus (14 species) and the Boletellus (5 species). The number of species in other genera, Strobilomyces and Heimioporus and Leccinum were 4, 3 and 2 species, respectively while Pulveroboletus and Zangia represented only 1 species.

Phylogenetic relationships among ectomycorrhizal Boletaceae were studied based on both ribosomal DNA regions, ITS and LSU. The sequences of Thai specimens were compared with some species in Boletaceae available in GenBank database. Phylogenetic analysis based on ITS suggested that Boletellus, Heimioporus, Pulveroboletus and Strobilomyces were monophyletic groups while Boletus and Tylopilus were not monophyletic groups. The phylogenetic tree based on LSU which indicated that only Heimioporus, Pulveroboletus and Strobilomyces were monophyletic groups.

In addition, the phylogeny of the large genus, Tylopilus was investigated based on both ITS and LSU. Two similar phylogenetic analyses showed that Tylopilus could be clearly divided at least 4 clades. Moreover, the relationships among Tylopilus species corresponded to their host plant families. Fourteen Tylopilus species and one Zangia species, the closely genus, existed in Thailand.

This study indicated an importance to revise the genera in family Boletaceae especially Boletus and Tylopilus. The insufficient data based on both morphological and molecular studies of Topical Boletaceae is an important issue in systematic studies of Boletaceae.

Considerations for future studies:
Some issues remain to be addressed in the future studies. At first, according to high variation in ITS region, the cloning technique should be chosen for resolve the failure in sequencing. Moreover, phylogenetic relationship among several species or genera was still unclear, thus more taxa should be added in the analysis. In addition, different molecular information such as mitochondrial DNA or other nuclear DNA region should be combined to the analysis as well as more taxa.

REFERENCES

Agerer, R. Never change a functionally successful principle: the evolution of Boletales s.l. (Hymenomycetes,Basidiomycota) as seen from below ground features. Sendtnera 6 (1999) : 5-91.

Agerer, R. Fungal relationships and structural identity of their ectomycorrhizae. Mycological Progress 5 (June 2006) : 67-107.

Abarenkov, K., et al. The UNITE database for molecular identification of fungi-recent updates and future perspectives. New Phytologist 186 (April 2010) : 281285.

Besl, H., and Bresinsky, A. Chemosystematics of Suillaceae and Gomphidiaceae (suborder Suillineae). Plant Systematics and Evolution 206 (March 1997) : 223-242.

Beugelsdijk, D.C.M., et al. A phylogenetic study of Boletus section Boletus in Europe. Persoonia 20 (June 2008) : 1-7.

Binder, M., and Hibbett, D.S. Molecular systematics and biological diversification of Boletales. Mycologia 98 (November-December 2006) : 971-981.

Brundrett, M.C., and Cairney, J.W.G. Ectomycorrhizas in plant communities. In K. Sivasithamparam, K.W. Dixon, and R.L. Barrett (eds.), Microorganisms in Plant Conservation and Biodiversity, pp. 105-150. Dordrecht : Kluwer Academic, 2002.

Cairney, J.W.G. and Chambers, S.M. Ectomycorrhizal Fungi: Key Genera in Profile. Germany: Springer, 1999.

Chandrasrikul, A., et al. Diversity of Mushrooms and Macrofungi in Thailand. Bangkok : Kasetsart University, 2008.

Chantorn, K., Pachinburavan, A., and Sanoamuang, N. Nine new records of boletes (Boletales, Hymenomycetes) from Nam Nao and Phu Rua national parks, Thailand. KKU Research Journal 12 (July-September 2007) : 257-264.

Corner, E.J.H. Boletus in Malaysia. Singapore : Government Printing Office, 1972.

Courty, P.-E., et al. The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biology and Biochemistry 42 (May 2010) : 679-698.
den Bakker, H.C., Gravendeel, B., and Kuyper, T.W. An ITS phylogeny of Leccinum and an analysis of the evolution of minisatellite-like sequences within ITS1. Mycologia 96 (January-February 2004a) : 102-118.
den Bakker, H.C., Zuccarello, G.C., Kuyper, T.W., and Noordeloos, M.E. Evolution and host specificity in the ectomycorrhizal genus Leccinum. New Phytologist 163 (July 2004b) : 201-215.

Desjardin, D.E., Binder, M., Roekring, S, and Flegel, T. Spongiforma, a new genus of gastroid boletes from Thailand. Fungal Diversity 37(August 2009) : 1-8.

Drehmel, D., James, T., and Vilgalys, R. Molecular phylogeny and biodiversity of the boletes. Fungi 1 (2008) : 17-23.

Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32 (March 2004) : 1792-1797.

Gardes, M., and Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Molecular Ecology 2 (April 1993) : 113-118.

Gupta, V., and Satyanarayana, T. Molecular genetics of ectomycorrhizal fungi. In K.G. Mukerji, B.P. Chamola, and J. Singh (eds.), Mycorrhizal Biology, pp. 119134. New York : Kluwer Academic, 2000

Halling, R.E. Draft Key to Some Bolete Genera [Online]. 2011. Available from : http://sweetgum.nybg.org/boletineae/generic_key.pdf [2012, January 5]

Halling, R.E., Chan, H.T., and Lee, S.S. Basidiomycota: Boletaceae. In E.B.G. Jones, K.D. Hyde, and S. Vikineswary (eds.), Malaysian Fungal Diversity, pp. 3345. Malaysia : University of Malaya and Ministry of Natural Resources and Environment, 2007.

Halling, R.E., Baroni, T.J., and Binder, M. A new genus of Boletaceae from eastern North America. Mycologia 99 (March-April 2007) : 310-316.

Halling, R.E., Osmundson, T.W., and Neves, M.A. Pacific boletes: Implications for biogeographic relationships. Mycological Research 112 (April 2008) : 437-447.

Hibbett, D.S. After the gold rush, or before the flood? Evolutionary morphology of mushroom-forming fungi (Agaricomycetes) in the early $21^{\text {st }}$ century. Mycological Research 111 (September 2007) : 1001-1018.

Horton, T.R., and Bruns, T.D. The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Molecular Ecology 10 (August 2001) : 18551851.

Hwang, S.K., and Kim, J.G. Secondary structural and phylogenetic implications of nuclear large subunit ribosomal RNA in the ectomycorrhizal fungus Tricholoma matsutake. Current Microbiology 40 (April 2000) : 250-256.

Kirk, P.M., Cannon, P.F., David, J.C., and Stalpers, J.A. Ainsworth \& Bisby's Dictionary of the Fungi. $10^{\text {th }}$ ed. Wallingford: CABI, 2008.

Klinhom, U., and Klinhom, W. Biodiversity of Boletes in Northeastern Thailand. Mahasarakham : Apichartprinting, 2007.

Largent, D., Johnson, D., and Watling, R. How to Identify Mushrooms to Genus III: Microscopic Features. California : Mad River Press, 1977.

Lakhanpal, T.N. Ectomycorrhiza - an overview. In K.G. Mukerji, B.P. Chamola, and J. Singh (eds.), Mycorrhizal Biology, pp. 101-118. New York : Kluwer Academic, 2000.

Leonardi, M., Paolocci, F., Rubini A., Simonini, G., and Pacioni, G. Assessment of interand intra-specific variability in the main species of Boletus edulis complex by ITS analysis. FEMS Microbiology Letters 243 (February 2005) : 411-416.

Li, Y.C., Feng B., and Yang, Z.L. Zangia, a new genus of Boletaceae supported by molecular and morphological evidence. Fungal Diversity 49 (July 2011) : 125-143.

Moser, M. Key to Agarics and Boleti. London: Whitefairs Press, 1978.

Nilsson, R.H., et al. Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS ONE 1 (2006) : e59.

Nilsson, R.H., Abarenkov, K., Larsson, K.-H., and Kõljalg, U. Molecular identification of fungi: rationale, philosophical concerns, and the UNITE database. The Open Applied Informatics Journal 5 (2011) : 81-86.

Orihara, T., et al. Taxonomic reconsideration of a sequestrate fungus, Octaviania columellifera, with the proposal of a new genus, Heliogaster, and its phylogenetic relationships in the Boletales. Mycologia 102 (JanuaryFebruary 2010) : 108-121.

Peintner, U., Ladurner, H., and Simonini, G. Xerocomus cisalpinus sp. nov., and the delimitation of species in the X. chrysenteron complex based on morphology and rDNA-LSU sequences. Mycological Research 107 (June 2003) : 659-679

Raina, S., Chamola, B.P., and Mukerji, K.G. Evolution of mycorrhiza. In K.G. Mukerji, B.P. Chamola, and J. Singh (eds.), Mycorrhizal Biology, pp. 1-25. New York : Kluwer Academic, 2000.

Ray, P., Tiwari, R., Reddy, U.G., and Adholeya, A. Detecting the heavy metal tolerance level in ectomycorrhizal fungi in vitro. World Journal of Microbiology and Biotechnology 21 (April 2005) : 309-315.

Sato, H., Yumoto, T., and Murakami, N. Cryptic species and host specificity in the ectomycorrhizal genus Strobilomyces (Strobilomycetaceae). American Journal of Botany 94 (October 2007) : 1630-1641.

Schlötterer, C. and Tautz, D. Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Current Biology 4 (September 1994) : 777-783.

Smith, S., and Read, J. Mycorrhizal symbiosis. $2^{\text {nd }}$ ed. California : Academic Press, 1997.

Tagu, D., Lapeyrie, F., and Martin, F. The ectomycorrhizal symbiosis: genetics and development. Plant and Soil 244 (July 2002) : 97-105

Taylor, F.A., and Alexander, I. The ectomycorrhizal symbiosis: life in the real world. Mycologist 19 (August 2005) : 102-112.

Tamura, K., et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28 (October 2011) : 2731-2739.

Thongklam, S. Diversity of boletes in some national parks of upper northern Thailand. Doctoral dissertation, Department of Biodiversity and Ethnobiology, Graduate School, Chiang Mai University, 2008.

Tedersoo, L., May, T.W., and Smith, M.E. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20 (April 2010) : 217-263.

White, T.J., Bruns, T., Lee, S., and Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M.A. Innis, D.H. Gelfand, J.J. Sninsky, and T.J. White (eds.), PCR protocols: a guide to methods and applications, pp. 315-322. New York : Academic Press, 1990.

Vilgalys, R., and Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172 (August 1990) : 4238-4246.

Yang, Z.L., et al. The sequestrate genus Rhodactina (Basidiomycota, Boletales) in northern Thailand. Mycotaxon 96 (April-June 2006) : 133-140.

Zhou, Z., Miwa, M., and Hogetsu, T. Analysis of genetic structure of a Suillus grevillei population in a Larix kaempferi stand by polymorphism of inter-simple sequence repeat (ISSR). New Phytologist 144 (October 1999) : 55-63.

Chulalongkorn University

APPENDIX A

CHEMICAL REAGENTS

1. Tris-Cl pH 8

Tris base	121	g
Distilled water	800	ml

Dissolve Tris base thoroughly and adjust pH with HCl to pH 8. After that the distilled water was added to reach 1000 ml . Autoclave at $121^{\circ} \mathrm{C}$ and pressure at 15 pounds/square inch for 15 minutes. Keep at room temperature
2. 0.5 M EDTA (Ethylenediamine tetraacetic acid)

EDTA
186.10 g

Distilled water
800 ml

Dissolve EDTA thoroughly and adjust pH with NaOH to pH 8. After that the distilled water was added to reach 1000 ml . Autoclave at $121^{\circ} \mathrm{C}$ and pressure at 15 pounds/square inch for 15 minutes. Keep at $4^{\circ} \mathrm{C}$.
3. Washing buffer

PVP (Polyvinylpyrrolidone)	2	g
Ascorbic acid	1.76	g
1 M Tris-HCl (pH 8.0)	20	ml
2-mercaptoethanol	4	ml

Mix PVP, Ascorbic acid, Tris-HCl and 2-mercaptoethanol. After that the distilled water was added to reach 2000 ml and mix thoroughly. Keep at $4^{\circ} \mathrm{C}$.

4. 2X CTAB lysis buffer

CTAB	4	g
1 M Tris-HCl (pH 8.0)	20	ml
0.5 M EDTA $(\mathrm{pH} 8.0)$	8	ml
Sodium chloride (NaCl)	16.36	g
2-mercaptoethanol	1	ml

Mix CTAB, 0.5 M EDTA, Tris- $\mathrm{HCl}, \mathrm{NaCl}$ and 2-mercaptoethanol. After that the distilled water was added to reach 2000 ml and mix thoroughly. Keep at room temperature.
5. Choloroform/isoamyl alcohol ($24: 1 \mathrm{~V} / \mathrm{V}$)

Choloroform 192 ml

Isoamyl alcohol
8 ml
6. Tris-EDTA buffer (TE buffer)
$\begin{array}{lccc}1 \mathrm{M} \text { Tris- } \mathrm{Cl}(\mathrm{pH} 7.4,7.5 \text { or } 8) & 10 & \mathrm{ml} \\ 0.5 \mathrm{M} \text { EDTA }(\mathrm{pH} 8.0) & 2 & \mathrm{ml}\end{array}$

Mix 1 M Tris- Cl and 0.5 M EDTA. After that the distilled water was added to reach 1000 ml . Autoclave at $121^{\circ} \mathrm{C}$ and pressure at 15 pounds/square inch for 15 minutes. Keep at room temperature.
7. 10X Tris-boric acid EDTA (10X TBE)

Tris (hydroxymethyl) amino methane	54	g
EDTA	4.65	g
Boric acid	27.50	g

Mix Tris amino methane, EDTA and Boric acid. After that the distilled water was added to reach 500 ml and mix thoroughly. Keep at room temperature.
8. 1.5\% Agarose gel (w/w)

Agarose	1.5	g
$1 \times$ TBE	100	ml
Gel star	1	$\mu \mathrm{l}$

จุฬาลงกรณ์มหาวิทยาลัย

APPENDIX B

SEQUENCES OF THE SPECIMENS

1. ITS region

Boletellus ananas (UB7)
GCATCGATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAACG CACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATCGAATTCTCAATCATGCTCTGTGACATGG GCATGACTTGGATTTGGGGGTTGCTGGCTGCCTAAGGCGGTCGGCTCTCCTTAAACACATTAGCGAAAGGCGCTGG TCTTGGAGACGTGCACGGCCTTTGACGTGATAAAGATCGTCATGGCTGGAGCGTCTTCGTAGGACTATGCATCGCTT CAAACCAGAATGGGCTTCCGGGTCCGGAAGTGAAAGGTGGGGGAGCGGAGTCGAGCTTAGCTACTAGCTTGCTTTC GAGCGAGCGAACGCGGCAAGACAAGGCTTTTCCGTCTCGCTGACAGACTTGAAGTTCAGACAAGGACAAGGATTG GGATTGGGATGGACTTTTCTGCCAGACTTAGACTTGGAAGGCGACGAAGGTGGAGCCTAGCTACTAGCTTGCTTTTT CGGAGCGAGCGAACGTGGGGCAAGACTTTCTTTTGCCATGATCAAGACTGGTCGGGGGGA

Boletellus sp. 1 (PH34)
TCCGTAGGTGAACCTGCGGAAGGATCATTATCGAAACATGCGAGTCGAAGGAAGAAGGGAAGTTGAAAAAGACTGT CGCTGGCTCTGTGTCCACGGAGCAATGTGCACGTCCATCGCTTTCCCCTTTCTCGTTCGCAAGTCACTCTCACACCT GTGCACCATGGTAGACTCGCCTTCGAAAGAGGGTGGGCCTATGTTCATCATATTCATGATCACCCTCGTCGTATGGC CATAGAATGATAGATGTTATAAATAATGTAATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACG CAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTG GTATTCCGAGGAGCATGCCTGTTTGAGTGTCATTGAGTTCTCAACCGCGTCTTGATTGATTTTCGAGTACTGCGGCTT GGAGATGGGGGCTGCCGGGCCATTTCTGGCTCAGCTCTCCTGAAATGCATTAGCAAAATGGGTGGCCAAGTCTTTG GACGTGCACGGCCTCCGGCGTGATAATGATCGTCGTGGCTGGAGCGTCTGGGATGGCAATATTGTAAGCCCATTGG CTTCTAATGAGAAAGAAAAAAGACAGGGATGGGAAGGTGATCCTTGCTCAGTCAAGCTTAGCTATTAGCTGGAGTCC TATCCTGGAACTCTGGCGAACGTGCGGCAGGGACAGACTTGGGGAACAGATGATCTCTGATCTAACGCTTTCACATT GAAACTTGACCTCAAATCAGGTAGGACTACCCGCTGAACTTAA

Boletellus sp. 2 (MJ15)

TCCGTAGGTGAACCTGCGGAAAGGATCCATTATTCGACCAGAAGGGAAAAGGGGGAAGACCGGAGAGTCTCGAGG GACTGTCGCTGGCACTCGAGTGCGTGTGCATGTGCATGTGCACGTCCTCTCATCTCCCTCCTTGATGGTCGACCCCT TTTCTCATCCCATACTCTCTACACCTGTGCACCCTTTCGTAGGTCCTCGAAAGAGGATCTATGTCTTTATCACATCACA CCCGTCGTATGTCTAGAATGTCTACATCATGTATCGTAGACCGTCGGAAGGCGGATCGGTCGATAATATGATGGTGA ATCACAATCACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAATTGCGATAAGTAAT GTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTG

Abstract

TTTGAGTGTCATTTAATTATCAACCATGTCTTGATCGATTTCGAGCGTGCATGGCTTGGATGGTGGGGGCTGCTGGCT GCGAAAGCGGTCAGCTCTCCTTAAATGCATTAGCAAAGGGTGTGCTATGGTCTCATGGACGTGCACGGCCTCGGAC GTGATAATGATCGTCGTCGTGGCTGGAGCGTCTGGGGTCATGGATGAGATACAGCCCGTTCTGCTGCCAATTCCAA GGGTCCTCTCTTGTCTTGGTGGTCGGAGGCACTGCTAGCTATTAGTCTACTAGCCTAAGTAACTCGGTAGTCCATGGA CGAAAGGTGAACGGCGAATGGCGAACACAGCAGAGCGTACGACGATAAAAGCTAGACTTGGGATGACCATATATAC CTTATTGACTCGACCTCAAATCAGGTAGGACTACCTGCTGAACTTAA

Boletellus sp. 3 (MJ26)
TCCGTATGTGAGTCTGGGGACGGATCATAGTCGAAAACTACGATGGACTGGTCAGGCTGTCGCTCGCTCTGTCAATG TGGAGCATGTGAACGCCTTCCTACTCTTTTGGTACATACACACACACACACACACACACTTGTGAACCATCTGTAGGC CCTCGAAAGAGGATCTATGTTTTCTACACACGCAACCCCGTCGTATGTCCTTAGAATGTAATAAAACCATAATACAACT TTCAGCAATGGATCTCTTGGTTCTCGCATCGATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTT CAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCTTCGGTATTCCGAAGAGCATGCCTGTTTGAGTGTCATGAAT ATTCTCAACCCAACGCTTTCATCGGCGGTTTGGGCTTGGACTTGGAGGTTGCTGGCAGCGCAAGCCGTCGGCTCCT CTGAAATGCATTAGCGAGTCCCTCTGTCGAGTTGCGACGTGCACGGCTTTCGACGTGATAATGATCGTCTTGGCTGG AGCGTCTTCTCTTCAGTCCTTGCTTATTATGAGGCTTAG

Boletellus sp. 4 (WS02) GCATCGATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAACG CACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTATCATGGAATTCTCAACCAATTGCGTGTGTTCAT GCACAATTCAATTGGCTTGGACTTGGGGGTTGCCGGTGACTAGCTTCATCAGCTCCCCTTAAATGCATTAGCAATGC GTTAGCTAGTCTTTCTAGGACGTGCACGGCCTTCGACGTGATAATGATCGTCGTCGCTGGAGCGTACTAAAGACCAG AGAAAGCGGCTTGCTTCTAATTACACACTTAGACCAACGTTCGAGATTTAGTTATTAGTCACTTTTGACGAACACAAGT CTTTTCGATTTAGCTATTAGTTTTCGAACGAACGCA

Chulalongkorn University
Boletellus sp. 4 (POO)
GCATCGATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAACG CACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTATCATGGAATTCTCAACCAATTGCGTGTGTTCAT GCACAATTCAATTGGCTTGGACTTGGGGGTTGCCGGTGACTAGCTTCATCAGCTCCCCTTAAATGCATTAGCAATGC GTTAGCTAGTCTTTCTAGGACGTGCACGGCCTTCGACGTGATAATGATCGTCGTCGCTGGAGCGTACTAAAGACCAG AGAAAGCGGCTTGCTTCTAATTACACACTTAGACCAACGTTCGAGATTTAGTTATTAGTCACTTTTGACGAACACAAGT CTTTTCGATTTAGCTATTA

Boletellus sp. 4 (MJ04)
GCATCGATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAACG CACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTATCATGGAATTCTCAACCAATTGCGTGTGTTCAT GCACAATTCAATTGGCTTGGACTTGGGGGTTGCCGGTGACTAGCTTCATCAGCTCCCCTTAAATGCATTAGCAATGC GTTAGCTAGTCTTTCTAGGACGTGCACGGCCTTCGACGTGATAATGATCGT

Boletus sp. 1 (P12)
TCCGGTAGGTTGAACCTGCGGAAGGATCATTATTGATTTTTCTGTTATGTTGGGCGAGGAAGGGGGGGGAAACCATT TCATAATGGAAAGTGAAGATGGTTGCTGGCCTTTCTTTTAGACAAATGCATGTGCACGTCTTTCTTTCCTTATCGTTTAC ССTCСTTTCTCTCTCACATATAACACAATATACACTTGTGCACCTATTGTAGGCCCTTGAAAGAGGATCTATGTTTTTAA CACTATAACCTTTATTGTATGTCCATGGAATGTATTTAGGATCTGTCAGTCCTTCTTTGAATGATTGGCGATTCAATAAA ATCCATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAATTGCGATAAGTAATGTGA ATTGCAGATTTTCAGTGAATCATCGAATCTTTGAACGCATCTTGCGCTCCTTGGCATTCCAGGGAGCATGCCTGTTTGA GTGTCATTGAATTCTCAACCTTGCTTTGTTTTTTTCAAAGCATGGCTTGGATTTTTGGGGGTTTGCTGGTGTTTTTAGTAT CAGCTCTCCTTAAATACATTAGCAATGGGGTTGGGTACAAGTCTTTTCAATGTGCACGGGCTTTTGACGTGATAATGAT CGTCGTCGTGGCCTGGGAACATTTTAGGGAGACACACATGTACTCATTCATGCTTCTAATTTGCTAGATCTCTAGCCC TTTATTAGGGCTAGGTCTGCAGTTTATTGAAACTTGACCTCAAATCAGGTAGGACTACCCGCTGAACTTAA

Boletus sp. 1 (CP47)
GCATCGATGAAGAACGCAGCGAATTGCGATAAGTCATGTGAATTGCAGATTTTCAGTGAATCATCGAATCTTCGAACG CATCTTGCGCTCCTTGGTATTCCAGGGAGCATGCCTGTTTGAGTGTCATTGAATTCTCAACCTTGCTTTGTTTGTTTTTC AACGCATGGCTTGGATTTTTGGGGGTTTGCTGGTGTTTTATCACTATCAGCTCTCCTCAAATATATTAGCAATGGGTGG GTACAAGTCTATTCAATGTGCA

Boletus sp. 2 (CP18)
CTAGTAGCTGAAATGGCTTAGGCCCAAATTCGAACTCCAATCGCAAGCGATCTATATCAAAAAGCAAGGGCTTCCCTT GGCATCCAAGACACTCCAGCCACGACGATCATTATCACGTCGAAAGGCCGTGCATGTCAAAGACTAGCCAACCTTT GCTAATGCTTTTCAGAAGAGCTGACAGCCTTTGGCTGCCAGCAACCCCCAAAAACTCCAAGCCATTTGTTCTCGAAA ATGATCGAGACATGGGTTGAGAATTCACTGACACTCAAACAGGCATGCTCCTCGGAATACCAAGGAGCGCAAGGTG CGTTCAAAGATTCGATGATTCACTGGAAATCTGCAATTCACATTACTTATCGCAATTCGCTGCGTTCTTCATCGATGCG AGAGCCAAGAGATCCGTTGCTGAAAGTTGTATATGATTCATATTTGTAACACACATTCTATGGACATACGATAGGGTGT GATATGAGAGAAAACATAGATCCTCTTTCGAAGACCT

Abstract

Boletus sp. 3 (CP01) TCCCGTAGGTGAACCCTGCGGAAGGATCATTATCGAATTCTGAGGGGGAGAGGAAACCTTGACTTCTCGAGGAAAC TGTCGCTGGCCCCTTGGGGCATGTGCACGTCTTGCTTGTCGTCGACCCTTTCTCTCTCTCTCTCATACCATCCACACC tGTGCACCCGTCGTAGGTCTTCGAAAGAGGAACTATGTCTTTCACGTCCCACATCTATCGTATGTCTACAGAATGTGA TAAAATGGGCGATGGCATTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAATT GCGATAAGTAATGTGAATTGCAGATTTTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAG GAGCATGCCTGTTTGAGTGTCATCGAATTATCAACCATGTCTTGATTTGTTTCGAGACATGGCTTGGACTTGGGGGTTT GCTGGCGGCGAAAGGCCGTCGGCTCTCCTGAAATACATTAGCATAGGGCGGCGCAAGTCTATTGACGTGCACGGC CTTCGACGTGATAATGATCATCGTGGCTGGAGCGTCAGAGAGACATGCACGAAAATCGACCGTGCTTCCAATCTGTG TCTGTGGCTAGCCTTTGGACCTCTTAGCTACTAGTCTGGTCGCAAGACTCGGCGAACGTTTGAGGGGCTTTTCCGGG GGTTGGGTCCGTTTCGAAACTTGACCTCAAATCAGGTAGGACTACTCGCTGACTTA

Boletus sp. 4 (CP15)
GCATCGATGAAGAACGCAGCGAATCGCGATAAGTAATGTGAATTGCAGATTTTCAGTGAATCATCGAATCTTTGAACG CATCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATTTAATTCTCAATCATGTCTTGATTGACTTCG AGGCATGACTTGGAGTTGGAGGTTGCTGGACCCCTTGCTTGCTTGGGTTCAGCTCCTCTGAAACGCATTAGCAAATG TAATGGAAAGGTCCTGGCATGCACAGCCTTGCGACGTGATAATGATCGTCCGGGCTGCAAGTGTCTAACCCCTCCA AGTTTGCTTCTAAAGAAACAAGTCCAAGGCTAGCAAGCTTAGTTACTAGTCAGTCGTGAGGCGGGCGAACACAAGCA CACAAGGATTACACCTTGTGGCAAGCAAAAAAGACTGGATTCGAGTCCCCAAGCCAGCAAGCTTAGTTACTAGGTGG tCGTGAGATCAGCGAACACAAGCACACATCGTTGCACAATGTGGCCAGC

Boletus sp. 4 (CP51)

GCATCGATGAAGAACGCAGCGAATCGCGATAAGTAATGTGAATTGCAGATTTTCAGTGAATCATCGAATCTTTGAACG CATCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATTTAATTCTCAATCATGTCTTGATTGACTTCG AGGCATGACTTGGAGTTGGAGGTTGCTGGACCCCTTGCTTGCTTGGGTTCAGCTCCTCTGAAACGCATTAGCAAATG TAATGGAAAGGTCCTGGCATGCACAGCCTTGCGACGTGATAATGATCGTCCGGGCTGCAAGTGTCTAACCCCTCCA AGTTTGCTTCTAAAGAAACAAGTCCAAGGCTAGCAAGCTTAGTTACTAGTCAGTCGTGAG

Boletus sp. 6 (CP03) TCCGTAGGTGAACCTGCGGAAGGATCATTATCGAATTCTGAGGGGGAAGACGTCAAGGGTGAAGGCTGTCGCTGGC TCCCCTCGGGGGCATGTGCACGTCTAGCTTTTTCGTCGACCTTTCTCTCTCATACACACACCTGTGCACCCGTCGTAG GCCCTCGAAAGAGGATCTATGTTTTTCACATCACACTCGTCGTATGTCTACAGAATGTTATTGAGAACGTCGACCTGTT TGACGGGCCGGCGGTCGAATATAAAGTCATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACG CAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTG GTATTCCGAGGAGCATGCCTGTTTGAGTGTCATTGAATTCTCAACCATGTCTTGATCGATTTCGAGGCATGGCTTGGA GTTGGGGGCTGCTGGCGGCGAAACGCTGTCGGCTCTCCTGAAATGCATTAGCAAAGGATGGCGAGTCTTTGACGTG CACGGCCTTCGACGTGATAATGATCGTCGCGGCTGGAGCGTTCGGGGACATGCATGAATCGTCCATTGCTTCCAAC

ACACCCCTAGGCTAGCCCTTCAGGTGTCGCTTAGCTACTAGTCGGCCGTGAGGCTGACGAACGTTGGGCGAGCCA CGCTTGGCAGGGCTTGTCTGTTCCGAAACTTTGACCTCAAATCAGGTAGGACTACCCGCTGAACTTAA

Boletus sp. 7 (MJ27)
TCCGTAGGTGAACCTGCCGAAGGATCATNAAAATACANTCTACATACAAACACACACTTGTGCACTTTGAGTAGGCC CCTCGAGAGAGAGATCTACGATCTCTCATACAACACCTTTATATTGCATGGCCCAGAATGTATACAAAAACCTTTTACA ACTTTCAGCAATGGATCTCTTGGCTCTCGCATCGATGAAAGAACGCAGCGAATCGCGATAAGTAATGTGAATTGCAG ATTTTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCAT CAAATTCTCAATCATGTCCCCTTTCTTTTGGGGCATGACTTGGAGTTGGAGGTTGCTGGAGCCCCTTTGGGGAATCAG CTCCTCTGAAATGCATTAGCAAATGGAAAGAGAGTCCTCTGGCAAATGGACGTGATAATGATCGTCCGGGCTTTGGT ACTCGATCAAGTTTGCTTCCAAAAGTCAGTGCTTAGTTAGTAGTGAGTTTTTCAGCTCAGCAGCGAACGCAAGCTAGC AAAGTANGCTTAGTTACACAAGCCCAAAAGCAGCTTAGTTATTAGTTGGTGAACAGGGAACTGGCGAACCCCACGAG CACAAGCAGGGAATGGCGAACACTTATTACTAGTGCAACCCTAGTTATTTAGTTGGCGTAACCAGCCGCCTTAATTTA CTAGTCGAAGTCGATCGGCGGAAAAGCAGCGAACGGGGTGCACACACCCCAGCGAACACAAGCCTCCACTCAGTT AAAAGGTTACTAGTCAGATCCGTCGAATTTGACCTCAATCAGGTAGGACTACCCGCTGAGCTTAA

Boletus sp. 8 (CP40)
TCCGTAGGTGAACCTGCGGAAGGATCATTATTGAATCTCAAGAAGAGAAAGGAGGAGAGAAGGAAAGACTGTCGCT GGTCAGCTCTGTTTGACATGTGCACGTCCTTCCTTTTTCTCTCTTCTTCCTTTCTCTTTCTTACATACACACCTGTGCACT CACTGTAGGTTCTCGAAAGAGAATCTATGTATCTCTTTACATCACACACAATGTATGGTCTGGAATGTATTCGAACTTTA CAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCA GATTTTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTC ATTGAGTTTCTCAACCATGCTTTGATCGATTTCAAGGCATGGCTTGGAGTTTGGGGGTTGTCGGTGTCAAAGGACTGT CGACTCTCCTTAAATGCATTAGCAAAGGGGCAGCAAGTCTTCCTCGACATGCACGGCCTTTTGACGTGATAATGATC GTCACGGCTGGAGTGTTTGGATCTTGCAGCTCTGTTCGCTTCGAATTGCAGACGATGGAATCCCAAGCCTAGTTATTA GCTGGTCGTGTGGGATGACTTTGTCGACTTCAAAGGCTTGACCTCAAATCAGGTAGGACTACCCGCTGAACTTAA

Boletus sp. 9 (NN05)

TCCGTAGGTGAACCTGCGGAAGGATCATTATCGAATTTTGAGAGGGGGAAGGGTCGGTGGAAGAGTTTTTGCAGACT GTTGCTGGCCATCTGTCTGGCATTGTGCACGTCTCTTGCCTTTCGCTTGATCTTTCTCTCTCTTCAATTTCACAACACCT GTGCACCTACTGTAGGTCTTTGAAAGAGGATCTATGTTTTTTCATACATCACATCTATCGTATGTCTATAGAATGCATTG ATGGAAATCATTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAATTGCGATAAG TAATGTGAATTGCAGATTTTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATG CCTGTTTGAGTGTCATTGAATTCTCAACCATGTCTTGATTGATTTCAAGGGCCATGGCTTGGAGTTGGGATGTTGCTGG CAGTGAAATGCAGTCAGCTGTCCTGAAATATATTAGCAAAGGTGAACATGCAGGTCTGTATTGGACATGCACGGCCT TCGACGTGATAATGATCGTCGTGGCTGGAGTGTTCAGACATGCACACTAAGTGATCCTTGCTTCCAACTCTTAACATT GACCACTTTTGTGGGAGACGTTATCTTTGACATCTTGACCTCAAATCAGGTAGGACTACCCGCTGAACTTAA

Abstract

Boletus sp. 10 (CP11) TCCGTAGATGAACCTGCGGAAGGATCATTATCGAATCTGAGGGGGAAAAGGGGGGAGGGGGAAAAGTTGGGGGAA GACGGTGAAGGCAGCCATGGACTGTCGCTGGTCCCCTTGTGAAGGGGGGGACATGTGCACGTCCTTGCTTTTTCTG TCGGATGCCATTTCCTTTCTCTTTCTCTTTCTCTTTCGCTCTCAATATTTTTACACCTGTGCACCTACTGTAGGTCCTTGA AAGAGGATCTATGTTTTCTCATATCACATCTATCGTATGTCCAGAATGTAATAGCCACGTCTGCGATCGTCGACCACTG GGCGGTGATCAAGGATTGTGAATAAAATCTTTACAACTTTCAGCAATGGATCTCTTGGCTCTCGCATCGATGAAGAAC GCAGCGAACTGCGATAAGTAATGTGAATTGCAGATTTTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTT GGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATTGAATTCTCAATCATGCCTTGATTGACTTCTAGGCATGACTTGGA GTTGGGGGTCTGCTGGCAGCAAGATAGAGGTGTCAGCTCTCCTGAAATGCATTAGCGATGGGCTTGCAAGTCTCTTG TGGACGTGCACGGCATCAGACGTGATAATGATCGTCATCGTCTTGGGCTGGAGCGTCTTGGACGTTGCATGAACTG GTTCGTCGCTTTCAATCCCGATCCTAGTCTGATCAATACTGGTCAATCATATCTATATCGACCGTCGACCCCTCCCATC TTAGTTACTAGTTGGGTCGGTGAGGCTGACGAACACAAGAAGGGAAAGACAAAGATATGAACGTGAATATATATGAT CAGATCGGGACTGGTGAACTTCGTTCGAAAACTTGACCCTCAAAATCAGGGTAGGACTACTCCGCTGAACTTAA

Boletus sp. 11 (CP08) TCCGTAGGTGAACCTGCGGAAGGATCATTATCGAAATCCAAATGGATCTCATTTCACACCTGTGCATCCTTTGTAGAC CCAAGCTTGTGTGCATGGCTCGGGTCTATGTTTTTTCTCGTCACATCAATATATATTGGAGAACGAAATAATGAATGGG TATATACAATACAACTTTCAGCAATGGATCTCTTGGTTCTCGCATCGATGAAGAACGCAGCGAATTGCGATAAGTAAT GTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAACGCATCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTG TTTGAGTGTCATCGAATTCTCAATCCCATGTCTTGGGACATGAATTGGAGTTTGGGGGTTGCTGGGATCGAACGAGAG AGAGACCCAGCTCTCCTGAAATGAATTAGAGAGAGGGCCTTTCGACGTGATAATTCATGGTCGTGGGCTTATCGATT CGTTGGAGACTTGACCTCAAATCAGGTAGGACTACCCGCTGAACTTAA

Boletus sp. 12 (P05) TCCGTAGGTGAACCTGCGGAAGGATCATTAATGATTTGAGTTGAGAGACTGTCGCTGGCCGGGAATCCCTGGCATGT GCACGTCTTTCGATTGATTCTTTACATACACTTGTGCACTCTTTGTAGGTCCTCGAGAGAGGATCTATGTCTTCATCTCA TCACTCACACACTGCATGTCCATAGAATGTAATCATGTTTACAACTTTCAGCAATGGATCTCTTGGCTCTCGCATCGAT GAAGAACGCAGCGAATCGCGATATGTAATGTGAATTGCAGATTTTCAGTGAATCATCGAATCTTTGAACGCACCTTGC GCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATCCAATTCATCAACCATGAGATCGATCTCTCATGGCTT GGAATGTGGGGGTTTTGCTGGTCTGGTCTCTTCCAAGGTCGGCTCTCCTGAAATGCATTAGCGAATCTGGCTTATGTG AAGGCCTTTTCGACGTGATAACGATCGTCGTGAGGGTTGGAGCTTTTTCGGATCGCTTCCAATTAGATTTTAGATATTT GATCTATTTCATTCATGCGCTTGACCTCAAATCAGGTAGGACTACCCCGCTGAACTTAA

Boletus sp. 13 (CP17)

TCCGTAGGTGAACCTGCGGAAGGATCATTATCGATGCTTTACAAGAAGGCTGTCGCTGGCTCTCCTTTCAGGAAGAG CATGTGCACGTCTTCCTTCTTCTTTCACCCCTCGTGCACTCCCTGTAGCCCCCCAGGGCAAACAAACATGACCTGGG TGTCTATGTTCTTCATTTACATCTCCTCAAATCGCATGTCTAGAAAGATTATGTATCATACACAATTTACAACTTTCAGCA

ACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTTCAGTGAA TCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATCGAATTCTCAA CCATGTCCTCTCTCTTTGGAGAAGGCAACATGGCTTGGACTTGGGGGTTGCTGGCCGCCTCGTCAGCTCTCCTGAAA TGCATTAGCGGTCGCCAGCAAGTCTCGACATGCACGGCCTTTTGACGTGATAACGATCGTCATGGGCTGTGGAGTG GTCAAGGACAAGCATGAATGGGCCTGATTCGCTTCTAATCCCCACCACTTCTTGGACAGCACTTTAGTTACTAGTCGA GCCCCTCGACGAACACAAGGCGAGCGGTCCTTTGAAGTCTTTGAACGCTTGACCTCAAATCAGGTAGGACTACCCG CTGAACTTAA

Abstract

Boletus sp. 13 (CP21) TCCGTAGGTGAACCTGCGGAAGGATCATTATCGATGCTTTACAAGAAGGCTGTCGCTGGCTCTCCTTTCAGGAAGAG CATGTGCACGTCTTCCTTCTTCTTTCACCCCTCGTGCACTCCCTGTAGCCCCCCAGGGCAAACAAACATGACCTGGG TGTCTATGTTCTTCATTTACATCTCCTCAAATCGCATGTCTAGAAAGATTATGTATCATACACAATTTACAACTTTCAGCA ACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTTCAGTGAA TCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATCGAATTCTCAA CCATGTCCTCTCTCTTTGGAGAAGGCAACATGGCTTGGACTTGGGGGTTGCTGGCCGCCTCGTCAGCTCTCCTGAAA TGCATTAGCGGTCGCCAGCAAGTCTCGACATGCACGGCCTTTTGACGTGATAACGATCGTCATGGGCTGTGGAGTG GTCAAGGACAAGCATGAATGGGCCTGATTCGCTTCTAATCCCCACCACTTCTTGGACAGCACTTTAGTTACTAGTCGA GCCCCTCGACGAACACAAGGCGAGCGGTCCTTTGAAGTCTTTGAACGCTTGACCTCAAATCAGGTAGGGACTACCC GCTGAACTTAA

Boletus sp. 13 (CP49) TCCGTAGGTGAACCTGCGGAAGGATCATTATCGATGCTTTACAAGAAGGCTGTCGCTGGCTCTCCTTTCAGGAAGAG CATGTGCACGTCTTCCTTCTTCTTTCACCCCTCGTGCACTCCCTGTAGCCCCCCAGGGCAAACAAACATGACCTGGG TGTCTATGTTCTTCATTTACATCTCCTCAAATCGCATGTCTAGAAAGATTATGTATCATACACAATTTACAACTTTCAGCA ACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTTCAGTGAA TCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATCGAATTCTCAA CCATGTCCTCTCTCTTTGGAGAAGGCAACATGGCTTGGACTTGGGGGTTGCTGGCCGCCTCGTCAGCTCTCCTGAAA TGCATTAGCGGTCGCCAGCAAGTCTCGACATGCACGGCCTTTTGACGTGATAACGATCGTCATGGGCTGTGGAGTG GTCAAGGACAAGCATGAATGGGCCTGATTCGCTTCTAATCCCCACCACTTCTTGGACAGCACTTTAGTTACTAGTCGA GCCCCTCGACGAACACAAGGCGAGCGGTCCTTTGAAGTCTTTGAACGCTTGACCTCAAATCAGGTAGGACTACCCG CTGAACTTAA

Boletus sp. 14 (PH37)
GTGCACGTCTCTCTTTTCGTCGACCCTTTCTTTACACACACACACACACCCTGTGCGCCCTTTGTGGGGGCCCGCGA GAGAGGCTCTGTGTTTTTACATTCACATCCTATATGTATGGTCATAGAAGGTATCTAGATCGTCGCTCGACTCCGGTC GGGTTGCGGTCGAAAACAAACAATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCG

AATTGCGATAAGTAATGTGAATTGCAGATTTTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTCGGTATTC CGAGGAGCATGCCTGTTTGAGTGTCATTCGAATTCTCAACCATGTCTCATGACGAGGCTT

Boletus sp. 15 (NN12)
TCCGTAGGTGAACCTGCGGAAGGATCATTAACGAAATTTAGAGGCTAAAGAAGGGGGGAGGGGTGGAAGATGGAA AGTGAAGCACTGTAGCTGGCTTTCGTGCATGTGCACGTCTTCACTTCCCGTCTACCTTTACCTTTCTCTCACTCTCACT CTTTCATATCCATACACCTGTGCACCTATTGTAGGTTCTCGCAAGAGGATCTATGTTTTTTCACATCACACCCATCGTAT GTTCATAGAATGTATATTTGAAACCGTTGACCGGGCTTGACCCCCTGGTTGGCTGGTGAATAAATGTAAACCAATACA ACTTTCAGCAATGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGAT TTCCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATACCTGTTTGAGTGTCATC GAATTCTCAACCATGTCTTGATTGATTTCAAGTGCATGGCTTGGAAATTGGGAGTTGCTGGCGGCGATCCTTAAGCTG TCAGCTCTCCTCAAATGTATTAGCATAGGTTGGCTAGTTCAAGTCGACGTGCACGACCTTCGACGTGATAATGATCGT CGTGGCTGGAGCGTCTTGTCTTTGACTATGCATATGCTTCTAAATTTACTGAGATCGCTTGTCTCAGAGTTGAGCTGAG CGCTGAGCTTTAGTTATTAGTCGGTCATCAAGGCTGGCGAACACAGAGCAAAGTGTGATATGGTTCAAGTTTCTGGAC TCGTGTTTCTTATCCTTGACCTTGACCTCAAATCAGGGAGGACTACCCGCTGAACTTAA

Boletus sp. 16 (NN16)
TCCGGTAGGTGAACCTGCGGAAAGGATCATTATTGAACTTTGAGAGAAGAAAGGAAGACGGAAATGTGTCTATTGTC GCTGGCTTGCTTTGCATGTGCACATCTTCACTATCCGTCCACCTTTCTCTCATTCATTCATTTACACCTGTGCACCCATT GTAGCTTCTCTCGATAGAGAATCTATGTTTTTTCCTACCACATICATCGCATGTCTATAGAAGAATGTTATCAAAGCCTG TCGATCAGGCTTTGTCCTGGTCGCTTGCTIAATAAAATCATATATAACTTTCAGCAACGGATCTCTTGGCTCTCGCATC GATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAACGCACCT TGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCACTGAATTATCAACCATCTCTTGATCAATTTCAAGAT CTTGGCTTGGAATTGGGACTTGCTGGCATGCTGGGACAATCCCTAGTCAGCTCTCCTAAAATTCATTAGCGATGGCTT GCTAGTCTTTTGATGTGCACGGCCTTTCGACGTGATAACGATCTCGTCGTGGCTGGAGCGTCTTATTTAGACCATGCA TAAATGGCCCATGGCTTATAATATTTGAATTCACTTGTCTTGAAAGTCTACCAAGCTTTAGTTACTAGTCAGTCTACAAG GTCTGGCGAACACAGAGCAAGGTTTTTCTTGACTTGTATATTTACCTTTTGGAAGCTTGGACCTCAAATCAGGTAGGG ATTACCCGCTGAACTTAA

Boletus sp. 17 (P15)
TCCGTAGGTGAACCTGCGGAAGGATCATTATCGAACAAACAAACGAGAGACTAGACTGTCGCTGGCTGGCTTTTTCA GCATGTGCACGTCTTTTCTCTTTTCTACGCTACACTTGTGCACCTTCTGTAGATCTTCGCAAGAGGACCTACGTCTTCC ATTCACACCGATCGCATGTCCATAGAATGTAATAACGAAATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCG ATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAACGCACCTT GCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATCTAATTCTCAACCATGTCTCGTGCATGGCTTGGAG TTTGGGGGGGTCTGCTGGCCCATGGTCAGCTCTCCTGAAATGCATTAGCAAAATGGCAGACATGCACGGCCTTCCG

ACGTGATAATGATCGTCGTGGCTGGAGTGTCAGATCGCCCATGTTGCTTCTAATCAAAAGAGATGGGGGCAGTAGCC TTGTCCTTCTTGACAACTTGACCTCAAATCAGGTAGGACTACCCGCTGAACTTAA

Boletus sp. 17 (PH41)

TCCGTAGGTGAACCTGCGGAAGGATCATTATCGAACAAACAAACGAGAGACTAGACTGTCGCTGGCTGGCTTTTTCA GCATGTGCACGTCTTTTCTCTTTTCTACGCTACACTTGTGCACCTTCTGTAGATCTTCGCAAGAGGACCTACGTCTTCC ATTCACACCGATCGCATGTCCATAGAATGTAATAACGAAATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCG ATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAACGCACCTT GCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATCTAATTCTCAACCATGTCTCGTGCATGGCTTGGAG TTTGGGGGGGTCTGCTGGCCCATGGTCAGCTCTCCTGAAATGCATTAGCAAAATGGCAGACATGCACGGCCTTCCG ACGTGATAATGATCGTCGTGGCTGGAGTGTCAGATCGCCCATGTTGCTTCTAATCAAAGAGATGGGGCAGTAGCCTT GTCCTTCTTGACAACTTGACCTCAATCAGGTAGGACTACCCGCTGAACTTAA

Boletus sp. 17 (UB04) TCCGTAGGTGAACCTGCGGAAGGATCATTATCGAACAAACAAACGAGAGACTAGACTGTCGCTGGCTGGCTTTTTCA GCACGTGCACGTCTTTTCTCTTTTCTACGCTACACTTGTGCACCTTCTGTAGATCTTCGCAAGAGGACCTACGTCTTCC ATTCACACCGATCGCATGTCCATAGAATGTAATAACGAAATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCG ATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAACGCACCTT GCGCTCCTTGGTATTCCGAGGAGCATGCCCGTTTGAGTGTCATCTAATTCTCAACCATGTCTTGTGCATGGCTTGGAG TTGGGGGGGTCTGCTGGCCCATGGTCAGCTCTCCTGAAATGCATTAGCAAAATGGCAGACATGCACGGCCTTCCGA CGTGATAATGATCGTCGTGGCTGGAGTGTCAGATCGCCCATGTTGCTTCTAATCAAAGAGATGGGGCAGTTTAGCTA CTAGTTGGCGCGGCAGCCTTGTCCTTCTTAACGACTTGACCTCAAATCAGGTAGGACTACCCGCTGAACTTAA

Boletus sp. 18 (MJ16) CGCATCGATGACGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAAC GCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTATTTGAGTGTCATTGAATTCTCAACCATGGATCAGAGTTCA TTCTCTGGAACATGGCTTGGAGTTGGGGGTTGCTGGCAGCCAAGTGGGGCAGTCGGCTCTCCTGAAATGCATTAGT GATGGTTCACTCGTCTGTGGACATGCACGGCCTTCTGACATGATAATGATTGTCATGGGCTGGAAGTGTTCAAGGGC ATGCAATTGGACCATGGCTTCTAACCTGGTTGTCCGCTCTACTTCTCTATCAAAGTCTAGCCTTAGCTATTAGCTTGGA CTGCAAGGTCTGGCAAACACAAGGCAGGACAAAGGCTTT

Boletus sp. 19 (CP34) TCCGTAGGTGAACCTGCGGAAAGGATCATTATCCGAATCTACTATGAAGGGGTAGAGAGACTGTGCTGGCCAGTCT GACCGGATTGGCATGTGCACGTCCCCTCGCCCTTTTCTATCTACACACACCTGTGCACCTATTGTAGATCCCCTCGAA AGAGAGGGAGCTATGTTTTCATTACATCACACGTCATGAATGTCTAGAATGTAAACGTGATTGTGATTGTGATCGTGAT TTCATCTATCATGAAGCACAAACACAAACACAAACGGAATATATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCA TCGATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAACGCAC

CTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATCGAATTCTCAACCATGAACTTTTCTTGACGAG AGGTCATGGCTTGGAGTTGGGAGTTGCTGGCAGGACTGTCAGCTCTTCTTAAACGGATTAGCGATCAGGTTGGCTAG TCTTTGACGTGCACGGCCCCGGACGTGATAACGATCGTCCTGGCTGGAGCGTCTTTTCCTAGACTATGCGCACGGAT GGCTTCTAACGAAAGATGGAAAGCGAGGGTAGTCCGTCGAGCTTAGCTACTAGGCAGTCTTTGCTGATACGAGGCG AGGCTGGCGAACGCAAGGTCGAGCGATCGAGACTACACGCGCTACCATGATCAGAGACTTGACCTCAAATCAGGTA GGACTACCCGCTGAACTTAA

Boletus sp. 20 (NN02)
TCCGTAGGTGAACCTGCGGAAGGATCATTATCGAAATACGATAGTGAATTAGGAAGATGGATTCAAAAGCAAAGCAA AGCAAAGAGCGCGCTATGGACTGTCGCTGGCATTCATTTGCATGTGCACGTCCTGTTCTTCCCTTTCGCTTTCTTTCTG TCAACCTTTTTCTCTAATCAATTTACACCTGTGCACCCATCGTAGTTCCTCGAAAGAGGTTCTATGTCTTTTACCATCAC ATTCCTTCATATGTCCATAGAATGTTATACATGGCCATCGATCAAGCTTCGTCTCGGTCGGCTGGTCTATATAAACCAA TATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATT GCAGATTTCCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGT GTCATTTTTATTATCAACCATGTCTCGATTCATTTCGATACATCGGCTTGGACTTTGGGAGCTGCTGGTGTGCCATCTTA AAGGCTATCAGCTCTTCTTAAATATATTAGCGGTGGGTGGCTAGTCTTTTAGACGTGCACGGCCTTTTGACGTGATAAT TCATCTCATCGTCATGGCTGGAGCGACTTGGTTTAGACGATGCCCATTAGCCCATAGCTTATAATAATCATAATCGATT CAAGCTTTAGTTACTAGTCGCTCGCCGGCGAA

Heimioporus sp. 1 (UB01)
GCATCGATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAACG CACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATTAAATTCTCAACCATCATGTCTCGATCGAT TTCGAGCAGCATGGCTTGGACTTGGGAGTTGCTGGCGACGAACGTCGTCGGCTCTCCTTAAATGCATCAGCAAAGG GTTCTGCGAAGCAATCCAGACGTGCACGGCCAAACGTTGACGTGATAATGATCGTCATCAGCG
Chulalongkorn University

Heimioporus sp. 2 (MJ06)
TCCGTAGGTGAACCTGCGGAAGGATCATTATCGAACACTTGTAAAGGGGAGATCAGATCGGTGGGATTCCACTCCG AACTGTTGCTGGCGGGCATACGTCCTGCATGTGCCACGTTCTGGCGTTCACTTTTCCAGTCGACCTTTTGCAATCTTC ATTTACACCCTGTGCACCTATTGTAGGTCTTCGCAAGAGGATCTATGTCTTTCATAACACTATTTTGTATGGCCATAGAA TGTATCGATCGTCTGTGATGGACGAGAGAAAAAATATATTACAACTTTCAGCAACGGATCTCTTGGTTCTCGCATCGAT GAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAACGCACCTTGC GCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATTAAATTCTCAACCATGTCTTCATTGACATGGCTTGGAT TTGGGTGTTGCTGGCGACGAAAGTCGTCGGCTCTCCTTAAATGCATTAGCAAAGGGGTTCTGCAAAGTATGAGCTTT CGGACGTGCACGGCCTTTGACGTGATAATGATCGTCATCGCTGGAGCGTCCACTCGAAGGTTTGGACTTTGTAGAAA CAAAACTCCTTGCTTACAATTCAGACCATCATTCAGTTCTTGGAAGGCGAAGGCAGGCTTATTAGTCTTTGAGCTAGTT ACTAGTCTTTATGGCGAAAGCAGCGCAAGGGCAAAACGGCCAGCTTAAGCTTGAATCAGAATTGGATCGGTGGATC ATCTTTGAAACTTGACCTCAAATCAGGTAGGACTACCCGCTGAACTTAA

Heimioporus sp. 2 (MJ25)
tCCGTAGGTGAACCTGCGGAAAGGATCATTATCGAACACTTGTAAAGGGGAGATCAGATCGGTGGATTCCACTCCGA ACTGTTGCTGGCGGGCATACGTCTGCATGTGCACGTTCTGGCGTCCACTTTCCCAGTCGACCTTTTGCAATCTTCATT TACACCCTGTGCACCTATTGTAGGTCTTCGCAAGAGGATCTATGTCTTTCATAACACTATTTTGTATGGCCATAGAATG TATCGATCGTCTGTGATGGACGAGAGAAAAAATATATTACAACTTTCAGCAACGGATCTCTTGGTTCTCGCATCGATG AAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAACGCACCTTGCG CTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATTAAATTCTCAACCATGTCTTCATTGACATGGCTTGGATT TGGGTGTTGCTGGCGACGAAAGTCGTCGGCTCTCCTTAAATGCATTAGCAAAGGGGTTCTGCAAAGTATGAGCTTTC AGACGTGCACGGCCTTTGACGTGATAATGATCGTCATCGCTGGAGCGTCCACTCGAACGTTTGGACTTTGTAGAAAC AAAACTCCTTGCTTACAATTCAGACCATCATTCAGTTCTTGGAAGGCGAAGGCAGGCTTATTAGTCTTTGAGCTAGTTA CTAGTCTTTATTGGCGA

Heimioporus sp. 2 (CP13)
TCCCGTAGGTGAAACCTGCGGAAGGATCATTATCGAACACTTGTAAAAGGGGAGATCAGATCGGTGGATTCCACTCG GACTGTTGCTGGCGGGCATACGTCTGCATGTGCACGGTCTGGCGTCCACTTTTCCAGTCGACCTTTTGCAATCTTCAT TTACACCTGTGCACCTATTGTAGGTCTTCGCAAGAGGATCTATGTCTTTCATAACACTATTTTGTATGGCCATAGAATGT ATCGATCGTCTGTGATGGACGAGAGAAAAAATATATTACAACTTTCAGCAACGGATCTCTTGGTTCTCGCATCGATGA AGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAACGCACCTTGCGC TCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATTAAATTCTCAACCATGTCTTCATTGACATGGCTTGGATTT GGGTGTTGCTGGCGACGAAAGTCGTCGGCTCTCCTTAAATGCATTAGCAAAGGGGTTCTGCAAAGTATGAGCTTTCG GACGTGCACGGCCTTTGACGTGATAATGATCGTCATCGCTGGAGCGTCCACTCGAACGTTTGGACTTTGTAGAAACA AAACTCCTTGCTTACAATTCAGACCATCATTCAGTTCTTGGAAGGCGAAGGCAGGCTTATTAGTCTTTGAGCTAGTTAC TAGTCTTTATTGGCGAAAGCAGCGCAAGGGGCAAAACGGCCAGCTTAAGCTTGAATCAGAATTGGATCGGTGGATCA TCTTTGAAACTTGACCTCAAATCAGGTAGGACTACCCGCTGAACTTAA

Heimioporus sp. 2 (CP13.2)
TCCGTAGGTGAACCTGCGGAAGGATCATTATCGAACACTTGTAAAGGGGAGATCAGATCGGTGGATTCCACTCGGA ACTGTTGCTGGCGGGCATACGTCTGCATGTGCACGTTCTGGCGTCCACTTATCCAGTCGACCTTTTGCAATCTTCATT TACACCTGTGCACCTATTGTAGGTCTTCGCAAGAGGATCTATGTCTTTCATAACACTATTTTGTATGGCCATAGAATGTA TCGATCGTCTGTGATGGACGAGAGAAAAAATATATTACAACTTTCAGCAACGGATCTCTTGGTTCTCGCATCGATGAA GAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCT CCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATTAAATTCTCAACCATGTCTTCATTGACATGGCTTGGATTTG GGTGTTGCTGGCGACGAAAGTCGTCGGCTCTCCTTAAATGCATTAGCAAAGGGGTTCTGCAAAGTATGAGCTTTCGG ACGTGCACGGCCTTTGACGTGATAATGATCGTCATCGCTGGAGCGTCCACTCGAACGTTTGGACTTTGTAGAAACAA AACTCCTTGCTTACAATTCAGACCATCATTCAGTTCTTGGAAGGCGAAGGCAGGCTTATTAGTCTTTGAGCTAGTTACT AGTCTTTATTGGCGAAAGCAGCGCAAGGGCAAAACGGCCAGCTTAAGCTTGAATCAGAATTGGATCGGTGGATCATC TTTGAAACTTGACCTCAAATCAGGTAGGACTACCCGCTGAACTTAA

Heimioporus sp. 2 (CP48)
TCCGGTAGGGGAACCTGCGAGAAGGATCCATTATCGAACACTTGTAAAAGGGGAAGATCAGATCGGGTGGATTCCA ACTCGGAACTGTTGGCGGGCGGGGCATAAGGTCTGCATGTGCACGTTCGGGCGTCCATTTTTCCGGTCGGACCTTT GGCAATCTTCATTTACACCTGTGCCCTTATGTTAGGTCTTCGCAAGGGGAATCTATTTTTTTCATAACACTATTTTGTATG CCCATAGAATGTATCGATCGTCTGTGATGGACGAGAGAAAAAATATATTACAACTTTCAGCAACGGATCTCTTGGTTCT CGCATCGATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAAC GCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATTAAATTCTCAACCATGTCTTCATTGACAT GGCTTGGATTTGGGTGTTGCTGGCGACGAAAGTCGTCGGCTCTCCTTAAATGCATTAGCAAAGGGGTTCTGCAAAGT ATGAGCTTTCGGACGTGCACGGCCTTTGACGTGA

Heimioporus sp. 3 (NN03)
TCCGGTAGGTGAACCTGCGGAAGGATCATTATCGAACGCTCGCAAAGGGGAAGATCGGAGAGGAGTGGATCACAC TCGAGACTGTCGCTGGCGGATTCGATTCGCGTCCGCATGTGCACGTCCTAGCATTCACTTTTTCCTGTCGACCTTTTT CGATCTCATTCACACACACCTGTGCACCCATCGTAGGTCTTCGCAAGAAGATCTATGTCTTTCATAACACTACTTCGTA TGGCCATAGAATGTATAAAAACATATTACAACTTTCAGCAACGGATCTCTTGGTTCTCGCATCGATGAAGAACGCAGC GAATTGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTCGGTATT CCGAGGAGCATGCCTGTTTGAGTGTCATTAAATTCTCAACCATGTCTTGATCCACTTCGAGCAACATGGCTTGGATTT GGGAGTTGCTGGCGACGGAAGGTCGTCGGCTCTCCTTAAATGCATTAGCAAAGGGTTCTGCAAAGCATTCCGACCG GGGACGTGCACGGCCTTTGATGTGATAATGATCGTCATCGCTGGAGCGTCAGGGTTTGGACTTGGACTTTCGTAGAA AACGAAGCTCTTTGCTTCCAATTCGGACCGTCGGTTCTGAAAGGCAAAGGCGGGCTTATTAGTCTTCGGGCTAGTTAT TAGTCAACCAAGGTTGGCGAAAGCAGCACGAGCGCGAACGGCTAGCTTAAGCTTGGATCGGCGTTCATCTTTTGAA ACTTGACCTCAAATCAGGGTAGGACTACCCGCTGAACTTAA

Leccinum extremiorientale (NN18) TCCGTAGGTGAACCTGCGGAAGGATCATTATTGAATTCTGAGGGGGAAAGGACTGTCGCTGGCTTTGAGCATGTGCA CGTCCGATCTCTTTCTTTCATTACACACCTGTGCACCTGTTGTAGATTCTTCGAAAGAGGATCTATGTTCTTTTTTACAC CAACAACACCTATTGCATGTCTAGAGAATGTATCTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA GAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCT CCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATTGAATTTCTCAACTATGTCTTGATTTTCAAGACATGGCTTG GAGTTGGGGGTTGCTGGCAGCGAAAAGCAGTCGGCTCCCCTGAAATGCATTAGCAGAGGGACGAGCATGTGACGT GCACGGCCTTCGACGTGATAATGATCGTCGTGGGCTGGAGCGTTGTTGGACATGCATGAATCGTTCTTGCTTCCAAC TGTGTGGTACTATCCACGTTCTTTGAAACTTGACCTCAAATCAGGTAGGACTACCCGCTGAACTTAA

Pulveroboletus sp. (CP16) GCATCGATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTTCAGTGAATCATCGAATCTTTGAACG CATCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATCGAATTCTCAACCATGTGTCTTGATTGATT TCATGGCTTGGATGTTGGGGGTTGCTGGCGGCGATCTGGCTGTTGGCTCTCCTGAAATGCATTAGCAAAAGAGGGG

GTGTGTGTGGACGTCTTTTGGCGTGCACGGCCTTCGACGTGATAATGATCGTCGTGGCTGGAGCGCCTGGAATATAA TCTCCCTCTCCCTCATGCTTCTAGTCTGTATT

Pulveroboletus sp. (NN21)

TCCGTAGGTGAACCTGCGGAAGGATCATTATCGAATTTTCAAGGGGAGAGGAAGGCAATGGGAGAAAGACGAAGGA GGGGGGGAAAGACTGTCGCTGATGGGGGAAATTCCCTTGTGCACGTCGCTCTTCTCTGTTTTGATCCTGTTCCCTCT CTTTCCTTTACACACACACCTTGTGCACCTGTTGTAGGTCTTTGATAAGAGGATCTATGTTTTTTCACATCACACCTTAT CGTATGTCCATAGAATGTGTATGGGAAAATGATATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAG AACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTTCAGTGAATCATCGAATCTTTGAACGCATCTTGCGCTC CTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATCGAATTCTCAACCATGTGTCTTGATTGATTTCATGGCTTGGA CGTTGGGGGTTGCTGGCGGCGATCTAGCTGTTGGCTCTCCTGAAATGCATTAGCAAAAGAGGAGGTGTGGACGTCT TTTGGCGTGCACGGCCTTCGACGTGATAATGATCGTCGTGGCTGGAGCGCCTGGAATAATAATCTGCCTCTCCCCTC ATGCTTCTAATCTGTATTGCTAGTCAGTGTTCTGGCTAGCTTTCATTGCGACTTGACCTCAAATCAGGTAGGACTACCC GCTGAACTTAA

Pulveroboletus sp. (039)
TCCGTAGGTGAACCTGCGGAAGGATCATTATCGAATTTACAAGGGGAGAGGAAGGCAATGGGAGAAAGACGAAGG AGGGGGGGAAAGACTGTCGCTGATGGGGGAAATTCCCTTGTGCACGTCGCTCTTCTCTGTTTTGATCCTGTTCCCTC TCTTTCCTTTACACACACACCTTGTGCACCTGTTGTAGGTCTTTGATAAGAGGATCTATGTTTTTTCACATCACACCTTAT CGTATGTCCATAGAATGTGTATGGGAAAATGATATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAG AACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTTCAGTGAATCATCGAATCTTTGAACGCATCTTGCGCTC CTTGGTATTCCGAGGAGCATGCCTGTTIGAGTGTCATCGAATTCTCAACCATGTGTCTTGATTGATTTCATGGCTTGGA CGTTGGGGGTTGCTGGCGGCGATCTAGCTGTTGGCTCTCCTGAAATGCATTAGCAAAAGAGGAGGTGTGGACGTCT TTTGGCGTGCACGGCCTTCGACGTGATAATGATCGGATCGTCGTGGCTGGAGCGCCTGGAATAATAATCTGCCTCTC CCCTCATGCTTCTAATCTGTATTGCTAGTCAGTGTTCTGGCTAGCTTTCATTGCGACTTGACCTCAAATCAGGTAGGAC TACCCGCTGAACTTAA

Strobilomyces mirandus (PH32)

TCCGTAGGTGAACCTGCGGGAGGATCATTATAGAATGGCTTCCACACACACACACTTGTGCACACACGCTCCCACC CACACACACACACACACACACGTATGGAACGAAGGATATACACACATGACAACTTTCAGCAACGGATCTCTTGGCTC TCGCATCGATGAAGAACGCAGCGAATCGCGATATGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAA CGCACCTTGCGCTCTCCGGTACTCCGGAGAGCATGCCTGTTTGAGTGTCATTCGAATTCTCAACCACACACGTGTGT TGGCTTGGACTTGGGAGTCGCTGGCGTCGCGAGACGTCGGCCCTCCTCAAACGCATTAGCAGAGAGTCTGTCCGG ACGTGCACGGCCTGGTATCGACGTGATAACGATCGTCGTCGCCGGGCTGGAGCGTCCGGATCCGCCACCTCCGCT TCAAACCCGGCCAGCTCAAGCTCAGCTACTAGTCCTCCGTGGCGAACGCGAGCTTGCTTTGCTGCCTTTGACACCC CTCTTTGACCTCAAATCAGGGAGGACTACCCGCTGAACTTAA

Strobilomyces sp. 1 (P04)

TCCCGTAGGTGGAACCTGCGGAAGGATCATTAAACGCATGGGAGGACTGTGCTGGCTCTGAGAGCATGTGCACGTC TTCACACAACACACACACTTGTGCACCATCGCATAGGCGTCCTTTTCTCTCCGGGGGAAGGGACTCTATGTCTCACA CACACACACACATCTTGAACGTATGGCCACAGAATGTAATCTTATTTATACAACTTTCAGCAACGGATCTCTTGGCTCT CGCATCGATGAAGAACGCAGCGAATCGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAAC GCACCTTGCGCTCTCTGGTATTCCGGAGAGCATGCCTGTTTGAGTGTCATTTGAATTTCTCAACCATGTCTCGATTTGC TCAAGGCATGGCTTGGAGTTGGGAGTTGCTGGTGTCGAGAGACGTCGGCTCTCCTGAAACGCATTAGTGACGACCA CCGCGTCTTGGACATGCACGGCCTCTGGCGTCGACGTGATAACGATCGTCGTCGTAGAAAGAGGGCTGGAGTGTTT GACTGGGGACGTTGCTTCCAACTCGGGTACCCTGGAGCCATCAGCGTCACATAGGTCCTGAACGTCGCTCGCTTGT GCTGCTACNAGGTTGGATCATCGAATCACGGCGAACGCGCGCTTGCACAGCGGTGGGGGTCTAATCCGACGCTTG GCTTCTGGTTTCCCTTTGACCATCCGTGGACCCTCAAATCCAGGTAGGACTTACCCCGCCTGAACTTTAA

Strobilomyces sp. 2 (P01)
TCCGTAGGTGAACCTGCGGAAGGATCATTATCGAACACACAGGGGACTGTGCTGGCTCCCTCATGGAAGCATGTGC ACGTCTCCACTGACGCTCACACACACTTGTGCACCCACTGTAGGCCCTCGCAAGAGGATCTACGTCTTTTACACACC CAGATGTATGGCCACAGAATGTCATTTATCATACAACTTTCAGCGATGGATCTCTTGGCTCTCGCATCGATGAAGGAC GCAGCGAATCGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTT GGTACTCCGAGGAGCATGCCTGTCTGAGTGTCCCATGAATTCTCAAGCCCATGCTTTGGTGTGGCTTGGAGGTGGG GGCTGCCGGCGTCGAGAGACGTCGACTCCCCTGAAATACATTAGTGAAGACTGGCGGGTCTGGACAAGCACTGTG GCCGTCTCGACGTGATAATCATCGTCGCTGGTCAGCATGTCTGGGCTCGCGCGCTTGCAGTCATTTCACTTCTAACC CCAGCGAAGAGGGTCAGCTCTGCTAGTAGTTTTCGGTCGAGAGGCCGGCGAACACAGGGCTGGGCTCGGACCAC CCAGCGAAGAGGTCAGCTCTGTCAGTAGTCGGTCACAAGGGCTGACGAACGTGGGGCTGGGCTTGGGAGCGCCC TTGATCGAACGGACCTCAGATCAGGTAGGACTACGCGCTGACTTTA

Strobilomyces sp. 2 (P14)

TCCGTAGGTGAACTGCGGACGGATCATTATCGAACACACAGGGGACTGTGCTGGCTCCTCATGGAAGCAGTGCACG TCTCCACTGATGCTCACACACACTTGTGCACCCACTGTAGGCCCTCGCTAGAGGATCTACGTCTTTACACACCCAGA TGTATGTCCACAGAATGTCATTTATCATACAACTCTCAGCGATGGATCTCCTTGCTCTCGCATCGATGAAGGACGCAG CGAATCGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTA CTCCGAGGAGCATGCCTGTCTGAGTGTCCCATGAATTCTCAAGCCCATGCTTTGGCGTGGCTTGGAGGTGGGGGCT GCCGGCGTCGAGAGACGTCGACTCCCCTGAAATACATTAGTGAAGACTGGCGGGTCTGCACAAGCACTGTGGCCG TCTCGACGTGATAATCATCGTCGCTGGTCAGCATGTCTGGGCTCGCGCGCTTGCAGTCATTTCACTTCTAACCCCAG CGAAGAGGGTCAGCTCTGCTAGTAGTTTTCGGTCGAGAGGCCGGCGAACACAGGGCTGGGCTCGGACCACCCAG CGAAGAGGTCAGCTCTGTCAGTAGTCGGTCACAAGGCTGACGAACGTGGGGCTGGGCTTTGGAGCGCCCTTGATT GAACGGACCTCAGATCAGGTAGGACTACCCGCTGAACTTAA

Tylopilus eximius (CP35)

TCGTAAGGTGAACCTGCGGAAGGATCATTATCGAATTTCTGAGGGGAGGGATGGGAGAGATGGGAGATGGGGAAG TGAAGACTGTCGCTGGCTTCTGCATGTGCACGTCTCACTTTTTCGTCAAACCTCTCCCTTACCTTTCTCGGTCACAANA CACACCTGTGCACCTTTGGTAGATCCTTGCAAGAGGATCTATGTATTTATAAAACCATGCTCGTCGTATGTTCCAGAAC GTACATTTATCGAGAACGTCGTCGGTGGACGGCGGGTCGAGATAATTTAAACAAATACAACTTTCAGCAACGGATCT CTTGGCTTCTCGCATCGATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTTCAGTGAATCATCGA ATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATTAAATTCTCAACCATGATA TTTTTTGATCATGGCTTGGAGTTTTGGGGGGTTGCTGGGCAGCTCAGAGCCGTTCAGCTCTCCTGAAATACATTAGCG AAAAGGGTGGGGGGGGGGGGACAAGTCCCTTTGGATGTGCGCACGGCCTTTGACGTGATAATGATCGTCGGGGGC TTGGGAGCATCTCGACAGGAGTCCCCTCTAGATCTGATCGCTTCTAATCTCAATCGATTTGGGGGNGGGGGTCTAGC TACTAGTGGATCTCGAGAAACGAACGTCTTGGGCACTTTGCAAGTTGGCCTAACTAAAGTTAGGAAAGCTTTGGTGGT GCTACTTGACTACTAGTGAATCTGATCTGGATCGACGAACGTTAGGAAATAACCTCTCTTGACCTTATGAAAAGTTGAC CTCAAATCAGGTAGGACTACGCCGCTGACTTA

Tylopilus sp. 2 (CP41)
TCCGTAGGTGAACCTGCGGAAGGATCATTATCGAATGGAAATGGAAATGGAAGGGGAAAGACGGAGGGGGGCCAA ACTTTGGCTGTCGCTGGCTAGATTAGCTTCTGGCATGTGCACGCCTTGCTCTTTCTTTCGTTGACCCTTTCTTTCCCTCT CTCATACACACACCTGTGCACTCATTTGTAGGCCCCTCGAAAGAGGATCCTACGTCTTTATTATCATTACACTCTGTCG TATGGCCATGGGAATATGATTACTTTCATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCA GCGAATTGCGATAAGTAATGTGAATTGCAGATTTTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTA TTCCGAGGAGCATGCCTGTTTGAGTGTCATTGAATTCTCAACCATACCTTGACTGAGTCTCGAGGGCATGGCTTGGA GTTGGGGGTCGCTGGCATCTAAAGACGTCAGCTCTCCTGAAAAGCATTAGCGATCGGCAAGCAAAGTCTTGGACAT GCACGGCCTTATCGACGTGATAACGATCGTCGGGGCTGGAGTGTTTCAGAAGTTGCATGAATGGCCTTTTGCTTCCA AGATGATAATGATAATTTGAAGACTTGACCTCAAATCAGGTAGGACTACCCGCTGAACTTTAA

Tylopilus sp. 3 (PH40)
TCCGTAGGTGAACCTGCGGAAGGATCATTATCGAACAGAGAGAAGAGGGACTCGTAGCCATGACCACCGGGCGTG TGCACGTCCCTCTTTTCGACCACACTACATACACCTCGTGCACCCTTTGTAGGTCCCTCGAGAGAAGGATCTATGTCT TTTCATTCATTCTCCATGTCGTATGTCCCATGAATAAAACATTATTATCATTATACAACTTTCAGCGATGGATCTCTTGGC TCTCGCATCGATGAAGAACGCAGCGAATCGCGATATGTAATGTGAATTGCAGATATTCAGTGAATCATCGAATCTTTG AACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATTAATTTCTCAACCATGTTGGGGGCT TGATTGACCCCCCATGGCTTGGACTTTGAGGGCTGCCGGCCTTGACATCGTCGTGTTTGTTTGCACTGGTGAACATC ATGTCATTTAGGTCGGCTCTCTTGAAATGCATTAGTGGATCGACTTGCAATCCTGGGACAGTATGGTTCGAGACATGC ACGGTCTTCCGTCGACGTGATGATGATCGTCGTCGGGGC

Abstract

Tylopilus sp. 4 (CP09) GCATCGATGAAGAACGCAGCGAATCGCGATATGTAATGTGAATTGCAGATATTCAGTGAATCATCGAATCTTTGAACG CACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATTAATTTCTCAACCATGGTGGTTTTCTCGAC CGCCATGGCTTGGACTTTGAGGGTTGCCGGCCTTGAGACGTTTCGCACTGGTGAACGTCGTCGTCGTCGGCTCTCTT GAAATGCATTAGTGGATCGACCTTGCAATCCAGGACAGTATGGTCCGAGACATGCATTCTGTCTCGTCGACGTGATG ATGATCGTCGTCGGGGCCTGTGTGTGATCCG

Tylopilus sp. 4 (CP10)

GCATCGATGAAGAACGCAGCGAATCGCGATATGTAATGTGAATTGCAGATATTCAGTGAATCATCGAATCTTTGAACG CACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATTAATTTCTCAACCATGGTGGTTTTCTCGAC CGCCATGGCTTGGACTTTGAGGGTTGCCGGCCTTGAGACGTTTCGCACTGGTGAACGTCGTCGTCGTCGGCTCTCTT GAAATGCATTAGTGGATCGACCTTGCAATCCAGGACAGTATGGTCCGAGACATGCATTCTGTCTCGTCGACGTGATG ATGATCGTCGTCGGGGCCTGTGTGTGATCCGGGACCTTATCCTTCTTGCAATGGTTCTCTCTCCGCTTCCAACCCCC CCAAATCATGACATCTTGACCTCAAATCAGGTAGGATTACCCGCCGAACTTAA

Tylopilus sp. 6 (WS01) TCCGTAGGTGAACCTGCGGAAGGATCATTATCGAATTCAAGACTGTAGCCACGACCGCCGATCATCGTCGTGTGCA CGTCTCGTCTCTCTTTACAACACACCTCGTGAATCTTTTTGTAGCTCACCTCGATAAGAGGGATCTACGTTTTCATTCAT TCTCCACGTCGTATGTCCCATGAATTAATTTCGAATTTATACACAACTTTCAGCGATGGATCTCTTGGCTCTCGCATCG ATGAAGAACGCAGCGAATCGCGATATGTAATGTGAATTGCAGATATTCAGTGAATCATCGAATCTTTGAACGCACCTT GCGCTCCTCGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATIAAATTTCTCAACCATGGCCGTCTTCGTCGACGTC CATGGCCTTGGACTTTGAGGGTTTGCTGGCCTCGATTCATGGTCAGCTCCCTTGAAATGCATTAGTGGATCGACTCG CGATCTGGCATGCATCTGTCTCGTCGACGTGATGATGATCGTCGTCTGGGCCATGTGTGATCAAGGGTCCCTCCGCT TCCAACCTCACCGATGATGAATGACGTCTTGACCTCAAATCAGGTAGGGCTACCCGCCGAACTTAA

Tylopilus sp. 7 (NN01)

TCCGTAGGTGAACCTGCGGAAGGATCATTATCGATTATCCAGGATTGTCGCTGGCTAGATTCGATTCGATTCGTTTCT AGCATGTGCACGTCCACCATAACACATACATACACCCTTGTGCACCTTTTGTAGATCCTCGAGAGGGGATCTATGTCT TTTCTCATCACGCTCCTAACGTATGTCTATGAATGTGTAAACGAAAACGAATACATACAACTTTCAGCAACGGATCTCT TGGCTCTCGCATCGATGAAGAACGTAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATC TTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATCGAATTCTCAACCATGTCTTA CATGGATTGGAGTTTGGGGGTTTTGCTGGCGTCGAAAGATCCGTCAGCTCTCCTGAAATGCATTAGCGGATGGGGTC AGCTTTGACATGCACGGCCTTTTCGACGTGATAATGATCGTCGTTTCGGGGCTGGAGTGTCGACCGATCAGACCGTT TGCTTCTAATCATCAAGGAATTCCAGCTTAGCTACTAGTCGGTCGGCGAACGCGGCTGGATGCCTTACTTTCTTCATG CTTGACCTCAAATCAGGTAGGACTACCCGCTGAACTTAA

Tylopilus sp. 7 (PK01)

TCCGTAGGTGAACCTGCGGAAGGATCATTATCGATTATCCAGGATTGTCGCTGGCTAGATTCGATTCGATTCGTTTCT AGCATGTGCACGTCCACCATAACACATACATACACCCTTGTGCACCTTTTGTAGATCCTCGAGAGGGGATCTATGTCT TTTCTCATCACGCTCCTAACGTATGTCTATGAATGTGTAAACGAAAACGAATACATACAACTTTCAGCAACGGATCTCT TGGCTCTCGCATCGATGAAGAACGTAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTCCAGTGAATCATCGAATC TTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATCGAATTCTCAACCATGTCTTA CATGGATTGGAGTTTGGGGGTTTTGCTGGCGTCGAAAGATCCGTCAGCTCTCCTGAAATGCATTAGCGGATGGGGTC AGCTTTGACATGCACGGCCTTTTCGACGTGATAATGATCGTCGTTTCGGGGCTGGAGTGTCGACCGATCAGACCGTT TGCTTCTAATCATCAAGGAATTCCAGCTTAGCTACTAGTCGGTCGGCGAACGCGGCTGGATGCCTTACTTTCTTCATG CTTGACCTCAAATCAGGTAGGACTACCCGCTGAACTTAA

Tylopilus sp. 10 (CP46)
TCTGTAGGTGCACGTGGGGAGGGATCATTATCGAACTATCTGGAGAGGTGCGAGGACTGTCTGTGCGACCACCGCG GGCGCATGCACGTCTTTTCGCCGATACATCGCTATCACACACACACCCGCGTGCACCCTTTGTAGGTCCTCGAGAG AGGCTCTACGTTTTCGTACGTTCTCCGTGTCGCATGTCCCATGAAAAAGAACGAGATAGTTTGTATACAACTTTCAACG ACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAATCGCGATATGTAATGTGAATTGCAGATATTCAGTGA ATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATTGAATTCTCAA CCGTGCGTCTTTGTCGAGACGCACGGCTTGGACTTTGAGGGCTTGTTGGCGACCTGGTCCGTTTGCGCCGGCAAAC GTTCTTGGAGTCGACTCTCTTGAAATGCAATAGTGGATCGACGTGCGATGGACGGTATGGTCCGAGACGTTGTGTGC ACATGGCCTCGTTGGCGTGATGATGATCGTCGTCGGGGTCTGGGCATGATCGGGACC

Tylopilus sp. 11 (CP14)

GCATCGATGAAGAACGCAGCGAATCGCGATAAGTAATGTGAATTGCAGATTTTCAGTGAATCATCGAATCTTTGAACG CACCTTGCGCTCCTTGGTATTCCAACGAGCATGCCTGTTTGAGTGTCATTTTCGTTCTCAACCCGACGCCGTCGTCGG TTCGTCGGTTTGGAGGTTGGGAGTTGCTGGCTCGCTCGGCTGTCCTGAAACACATTAGGCTAACGTGCACGGCCTC GAGGCGTGATAATGATCGCCTTGGCTGGAGCGTGGCTTGTGAAAAAAAACTACTTTCATGACCTTGACCTCAAATCAA GTAGGACTACCCACCGAACTAAA

Tylopilus sp. 13 (CP05)
TCCGTAGGTGAACCTGCGGAAGGATCATTATCGAAAGTCTTATGACCTTTGTCACACCTGTGCACCCGTCTGTAGGTC TTTCCTACGTATTCGAATCACGCTCGCTACGTATGGCATGTATGTATGAAAAGTAAAGTTATATACAACTTTCAGCAAC GGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTTCAGTGAATC ATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGTCTGTTTGAGTGTCGTCGAGTTCTCAACC AAGCCCTTGGGTTTGGCTTGGATCTGGAAGCTGCTGGCGGAGGTCGGCTCTTCTGAAATGCATTAGCGATCTACTAC GGCCTTCCGGCGTGATAACGATCGTCGACGACGGCTTTGATCGCTTCCAACGGAACCGATATATAATCTTGACCTCA AATCAGACAGGACTACCCGCTGAACTTAA

Tylopilus sp. 13 (CP06)
GCATCGATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTTCAGTGAATCATCGAATCTTTGAACG CACCTTGCGCTCCTTGGTATTCCGAGGAGCATGTCTGTTTGAGTGTCGTCGAGTTCTCAACCAAGCCCTTGGGTTTGG CTTGGATCTGGAAGCTGCTGGCGGAGGTCGGCTCTTCTGAAATGCATTAGCGATCTACTACGGCCTTCCGGCGTGAT AACGATCGTCGACGACGGCTTTGATCGCTTCCAACGGAACCGATATATAATCTTGACCTCAAATCAGACAGGACTAC CCGCTGAACTTAA

Tylopilus sp. 13 (CP37)
TCCGTAGGTGAACCTGCGGGAGGATCATTATAGAAGTCTATGACCTCACATTACACCTGCGCACCTGTCTGTATGTCT TCGAAAGGGGATCTATGTTTTCGAATCACGCTCGCTATGTATCGCATGAGAGTATATAACATTATATATACAACTTTCA GCAACGGCTCTCTTGGCTCTTGCATCGATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTTCAGT GAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCTGAGGAGCATGTCTGTTTGAGTGTCGTCGAGTTCT CAACCAAGCCCTTGGGTTTGGCTTGGATCTGGAGGCTGCTGGCGGAGGTCGGCTCTTCTGAAATGCATTAGCGATC GGACCTACTACGGCCTTCCGGCGTGATAACGATCGTCGACGGGCTGGACTGGGCTTGGTCGCTTCCAACGACATAT ATCATAATATATGCTTGACCTCTAATCACGCGGGACTACCCGCTGAACTTAA

Tylopilus sp. 13 (035)
TCCGTAGGTGAACCTGCGGAAGGATCATTATCGAAGTCTATGACCTCCATTACACCTGTGCACCTGTCTGTAGGTCTT CGAAAGGGGATCTATGTATTCGAATCACGCTCGCTATGTATGGCATGAGAGTATATAATATAATATATACAACTTTCAG CAACGGATCTCTTGGCTCTCGTATCGATGAAGAACGCAGCGAATTGCGATAAGTAATGTGAATTGCAGATTTTCAGTG AATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCTGAGGAGCATGTCTGTTTGAGTGTCGTCGAGTTCTCA ACCAAGCCCTTGGGTTTGGCTTGGATCTGGAGGCTGCTGGCGGAGGTCGGCTCTTCTGAAATGCATTAGCGATCGG ACCTACTATGGCCTTCCGGCGTGATAACGATCGTCGACGGGCTGGGACTGGCTTTGGTCGCTTCCAACGAATATATA TTATAATATATGCTTGACCTCAAATCAGGCAGGACTACCCGCTGAACTTAA

2. LSU region

Boletellus ananas (UB7)
GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTCGACGTCAGTCGCGTCGG CCAGGGATCAACCTCGCGAGCGATCGCTGGGCGCACTTCCTGGTCGACGGGTCAGCGTCAGTTTCGGTCGTCGTA CAAGGGCGAGGGGAACGTGGCACTCTTCGGAGTGTGTTATAGCCTTTCGTCGCATGCGTCGGCAGGGACTGAGGA ACTCGGCGCCGGTCCCTCGGGACTCGCAGTCTAGGATGCTGGCATAATGGCCTCGAGCGACCCGTCTTGAAACAC GGACCAAGGAGTCCAACATGCCTGCGAGTGTTCGGGCAGGAAAACCCGAGCGCGAAATGAAAGTGAAAGTCGAGA CCTCTGTCGTGGAGAGCACCGACGCCCGGACCCGAGTCCTAGACGAAGGTCCTGCGGTAGAGCATGCATGTTGGG ACCCGAAAGATGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGA CGTGCAAATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAG TTTCCCTCAGGATAGCAGAAACTCGCGTCATGTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAA ACAACCTTAACCTATTCTCAAACTTTAAATATGTAAGAACGAGCCGTCGCTCGATTGGACCGCTCGGCGATTGAGAGT TTCTAGTGGGCCATTTTTGGTAAGCAGAACTGGCG

Boletellus ananas (UB10)
GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTCGACGTCAGTCGCGTCGG CCAGGGATCAACCTCGCGAGCGATCGCTGGGCGCACTTCCTGGTCGACGGGTCAGCGTCAGTTTCGGTCGTCGTA CAAGGGCGAGGGGAACGTGGCACTCTTCGGAGTGTGTTATAGCCTTTCGTCGCATGCGTCGGCAGGGACTGAGGA ACTCGGCGCCGGTCCCTCGGGACTCGCAGTCTAGGATGCTGGCATAATGGCCTCGAGCGACCCGTCTTGAAACAC GGACCAAGGAGTCCAACATGCCTGCGAGTGTTCGGGCAGGAAAACCCGAGCGCGAAATGAAAGTGAAAGTCGAGA CCTCTGTCGTGGAGAGCACCGACGCCCGGACCCGAGTCCTAGACGAAGGTCCTGCGGTAGAGCATGCATGTTGGG ACCCGAAAGATGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGA CGTGCAAATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAG TTTCCCTCAGGATAGCAGAAACTCGCGTCATGTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAA ACAACCTTAACCTATTCTCAAACTTTAAATATGTAAGAACGAGCCGTCGCTCGATTGGACCGCTCGGCGATTGAGAGT TTCTAGTGGGCCATTTTTGGTAAGCAGAACTGGCG

Boletellus ananas (CP12)
GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTCACGTCAGTCGCGTCGG CCAGGGATCAACCTCGCGAGCGATCGCTGGGTGCACTTCCTGTCTGACGGGTCAGCATCAGTTTCTGGAGTCGTAC AAGGGCGAGGGGAACGTGGCACTCTCTGGAGTGTGTTATAGCCTCTCGTCGCATGCGTCCTCGGGGACTGAGGAT CTCGGCACGACCTTCGGGCCCGTGTCTAGGATGCTGGCATAATGGCGTCAAGCGACCCGTCTTGAAACACGGACC AAGGAGTCCAACATGCCTGCGAGTGTTTGGGCGCAAAACCCGAGCGCGAAACGAAAGTGAAAGTCGAGACCTCCC CCACGGAGGGCATCGACGCCCAGACCTGAGTCCTCGACGACGGTCCTGCGGTAGAGCATGCATGTTGGGACCCG AAAGATGGTGAACTATGCCTGAATAGGGCGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGC AAATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCC

CTCAGGATAGCAGAAACTCGCGCGTGTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCATTGGGGTTGAAACAAC CTCGACCTATTCTCAAACTTTAAATATGTAAGAACGGGCCGTCGCTCGATTGGACCGCCCGGCGATTGAGAGTTTCTA GTGGGCCATTTTTGGTAAGCAGAACTGGCG

Boletellus ananas (NNO4)
GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTCACGTCAGTCGCGTCGG CCAGGGATCAACCTCGCGAGCGATCGCTGGGCGCACTTCCTGTCCGACGGGTCAGCATCAGTTTCCGGAGTCGTA CAAGGGCGAGGGGAACGTGGCACTCTCCGGAGTGTGTTATAGCCTCTCGTCGCATGCGTCCTCGGAGACTGAGGA ACTCGGCACGACCCTTCCGGTCTGTGTCTAGGATGCTGGCATAATGGCGTCAAGCGACCCGTCTTGAAACACGGAC CAAGGAGTCCAACATGCCTGCGAGTGTTCGGGCGCAAAACCCGAGCGCGAAACGAAAGTGAAAGTCGAGACCTCT GTCATCGAGGGCACCGACGCCCAGACCCGAGTCTTTGACGACGGTCCTGCGGTAGAGCATGCATGTTGGGACCCG AAAGATGGTGAACTATGCCTGAATAGGGCGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGC AAATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCC CTCAGGATAGCAGAAACTCGCATGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCATTGGGGTTGAAACAAC CTCGACCTATTCTCAAACTTTAAATATGTAAGAACGGGCCGTCGCTCGATTGGACCGTCCGGCGATTGAGAGTTTCTA GTGGGCCATTTTTGGTAAGCAGAACTGGCG

Boletellus ananas (MJ03)

GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTCGCGTCAGTCGCGTCGG CCAGGGATCAACCTCGCGAGCGATCGCTGGGTGCACTTCCTGTCTGACGGGTCAGCATCAGTTTCTGGAGTCGTAC AAGGGCGAGGGGAACGTGGCACTCTCTGGAGTGTGTTATAGCCTCTCGTCGCATGCGTCCTCGGGGACTGAGGAT CTCGGCACGACCTTCGGGCCCGTGTCTAGGATGCTGGCATAATGGCGTCAAGCGACCCGTCTTGAAACACGGACC AAGGAGTCCAACATGCCTGCGAGTGTTTGGGCGCAAAACCCGAGCGCGAAACGAAAGTGAAAGTCGAGACCTCCC CCACGGAGGGCATCGACGCCCAGACCTGAGTCCTCGACGACGGTCCTGCGGTAGAGCATGCATGTTGGGACCCG AAAGATGGTGAACTATGCCTGAATAGGGCGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGC AAATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCC CTCAGGATAGCAGAAACTCGCGCGTGTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCATTGGGGTTGAAACAAC CTCGACCTATTCTCAAACTTTAAATATGTAAGAACGGGCCGTCGCTCGATTGGACCGCCCGGCGATTGAGAGTTTCTA GTGGGCCATTTTTGGTAAGCAGAACTGGCG

Boletellus ananas (P13)
GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTCACGTCAGTCGCGTCGG CCAGGGATCAACCTCGCGAGCGATCGCTGGGCGCACTTCCTGTCCGACGGGTCAGCATCAGTTTCCGGAGTCGTA CAAGGGCGAGGGGAACGTGGCACTCTCCGGAGTGTGTTATAGCCTCTCGTCGCATGCGTCCTCGGAGACTGAGGA ACTCGGCACGACCCTTCCGGTCTGTGTCTAGGATGCTGGCATAATGGCGTCAAGCGACCCGTCTTGAAACACGGAC CAAGGAGTCCAACATGCCTGCGAGTGTTCGGGCGCAAAACCCGAGCGCGAAACGAAAGTGAAAGTCGAGACCTCT GTCATCGAGGGCACCGACGCCCAGACCCGAGTCTTTGACGACGGTCCTGCGGTAGAGCATGCATGTTGGGACCCG

AAAGATGGTGAACTATGCCTGAATAGGGCGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGC AAATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCC CTCAGGATAGCAGAAACTCGCATGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCATTGGGGTTGAAACAAC CTCGACCTATTCTCAAACTTTAAATATGTAAGAACGGGCCGTCGCTCGATTGGACCGTCCGGCGATTGAGAGTTTCTA GTGGGCCATTTTTGGTAAGCAGAACTGGCG

Boletellus sp. 1 (PH34)
GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGTTTGACGTCAGTCGCGTCAGT CAGGGATCAACCTTGCTTCGCAGCGGGTGCACTTCCTGGCGGACGGGTCAGCATCAGTTTGGATCGCTGTACAATG GTGGAGGGAAGGTGGCATTCCTCGGAGTGTGTTATAGCCTTTCATCGTCTGCAGGGAGCTAGACTGAGGAACTCGG CACGGCCCTCGGGTCTGTAGCCTAGGATGCTGGCATAATGGCGTCAACCGACCCGTCTTGAAACACGGACCAAGG AGTCTAACATGCCTGCGAGTGTTTGGGTGGAAAACCCGAGCGCGGAACGAAAGTGAAAGTCGAGACCTCTGTCATG GAGGGCATCGACGCCCGGACCGGAGTCATAGACGAAGGATCTGCGGTAGAGCATGTATGTTGGGACCCGAAAGAT GGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCG ATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGG ATAGCAGAAACTCATGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTCGAAACGACCTTAACCTA TTCTCAAACTTTAAATATGTAAGAACGGGCCGTCGCTTGATTGGACCGCTCCGGCGATTGAGAGTTTCTAGTGGGCC ATTTTTGGTAAGCAGAACTGGCG

Boletellus sp. 2 (MJ12)
GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGACGTCAGTCGCGTTGGC CGGGGATCAACCTTGCTTCTCGCTGGGTGCACTTCCTGGCTGACGGGTCAGCATCGGTTTCGATCGGGATAGAATG GCCAAGGGAACGTGGCACTCTTCGGAGTGTGTTATAGCCCATGGTCGTATGTGTCGATGGGGACCGAGGAACTCGG CACGACTCCGGTCTGTGTCTAGGATGCTGGCATAATGGCGTTAAGCGACCCGTCTTGAAACACGGACCAAGGAGTC TAACATGCCTGCGAGTGTTTGGGTGGCAAACCCGAGCGCGAAACGAAAGTGAAAGTCGAGACCTCTGTCATGGAGG GCACCGACGCCCGGACCTGAGTCTTTGACGACGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGATGGTG AACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCG TCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAG CAGAAACTCATAGATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTCT CAAACTTTAAATATGTAAGAACGAGCCGTCGCTCGATTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCATTTTT GGTAAGCAGAACTGGCG

Boletellus sp. 2 (MJ15)
GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGACGTCAGTCGCGTTGGC CAGGGATCAACCTTGCTTCTCGCTGGGTGCACTTCCTGGCTGACGGGTCAGCATCGGTTTCGATCGGGATAGAATG GCCAAGGGAACGTGGCACTCTTCGGAGTGTGTTATAGCCCATGGTCGTATGTGTCGATGGGGACCGAGGAACTCGG CACGACTCCGGTCTGTGTCTAGGATGCTGGCATAATGGCGTTAAGCGACCCGTCTTGAAACACGGACCAAGGAGTC

TAACATGCCTGCGAGTGTTTGGGTGGCAAACCCGAGCGCGAAACGAAAGTGAAAGTCGAGACCTCTGTCATGGAGG GCACCGACGCCCGGACCTGAGTCTTTGACGACGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGATGGTG AACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCG TCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAG CAGAAACTCATAGATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTCT CAAACTTTAAATATGTAAGAACGAGCCGTCGCTCGATTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCATTTTT GGTAAGCAGAACTGGCG

Boletel/us sp. 3 (MJ26)
GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTCGGC CGGGGATCAACCTTGCTTCATCGCTGGGCGTAATTTCCGGTCGACGGGTCAGCATCAGTTTCGATCGCTGTACAAGG GCGGAGGGAAAGTAGCACTCCTCACGGAGTGTGTTATAGACTTTCGTCGTATGCAGCGATCGGGACTGAGGAACTC AGCACGACTCTGTAAGGGGTTTGTGCATGGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACC AAGGAGTCTAACATGCCTGCGAGTGTTCGGGTGGCAAACTCGAGCGCGTAACGAAAGTGAAAGTCGAGATCTCTGT CGTGGAGAGCATCGACGCCCGGACCTGAGTCTTTGACGACGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAA AGATGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAA ATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCT CAGGATAGCAGAAACTCGTATATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAA CCTATTCTCAAACTTTAAATATGTAAGAACGAGCCATCGCTCGATTGGATCGCTCGGCGATTGAGAGTTTCTAGTGGG CCATTTTTGGTAAGCAGAACTGGCG

Boletellus sp. 4 (P00)
GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCTTGTTAGCT AGGGGTCAGCCTTGCTTTCGTTAGCTTGGCGTACTTCCTAGTTCGACAGGTCAGCATCAGTTTCGATCGCGGTACAA AAGCGAAGGGAATGTGGCACTCTTTCTTGGAGTGTGTTATAGACTTTCGTTGTATGCAGTGGTCGAGACTGAGGTACT CGGCACGACTCAAGTCTGTGTCTAGGATGCTGGCGAAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGA GTCTAACATGCTTGCGAGTGTTTGGGTGGAAAACCCAAGTGCGAAATGAAAGTGAACGTCGAGATCTCTGTCGTGGA GAGCATCGACGCCCGGACCCGAGTCTTTGACAAAGGATCTGCGGTAGAGCATGCACGTTAGGACCCGAAAGATGG TGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGAT CGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGAT AGCAGAAACTTGTATATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTC TCAAACTTTAAATATGTAAGAACGAGCCGTCTCTCAGTTGGACCGCTCGGCGATTGTGAGTTTCTAGTGGGCCATTTTT GGTAAGCAGAACTGGCG

Abstract

Boletellus sp. 4 (MJ04) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCTTGTTAGCT AGGGGTCAGCCTTGCTTTCGTTAGCTTGGCGTACTTCCTAGTTCGACAGGTCAGCATCAGTTTCGATCGCGGTACAA AAGCGAAGGGAATGTGGCACTCTTTCTTGGAGTGTGTTATAGACTTTCGTTGTATGCAGTGGTCGAGACTGAGGTACT CGGCACGACTCAAGTCTGTGTCTAGGATGCTGGCGAAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGA GTCTAACATGCTTGCGAGTGTTTGGGTGGAAAACCCAAGTGCGAAATGAAAGTGAACGTCGAGATCTCTGTCGTGGA GAGCATCGACGCCCGGACCCGAGTCTTTGACAAAGGATCTGCGGTAGAGCATGCACGTTAGGACCCGAAAGATGG TGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGAT CGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGAT AGCAGAAACTTGTATATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTC TCAAACTTTAAATATGTAAGAACGAGCCGTCTCTCAGTTGGACCGCTCGGCGATTGTGAGTTTCTAGTGGGCCATTTTT GGTAAGCAGAACTGGCG

Boletellus sp. 4 (CH02)
GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCTTGTTAGCT AGGGGTCAGCCTTGCTTTCGTTAGCTTGGCGTACTTCCTAGTTCGACAGGTCAGCATCAGTTTCGATCGCGGTACAA AAGCGAAGGGAATGTGGCACTCTTTCTTGGAGTGTGTTATAGACTTTCGTTGTATGCAGTGGTCGAGACTGAGGTACT CGGCACGACTCAAGTCTGTGTCTAGGATGCTGGCGAAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGA GTCTAACATGCTTGCGAGTGTTTGGGTGGAAAACCCAAGTGCGAAATGAAAGTGAACGTCGAGATCTCTGTCGTGGA GAGCATCGACGCCCGGACCCGAGTCTTTGACAAAGGATCTGCGGTAGAGCATGCACGTTAGGACCCGAAAGATGG TGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGAT CGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGAT AGCAGAAACTTGTATATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTC TCAAACTTTAAATATGTAAGAACGAGCCGTCTCTCAGTTGGACCGCTCGGCGATTGTGAGTTTCTAGTGGGCCATTTTT GGTAAGCAGAACTGGCG

Boletus sp. 1 (P12)
GAAAAGAACTTTGGAAAGAGAGTTAAATAGTACGTGAAATTGCTGAAAGGGAAACACTTGATGTCAGTCGCATTAGCC AGGGATCAACCTTGCTCCCTTTGCTAGGTGTATTTCCTGGTTAATGGGTCAGCATCAGTTTTGGTTGTCGTACAATGGC AAGGGGAATGTGGCACCCTTCTGGGTGTGTTTATAGCCTTTTGTTATATGCGATGATTGGGACTGAGGAACTCAGCAC GGCTTCATAGTTTGTGCTTAGGATGCTGGCATAATGGCCTTAAGTGACCCGTCTTGAAACACGGACCAAGGAGTCTA ACATGCCTGCGAGTGTTTGGGTGCTAAACTCGAGTGCGTAATGAAAGTGAAAGTTGAGACCTCTGTCATGGAGGGCA TCGACGCCCGGACCTGAGTCTTTGACGACGGATCTGCGGTAAAGCATGTATGTTAGGACCCGAAAGATGGTGAACT ATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCGTCGA ATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAGCAGA AACTCATATCATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTCTCAAA CTTTAAATATGTAAGAACGAGCCGTCACTTTGTTGGACCGCTCGGCGATTGGGAGTTTCTAGTGGGCCATTTTTGGTA AGCAGAACTGGCG

Abstract

Boletus sp.1(CP31) GAAAAGAACTTTGGAAAGAGAGTTAAATAGTACGTGAAATTGCTGAAAGGGAAACACTTGATGTCAGTCGCATTAGCC AGGGATCAACCTTGCTCCCTTTGCTAGGTGTATTTCCTGGTTAATGGGTCAGCATCAGTTTTGGTTGTCGTACAATGGC AAGGGGAATGTGGCACCCTTCTGGGTGTGTTTATAGCCTTTTGTTATATGCGATGATTGGGACTGAGGAACTCAGCAC GGCTTCATAGTTTGTGCTTAGGATGCTGGCATAATGGCCTTAAGTGACCCGTCTTGAAACACGGACCAAGGAGTCTA ACATGCCTGCGAGTGTTTGGGTGCTAAACTCGAGTGCGTAATGAAAGTGAAAGTTGAGACCTCTGTCATGGAGGGCA TCGACGCCCGGACCTGAGTCTTTGACGACGGATCTGCGGTAAAGCATGTATGTTAGGACCCGAAAGATGGTGAACT ATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCGTCGA ATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAGCAGA AACTCATATCATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTCTCAAA CTTTAAATATGTAAGAACGAGCCGTCACTTTGTTGGACCGCTCGGCGATTGGGAGTTTCTAGTGGGCCATTTTTGGTA AGCAGAACTGGCG

Boletus sp. 1 (CP47) GAAAAGAACTTTGGAAAGAGAGTTAAATAGTACGTGAAATTGCTGAAAGGGAAACACTTGATGTCAGTCGCATTAGCC AGGGATCAACCCTTGCTCCCTTTGCTGGGTGTACTTCCTGGTTAATGGGTCAGCATCAGTTTTGCTTGTCGTACAATG GCAAGGGGAATGTGGCACCCTTCTGGGTGTGTTTATAGCCTTTTGTTATATGCGATGATTAGGACTGAGGAACTCAGC ACGGCCCTTAGAGTTTGTGCTTAGGATGCTGGCATAATGGCCTTAAGTGACCCGTCTTGAAACACGGACCAAGGAGT CTAACATGCCTGCGAGTGTTTGGGTGCTAAACTCGAGTGCGTAATGAAAGTGAAAGTTGAGACCTCTGTCATGGAGG GCATCGACGCCCGGACCTGAGTCTTTGACGACGGATCTGCGGTAAAGCATGTATGTTAGGACCCGAAAGATGGTGA ACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCGT CGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAGC AGAAACTCATACTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTCTC AAACTTTAAATATGTAAGAACGAGCCGTCACTTTGTTGGACCGCTCGGCGATTGGGAGTTTCTAGTGGGCCATTTTTG GTAAGCAGAACTGGCG

Boletus sp. 2 (CP18) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCATGTCGGC CAGGGATCAACCTTGCTTCTCGCTGGGTGCACTTCTTGGTCGACAGGTCAGCATCAATTTCGATCGCTGTACAATGGT GGAGGGAATGTGGCACTCTTCGGGGTGTGTTCTTATAGCCTTTCATCGCATGCAGTGATTGGGACTGAGGAACTCGG CACGACTTTTCAGTCTGTGTCTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAGT CTAACATGCCTGCGAGTGTTTGGGTGGAAAACTCAAGCGCGTAATGAAAGTGAAAGTTGAGACCTCTGTCGTGGAGT GCACCGACGCCCCGGACCTGAGTCTTTGACGACGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGATGGT GAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATC GTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATA GCAGAAACTCATGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTC TCAAACTTTAAATATGTAAGAACGAGCCGTCACTTTGTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCATTTTT GGTAAGCAGAACTGGCG

Abstract

Boletus sp. 2 (CP25) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCATGTCGGC CAGGGATCAACCTTGCTTCTCGCTGGGTGCACTTCTTGGTCGACAGGTCAGCATCAATTTCGATCGCTGTACAATGGT GGAGGGAATGTGGCACTCTTCGGGGTGTGTTCTTATAGCCTTTCATCGCATGCAGTGATTGGGACTGAGGAACTCGG CACGACTTTTCAGTCTGTGTCTAGGATGCTGGCATAATGGCCTTTAAGCGACCCGTCTTGAAACACGGACCAAGGAG TCTAACATGCCTGCGAGTGTTTGGGTGGAAAACTCAAGCGCGTAATGAAAGTGAAAGTTGAGACCTCTGTCGTGGAG TGCACCGACGCCCGGACCTGAGTCTTTGACGACGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGATGGT GAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATC GTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATA GCAGAAACTCATGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTC TCAAACTTTAAATATGTAAGAACGAGCCGTCACTTTGTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCATTTTT GGTAAGCAGAACTGGCG

Boletus sp. 3 (CP01) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACACTTGATGTCAGTCGCGTCCAC CGGGGATCAACCTTGCCTTTCCGGCTCGGTGTACTTCCCGGTCGGACGGGTCAGCGTCAGTTTCGGTGCGCCGTAC AAGGGCGAGGGGAACGTGGCACTCTTCGGAGTGTGTTATAGCCTTTCGTCGTATGCGGCGCTTGGGACTGAGGAAC TCAGCATGGCTTCGGTCTGTGCTTAGGATGCTGGCATAATGGCCTTAAGTGACCCGTCTTGAAACACGGACCAAGGA GTCTAACATGCCTGCGAGTGTTTGGGTGCCAAACCCGAGCGCGCAATGAAAGTGAACGTCGAGACCTCCGTCAATG GAGGGCATCGACGCCCGGACCCGAGTCTTTGACGAAGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGAT GGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCG ATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGG ATAGCAGAAACTCGTGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTA TTCTCAAACTTTAAATATGTAAGAACGGGCTGTCGCTCCGTTGGACAGCTCGGCGATTGAGAGTTTCTAGTGGGCCAT TTTTGGTAAGCAGAACTGGCG Ghulalongkorn University

Boletus sp. 4 (CP15) GAAAAGAACTTTGAAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTCGAGGTCCAGTCGCGTTG GCCGGGGATCAACCTTTATCTTGGGGGTGTATTTCCTGGTCGATGGGTCAGCATCAGTTTTTGTCGTCGTATAATGGT CAGGGGAATGTGGCACGCCCTCGGGAGTGTGTTATAGACTTTGGTCGTATGCGATGGTAGGGACTGAGGAACTCGG CACGGGGCTCTCGTAGCCTCTTTGTGCTTAGGATGCTGGCATAATGGCCTTGAGCGACCCGTCTTGAAACACGGAC CAAGGAGTCTAACATGCCTGCAAGTGTTCAGGTGGAAAACCTGCGCGCGCAATGAAAGTGAAAGTCGAGAACCCCC TCGGGGTGCACCGACGCCCGGACCTGAGTCGTTTACGACAAAGGCTCTGCGGTAGAGCATGCATGTTGGGACCCG AAAGATGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGC AAATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCC CTCAGGATAGCAGAAACTCATGAGAATAGATTTATGTGGTAAAGCGAATGATTAGAGGTCTTGGGGTTGAAACAACCT TAACCTATTCTCAAACTTTAAATATGTAAGAAAGGGGCGTCACTTAGGTGGACCCCCCCTCAGTGGGATTAAGAGTTT CTAGTGGGCCATTTTTGGTAAGCAGAACTGGCG

Abstract

Boletus sp. 4 (CP20) GAAAAGAACTTTGAAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTCGAGGTCCAGTCGCGTTG GCCGGGGATCAACCTTTATCTTGGGGGTGTATTTCCTGGTCGATGGGTCAGCATCAGTTTTTGTCGTCGTATAATGGT CAGGGGAATGTGGCACGCCCTCGGGAGTGTGTTATAGACTTTGGTCGTATGCGATGGTAGGGACTGAGGAACTCGG CACGGGCTCTCGTAGCCTCTTTGTGCTTAGGATGCTGGCATAATGGCCTTGAGCGACCCGTCTTGAAACACGGACCA AGGAGTCTAACATGCCTGCGAAGTGTTCAGGTGGAAAACCTGCGCGCGCAATGAAAGTGAAAGTCGAGAACCCCCT CGGGGTGCACCGACGCCCGGACCTGAGTCGTTTACGACAAAGGCTCTGCGGTAGAGCATGCATGTTGGGACCCGA AAGATGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCA AATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCC TCAGGATAGCAGAAACTCATGAGAATAGATTTATGTGGTAAAGCGAATGATTAGAGGTCTTGGGGTTGAAACAACCTT AACCTATTCTCAAACTTTAAATATGTAAGAAAGGGGCGTCACTTAGGTGGACCCCCCCTCAGTGGGATTAAGAGTTTC TAGTGGGCCATTTTTGGTAAGCAGAACTGGCG

\section*{Boletus sp. 4 (CP51)}

GAAAAGAACTTTGAAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTCGAGGTCCAGTCGCGTTG GCCGGGGATCAACCTTTATCTTGGGGGTGTATTTCCTGGTCGATGGGTCAGCATCAGTTTTTGTCGTCGTATAATGGT CAGGGGAATGTGGCACGCCCTCGGGAGTGTGTTATAGACTTTGGTCGTATGCGATGGTAGGGACTGAGGAACTCGG CACGGGCTCTCGTAGCCTCTTTGTGCTTAGGATGCTGGCATAATGGCCTTGAGCGACCCGTCTTGAAACACGGACCA AGGAGTCTAACATGCCTGCGAAGTGTTCAGGTGGAAAACCTGCGCGCGCAATGAAAGTGAAAGTCGAGAACCCCCT CGGGGTGCACCGACGCCCGGACCTGAGTCGTTTACGACAAAGGCTCTGCGGTAGAGCATGCATGTTGGGACCCGA AAGATGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCA AATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCC TCAGGATAGCAGAAACTCATGAGAATAGATTTATGTGGTAAAGCGAATGATTAGAGGTCTTGGGGTTGAAACAACCTT AACCTATTCTCAAACTTTAAATATGTAAGAAAGGGGCGTCACTTAGGTGGACCCCCCCTCAGTGGGATTAAGAGTTTC TAGTGGGCCATTTTTGGTAAGCAGAACTGGCG

UhULALIOHGKORN UNIVERSITV

Boletus sp. 5 (MJ23) GAAAAGAACTTTGAAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTCGAGGTCCAGTCGCGTTG GCCGGGGATCAACCTTTATCTTGGGGGTGTATTTCCTGGTCGATGGGTCAGCATCAGTTTTTGTCGTCGTATAATGGT CAGGGGAATGTGGCACGCCCTCGGGAGTGTGTTATAGACTTTGGTCGTATGCGATGGTAGGGACTGAGGAACTCGG CACGGGCTCTCGTAGCCTCTTTGTGCTTAGGATGCTGGCATAATGGCCTTGAGCGACCCGTCTTGAAACACGGACAA GGAGTCTAACATGCCTGCGAAGTGTTCAGGTGGAAAACCTGCGCGCGCAATGAAAGTGAAAGTCGAGAACCCCATC GGGGTGCACCGACGCCCGGACCTGAGTCGTTTACGACAAAGGCTCTGCGGTAGAGCATGCATGTTGGGACCCGAA AGATGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAA ATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCT CAGGATAGCAGAAACTCATGAGAATAGATTTATGTGGTAAAGCGAATGATTAGAGGTCTTGGGGTTGAAACAACCTTA ACCTATTCTCAAACTTTAAATATGTAAGAAAGGGGCGTCACTTAGGTGGACCCCCCCTCAGTGGGATTAAGAGTTTCT AGTGGGCCATTTTTGGTAAGCAGAACTGGCG

Abstract

Boletus sp. 6 (СР03) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTCGGC CGGGGATCAACCTTGCTTCTCGCTGGGTGTACTTCTCGGTCGACGGGTCAGCATCGGTTTCGGTCGCCGTACAAGG GCGAGGGGAACGTGGCACTCTTCGGGGTGTGTTATAGCCTTTCGTCGTATGCGGCGGTCGGGACCGAGGAACTCA GCACGGCTTCGGTCTGTGCTTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAGT CTAACATGCCTGCGAGTGTTTGGGTGACAAACCCGAGCGCGCAATGAAAGTGAAAGTTGAGACCTCTGTCGTGGAG GGCATCGACGCCCGGACCTGAGTCTTTGACGACGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGATGGT GAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATC GTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATA GCAGAAACTCATGTAGCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTC TCAAACTTTAAATATGTAAGAACGAGCCGTCGCTTCGTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCATTTT TGGTAAGCAGAACTGGCG

Boletus sp. 7 (MJ27) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCCAGTCGCGTCGG TCGGGGATCAACCTTGCATTCTTTTGCTCGGTGTACTTCCTGGTCGACGGGTCAGCATCAGTTTTCGTCGTCGTACAA ACTCCTAGGGAATGTGGCACTCTTTCGGGAGTGTGTTATAGCCCAAGGTCAGATGCGGGGATGGGGACTGAGGAAC TCAGTACCTTGAGGGGTGCTTAGGATGCTGGCATAATGGCATTAAGCGACCCGTCTTGAAACACGGACCAAGGAGT CTAACATGCCTGCGAGTGTTTGGGTGGCAAACCCATGCGCGAAATGAAAGTGAAAGTCGAGATCTCTGTCATGGAG AGCACCGACGCCCGGACTGGAGTCGTTTTCGACAAAGGACCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGAT GGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCG ATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGG ATAGCAGAAACTCATTGGGTACAGATTTATGTGGTAAAGCGAATGATTAGAGGTCTTGGGGTTGAAACAATCTTAACC TATTCTCAAACTTTAAATATGTAAGAACGGGCCGTCTCTTGAGCTTGGACCGCCCGGCGATTGGAGAGTTTCTAGTGG GCCATTTTTGGTAAGCAGAACTGGCG

Gholalongkorn University Boletus sp. 8 (CP40) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCACGTCGGT CAGGGATCAACCTTGCTTCATCGCTGGGCGTACTTCCTGGCTGATGGGTCAGCATCAGTTTTGATCACCATACAAGG GCAGAGGGAATGTGGCACTCCTTGGAGTGTGTTATAGCCTTTTGTCGCATGTGGTGATCAGGACTGAGGAACTCAGC ATGGCTTCTGCTTGTGCTCAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAGTCTA ACATGCCTGCGAGTGTTTGGGTGGAAAACTCGAGCGCGTAATGAAAGTGAAAGTCGAGACCTTTGTCATGGAGGGC ATCGACGCCCGGACCTGAGTCTTTGACGAAGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGATGGTGAAC TATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCGTCG AATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAGCAG AAACTCGAGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTCGAAATGACCTTAACCTATTCTCAA ACTTTAAATATGTAAGAACGGGCCGTCGCTTGATTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCATTTTTGGT AAGCAGAACTGGCG

Abstract

Boletus sp. 9 (NN05) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCACGTCGCC TGGGGATCAACCTTGCTTTTCGCTGGGTGTACTTCCCTGTCGACGGGTCAGCATCAGTTTCCGTCGCCGTACAAGGG TGAGGGGAATGTGGCACTCTTTGGAGTGTGTTATAGCCTTTCGTCGTATGCGGTGGTAGGGACTGAGGAACTCAGCA CGACCTTTTAGGCCTGTGCTTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAGTC TAACATGCCTGCGAGTGTTTGGGTGGAAAACTCAGGCGCGTAATGAAAGTGAAAGTTGAGACCTCTGTCGTGGAGG GCATCGACGCCCGGACCTGAGTCTTTGACGACGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGATGGTG AACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCG TCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAG CAGAAACTCATGTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTCTCA AACTTTAAATATGTAAGAACGAGCCGTCTCTTTGTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCATTTTTGGT AAGCAGAACTGGCG

\section*{Boletus sp. 10 (CP11)}

GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAAAGGCTGGAGGCCGGTCGGGCCA ATGGGGGTCCACCCTGGCCTAAGGGTTGGTGGTCTTCCCTGATGAACGGGTCGCCTTCAGTTTCAATGGCCGTACA GGGCGAAGGGGAAGGTGGCATTCTTTGAGGGGGGTTTTGCCCTTTCGCCGAATGCAAGGGTGGGAATGGAGGAAT TCACAACAACTCCGGCCGGTGCTTAGAAGGCTGGCTTAAGGGCTTTAGGGGACCCGTCTTGAAACACGGACCAAGG AGTCTAACATGCCTGCAAGTGTTTGGGTGATAAACCCAAGCGCGCAATGAAAGTGAAAGTTGAGACCTCTGTCATGG AGGGCATCGACGCCCGGACCCAAGTCCTTTGACGAGGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGAT GGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCG ATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGG ATAGCAGAAACTCGTGTATATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACC TATTCTCAAACTTTAAATATGTAAGAACGAGCCGTCGCTCAGTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCC ATTTTTGGTAAGCAGAACTGGCG thulatongiorn University Boletus sp. 11 (CP08) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGACGTCAGTCGCGTCGG CCGGGGATCAACCTTGCTTGTCGCTGGGTGCACTTCCCGGGTGACGGGTCAGCATCGGTTTCGGTCGGCGTACAA GGGCAAAGGGAACGTGGCACTCCTAGGAGTGTGTTATAGCCTTTCGTCAGATGCGGCGGTCGGGACTGAGGAACT CGGCACGGCTCGTCAGAGCTTGTGTCCAGGATGCTGGCATAATGGCGTCAAGCGACCCGTCTTGAAACACGGACC AAGGAGTCTAACATGCATGCGAGTGTTTGGGTGGAAAACCCAGGCGCGAAATGAAAGTGAAGGTCGAGACCCCTGT CGTGGGGGGCACCGACGCCCGGACTCGAGTCCATGACGAGGGATCTGCGGTAGAGCATGCATGTTGGGACCCGA AAGATGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCA AATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCC TCAGGATAGCAGAAACTCAGTAGATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTT AACCTATTCTCAAACTTTAAATATGTAAGAACGGGCCGTCGCTCGATTGGACCGCTCGGCGATTGAGAGTTTCTAGTG GGCCATTTTTGGTAAGCAGAACTGGCG

Abstract

Boletus sp. 12 (P05) GAAAAGAACTTTGAAAAGAGAGTTAAATAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCCAGTCGCATCGAT CGGGGGTCAACCTAGCAGTCGCTAGGTGCATTTCCTGGTCGATGGGTCAGCATCAGTTTCGGTCGTCGTACAAGGG CGAGAGTGAATGTGCCACGCTTCGGCGTGCGTTATAGCCTCTGGTCGTATGCGGCGGTCGGGACTGAGGGAAAAC TACTAGTACTACTACTGAGTAGGATGCTGGCATAATGGCATTAAGCGACCCGTCTTGAAACACGGACCAAGGAGTCT AACATGCCTGCGAGTGTTTGGGTGCCAAAACTCCGAGCGCGAAATGAAAGTGAAAGTCGAGACCTCCGTCGTGGAG GGCATCGACGCCCGGACCGGAGTCTTTCGACGATGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGATGG TGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAAGCTCGTAGCGATTCTGACGTGCAAATCGAT CGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGAT AGCAGAAACTCGTAGATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAGCCTTAACCTATT CTCAAACTTTAAATATGTAAGAACGAGCCGTCTCTCGGGTTGGACTGCTCGGCGATTGAAGAGTTTCTAGTGGGCCAT TTTTGGTAAGCAGAACTGGCG

Boletus sp. 13 (CP17) GAAAAGAACTTTGGAAAGAGAGTTAAACCGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCACGTCTGC TGGGGATCAACCTTGCCTTCTCGCTCGGTGTATTTCCTGGTCGATGGGTCAGCATCAGTTTCGACCGTCGTACAAGG GTCGAGGGAACGTGGCACCTCTTGGGGTGTGTTATAGCCCTCGGTCGTATGCAGCGGTCGAGACTGAGGAACTCA GCACGGCCTCTTGGCTTGTGCTTGGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGA GTCTAACATGCCTGCGAGTGTTTGGGTGTCAAACTCGAGTGCGAAATGAAAGTGAACGTCGAGACCTCCGTCGTGG AGGGCATCGACGCCCGGACCAGAGTCTTTGACGACGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGATG GTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGA TCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGA TAGCAGAAACTCATGTGTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTAT TCTCAAACTTTAAATATGTAAGAACGAGCCGTCTCTTGACCTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCAT TTTTGGTAAGCAGAACTGGCG Ghulalongkonn University

Boletus sp. 14 (PH37) GTCTTGAAACACGGACCAAGGAGTCTTACATGCATGCGAGTGTTCGGGTGGTAAACCCGTGCGCGAAACGAAAGTG AAAGTCGAGACCTCTGTCATGGAGGGCACCGACGCCCGGACCTGAGTCTTNGACGACGGATCTGCGGTAGAGCAT GCATGTTGGGACCGAAAGATGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAG CGATTCTGACGTGCAAATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCGTCTAGTAGCTGGTTC CTGCCGAAGTTTCCCTCAGGATAGCAGAAACTCGTGTATGTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTG GGGTTGAAACAACCTTAACCTATTCTCAAACTTTAAATATGTAAGAACGAGCCGTCGCTCGATTGGACCGCTCGGCG ATTGAGAGTTTCTAGTGGGCCATTTTTGGTAAGCAGAACTGGCG

Abstract

Boletus sp. 15 (NN12) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCACGTTGAC TGGGGATCAACCTTGCGAGTTTCTCGTTGGGTGCATTTCCTGGTCGATGGGTCAGCATCAGTTTTGACTGCGGTACAA TGGTGGAGGGAATGTGGCACTCTTTGGAGTGTGTTATAGCCTTTCATCGTATGCGGTGGTTGGGACTGAGGAACTCG GCACGATCACTCTGGTCTGTGTCTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGG AGTCTAACATGCCTGCGAGTGTTTGGGTGGCAAACCCAAGCGCGTAATGAAAGTGAAAGTCGAGACCTCTGTCATG GAGGGCACCGACGCCCGGACCTGAGTCTTTGACGACGGATCTGCGGTAGAGCATGTATGTTGGGACCCGAAAGAT GGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCG ATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGG ATAGCAGAAACTCATGTGTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTA TTCTCAAACTTTAAATATGTAAGAACGAGCCGTCGCTTTGTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCAT TTTTGGTAAGCAGAACTGGCG

\section*{Boletus sp. 16 (NN16)}

GAAAAGAACTTTGGAAAGAGAGTTAAATAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTCGAT CAGGGATCAACCTTGCATTTTTGCTGGGTGCATTTTCTGCTCAACGGGTCAGCATCAGTTTGACTTGCTGTACAATGG TGAAGGAAATGTAGCACTCTTTGGAGTGTGTTATAGTCTTTCGTCGTATGCAGTGATTGGAACTGAGGAACTCGGCAC GACTTTGATTTGTGTCTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAGTCTAAC ATGCCTGCGAGTGTTTGGGTTCCAAACCCAGGCGCGTAATGAAAGTGAAAGTTGAGACCTCTGTCATGGAGGGCAT CGACGCCCGGACCTGAGTCCTTGACGATGGATCTGCGGTAGAGCATGTATGTTGGGACCCGAAAGATGGTGAACTA TGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCGTCGAA TTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAGCAGAA ACTCATGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTCTCAAACT TTAAATATGTAAGAACGAGCTGTCACTTCATTGGACTGCTCGGCGATTGAGAGTTTCTAGTGGGCCATTTTTGGTAAG CAGAACTGGCG

\section*{Boletus sp. 17 (P15)}

GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTCCCC CGGGGATCAACCTTGCTTCTCGCTGGGTGTATTTCCTGGTCGACGGGTCAGCATCAGTCTCGATCACCGTACAAGG GCAAAGGGAACGTGGCACTCTTCGGAGTGTGTTATAGCCTTTCGTCATATGCGGCCTTTGGGACTGAGGAACTCAGC ACGGCTTCTTGTTTGTGCTTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAGTCT AACATGTCTGCGAGTGTTTGGGTGGCAAACCCGAGCGCACAACGAAAGTGAAAGTCGAGACCTCTGTCATGGAGGG CATCGACGCCCGGACCTGAGTCTTTGACGACGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGATGGTGAA CTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCGTC GAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAGCA GAAACTCGTGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTCTCA AACTTTAAATATGTAAGAACGAGCCGTCACTTTGTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCATTTTTGG TAAGCAGAACTGGCG

Abstract

Boletus sp. 17 (PH41) GTCTTGAAACACGGACCAAGGAGTCTAACATGTCTGCGAGTGTTTGGGTGGCAAACCCGAGCGCACAACGAAAGTG AAAGTCGAGACCTCTGTCATGGAGGGCATCGACGCCCGGACCTGAGTCTTTGACGACGGATCTGCGGTAGAGCAT GCATGTTGGGACCCGAAAGATGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTA GCGATTCTGACGTGCAAATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTT CCTGCCGAAGTTTCCCTCAGGATAGCAGAAACTCGTGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTG GGGTTGAAACAACCTTAACCTATTCTCAAACTTTAAATATGTAAGAACGAGCCGTCACTTTGTTGGACCGCTCGGCGA TTGAGAGTTTCTAGTGGGCCATTTTTGGTAAGCAGAACTGGCG

Boletus sp. 17 (UB04)
GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTCCCC CGGGGATCAACCTTGCTTCTCGCTGGGTGTATTTCCTGGTCGACGGGTCAGCATCAGTCTCGATCACCGTACAAGG GCAAAGGGAACGTGGCACTCTTCGGAGTGTGTTATAGCCTTTCGTCATATGCGGCCTTTGGGACTGAGGAACTCAGC ACGGCCTCTCGTTTGTGCTTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAGTCT AACATGTCTGCGAGTGTTTGGGTGGCAAACCCAAGCGCACAACGAAAGTGAAAGTCGAGACCTCTGTCATGGAGGG CATCGACGCCCGGACCTGAGTCTTTGACGACGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGATGGTGAA CTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCGTC GAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAGCA GAAACTCGTGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTCTCA AACTTTAAATATGTAAGAACGAGCCGTCACTTTGTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCATTTTTGG TAAGCAGAACTGGCG

Boletus sp. 18 (MJ16)
GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCACGTCTGC CAGGGATCAACCTTGCATTCACTTGCTGGGTGTACTTCCTGGTCGGACGGGTCAGCATCAGTCTTGGTCGTCGTAGA ATGGCAAGGGGAATGTGGCACTCTCTCGGGGGTGTGTTATAGCCCAGTGTCGGATGCGGCGGACGGGACTGAGGA ACTCGGCACGATCCACTAGGGTCTGTGTCTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGA CCAAGGAGTCTAACATGCCTGCGAGTGTTTGGGTGGAAAACCCAGGCGCGAAATGAAAGTGAAAGTCGAGACCTCT GTCATGGAGGGCACCGACGCCCGGACCGGAGTCATTGACGAAGGCTCTGCGGTAGAGCATGCATGTTGGGACCC GAAAGATGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTG CAAATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTC CCTCAGGATAGCAGAAACTCGTGTATTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAAC CTTAACCTATTCTCAAACTTTAAATATGTAAGAACGGGCCGTCGCTTGATTGGACCGCTCGGCGATTGAGAGTTTCTA GTGGGCCATTTTTGGTAAGCAGAACTGGCG

Abstract

Boletus sp. 19 (CP34) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCACGTCCGC CAGGGATCAACCTTGCTTTATCGCTGGGTGCATTTCTTGGTCGGACGGGTCAGCATCGGTTTCGATCGTCGTAGAAT GGTGGAGAGAATGTGGCACCTCTAGGGGTGTGTTATAGCTCTGGATCGTATGCGTCGATGGGGACCGAGGAACTCG GCACGACCTTGACTGGCGTGTGTCTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAG GAGTCTAACATGCCTGCGAGTGTTTGGGTGGAAAACTCGAGCGCGGAATGAAAGTGAAAGTCGAGATCTCTGTCAT GGAGAGCACCGACGCCCGGACCTGAGTCTTTGACAAAGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGA TGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATC GATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAG GATAGCAGAAACTCATGATGATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAAC CTATTCTCAAACTTTAAATATGTAAGAACGAGCCGTCTCTTGAGATTTGGACCGCTCGGCGATTGAGAGTTTCTAGTG GGCCATTTTTGGTAAGCAGAACTGGCG

Boletus sp. 20 (NN02) GAAAAGAACTTTGAAAAGAGAGTTAAACCGTATGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTCAAT CAGGGATCAACCTTGCTAAAATCGCTCGGTGCACTTCCTGGTCGACGGGTCAGCATCAGTTTCGATCGCCATACAAT GCCCAAAGGAACGTGACTCTCTTCGGAGTGTGTTATAGCCTTCGGTCGTATGTGGCGATCAGGACTGAGGAACTCG GCATGAATTCTCATTCATGTCTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAGT CTAACATGCCTGCGAGTGTTTGGGTGTCAAACCCGAGTGCGTAACGAAAGTGAAAGTCGAGACCTCTGTCATGGAG GGCATCGACGCCCCGGACCCGAGTCTTTGACAAAGGATCTGCGGTAGAGCATGTATGTTAGGACCCGAAAGATGGT GAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATC GTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATA GCAGAAACTCATTATATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTC TCAAACTTTAAATATGTAAGAACGAGCCGTCACTTGACTGGACTGCTCGGCGATTGAGAGTTTCTAGTGGGCCATTTT TGGTAAGCAGAACTGGCG

Boletus sp. 21 (CP53) GAAAAGGACTCTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTCGATGTCCAGTCGCGTCG TCCGGGGGTCAACCTTGCTTCACCGCACGGTGTATTTCCTGGTCGACGGGTCAGCATCAGTTTCGGTCGTCCTACAA GGGCCGAGAGGAAAGTGGCACCCTTCCGAGGGTGTGTTATAGCCTTTCGGTCGTATGCGGCGAGCGGGACTGAGG AGACTCGGCACGCCTCGCGGTGCGCTAGAGATGCTGGCATAATGGCATTGAGCGACCCGTCTTGAAACACGGACC AAGGAGTCTAACATGCCTGCGAGTGTTTGGGTGGCAAACCCGAGCGCGAAACGAAAGTGAAAGTCGAGATCTCCTC TCACGGGAGTGCACCGACGCCCGGATCCGTCGTCTTCGACGGTGGATCTGCGGTAGAGCATGCATGTTGGGACCC GAAAGATGGTGAACTATGCCTGAATAGGGCGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTG CAAATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTC CCTCAGGATAGCAGAAACTCATCACGATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTCGAGCCGA CCTTAACCTATTCTCAAACTTTAAATATGTAAGAGCGAGCGGTCACTTGAGCTGGACCGCTCGGCGATTGAGAGTTTC TAGTGGGCCATTTTTGGTAAGCAGAACTGGCG

Abstract

Boletus sp. 22 (CP44) GAAAAGAACTTTGAAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTCGATGTCCAGTCGCGTCGG CCAGGGATCAGCCTTGCTTCGTTGCTGGGCGTAGTTCCTGGTCGGTGGGTCAGCATCAGTTTCGATCGCCGTACAA GGGCGGAGGGGGAAGGTAGCACTCTTCGGGGTGTGTTATAGCCCTTTCGTCGCATGCGGGGGTCGGGACTGAGGA GCTCGGCACGGCCTTCGGGCTTGTGCTAGAGATGCTGGCATAATGGCATTGAGCGACCCGTCTTGAAACACGGACC AAGGAGTCTAACTTGCCTGCGAGTGTTTGGGTGCCAAACCCAAGTGCGAAATGAAAGTGAAGGTCGAGATCCCTGT CGTGGGGAGCATCGACGCCCGGACCCGAGTCTTTGACGAGGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAA AGATGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAAGCTCGTAGCGATTCTGACGTGCAA ATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCT CAGGATAGCAGAAACTCATGGGATAGATTTATGTGGTAAAGCGAATGATTAGAGGCATTGGGGTTGAAACAACCTCG ACCTATTCTCAAACTTTGAATATGTAAGAACGGGCTGTCGCTCCGTTGGACAGCTTGGCGATTGAGAGTTTCTAGTGG GCCATTTTTGGTAAGCAGAACTGGCG

Boletus sp. 23 (CP19)

GTNTGAAACACGGACCAAGGAGTCTACATGCCTGCGAGTGTTCAGGTGGAAAACCTGCGCGCGCAATGAAAGTGAA AGTCGAGAACCCCCTCAGGGTGCACCGACGCCCGGACCTGAGTCGTTTACGACAAAGGCTCTGCGGTAGAGCATG CATGTTGGGACCCGAAAGATGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAG CGATTCTGACGTGCAAATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTC CTGCCGAAGTTTCCCTCAGGATAGCAGAAACTCATGAGAATAGATTTATGTGGTAAAGCGAATGATTAGAGGTCTTGG GGTTGAAACAACCTTAACCTATTCTCAAACTTTAAATATGTAAGAAAGGGGCGTCACTTAGGTGGACCCCCCCTCAGT GGGATTAAGAGTTTCTAGTGGGCCATTTTTGGTAAGCAGAACTGGCG

Boletus sp. 24 (SN01) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTCGAGGTCAGTCGCGTCCG CCAGGGATCAACCTTGCTTCTTCGCTCGGTGCATTTCTTGGTCGGACGGGTCAGCATCAGTTTCGATCGTCGTAGAA CGGTCGAGGGAACGTGGCACCTCTCGAGGTGTGTTATAGCCCTTGATCTTATGCGTCGGAAGGGACTGAGGAACTC GACACTTTTCGTGTCTAGGATGCTGGCATAATGGCCTTGAGCGACCCGTCTTGAAACACGGACCAAGGAGTCTAACA TGCCTGCGAGTGTTTGGGTGTCGAAACTCAAGCGCGCAACGAAAGTGAAAGTCGAGATCTCTGTCATGGAGAGCAT CGACGCCCGGACCAGAGTCTTTGACGAAGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGATGGTGAACT ATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCGTCGA ATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAGCAGA AACTCATAGGTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTCTCAAA CTTTAAATATGTAAGAACGAGCCGTCTCTTGAAACATTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCATTTTT GGTAAGCAGAACTGGCG

Abstract

Boletus sp. 24 (NN11) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTCGAGGTCAGTCGCGTCCG CCAGGGATCAACCTTGCTTCTTCGCTCGGTGCATTTCTTGGTCGGACGGGTCAGCATCAGTTTCGATCGTCGTAGAA CGGTCGAGGGAACGTGGCACCTCTCGAGGTGTGTTATAGCCCTTGATCTTATGCGTCGGAAGGGACTGAGGAACTC GACACTTTTCGTGTCTAGGATGCTGGCATAATGGCCTTGAGCGACCCGTCTTGAAACACGGACCAAGGAGTCTAACA TGCCTGCGAGTGTTTGGGTGTCGAAACTCAAAGCGCGCAACGAAAGTGAAAGTCGAGATCTCTGTCATGGAGAGCA TCGACGCCCGGACCAGAGTCTTTGACGAAGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGATGGTGAACT ATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCGTCGA ATTTGGGTATTAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAGCAG AAACTCATAGGTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTCTCAA ACTTTAAATATGTAAGAACGAGCCGTCTCTTGAAACATTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCATTTT TGGTAAGCAGAACTGGCG

Heimioporus sp. 1 (UB01) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTCGATGTCAGTCGCGTCGAC CGGGGGTCAACCTTGCTTTCGAGCTCGGTGTATTTCCTGGCTGGCGGGTCAGCATCAGTTTCGATCGTCGTACAATG GCAAAGGGAATGTGGCACTCTTCGGAGTGTGTTATAGCTTTTTGTCGCATGCGACGCTCGGGACTGAGGAACTCGG CACGACTCCGTTTGTGTCTAGGATGCTGGCATAATGGCCTTGAGCGACCCGTCTTGAAACACGGACCAAGGAGTCTA ACATGCCTGCGAGTGTTTGGGTGGAAAACTCGAGCGCGAAATGAAAGTGAAAGTCGAGACCTCCGTCATGGAGGG CACCGACGCCCGGACCTGAGTCTTCGACGACGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGATGGTGA ACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCGT CGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAGC AGAAACTCGTGCATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTCTC AAACTTTAAATATGTAAGAACGAGCCGTCTCTTGGCTTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCATTTT TGGTAAGCAGAACTGGCG

Heimioporus sp. 2 (MJ25) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTCGAC CGGGGATCAACCTTGCTTTCGGGCTGGGTGTACTTCCTGGCTGACGGGTCAGCATCAGTTTCGATCGTCGTACAATG GCAAGGGGAATGTGGCACTCTTCGGAGTGTGTTATAGCTTCTTGTCGCATGCGGCGCTTGGGACTGAGGAACTCGG CACGACTCCGTTTGTGTCTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAGTCTA ACATGCCTGCGAGTGTTTGGGTGGAAAACTCGAGCGCGAAATGAAAGTGAAAGTCGAGACCTCTGTCATGGAGGGC ACCGACGCCCGGACCTGAGTCTTTGACGACGGATCTGCGGTAGAGCATGTATGTTGGGACCCGAAAGATGGTGAAC TATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCGTCG AATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAGCAG AAACTCATATGTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTCTCAAA CTTTAAATATGTAAGAACGAGCCGTCTCTTGACTTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCATTTTTGG TAAGCAGAACTGGCG

Heimioporus sp. 2 (CP13)

GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTCGAC CGGGGATCAACCTTGCTTTCGGGCTGGGTGTACTTCCTGGCTGACGGGTCAGCATCAGTTTCGATCGTCGTACAATG GCAAGGGGAATGTGGCACTCTTCGGAGTGTGTTATAGCTTCTTGTCGCATGCGGCGCTTGGGACTGAGGAACTCGG CACGACTCCGTTTGTGTCTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAGTCTA ACATGCCTGCGAGTGTTTGGGTGGAAAACTCGAGCGCGAAATGAAAGTGAAAGTCGAGACCTCTGTCATGGAGGGC ACCGACGCCCGGACCTGAGTCTTTGACGACGGATCTGCGGTAGAGCATGTATGTTGGGACCCGAAAGATGGTGAAC TATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCGTCG AATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAGCAG AAACTCATATGTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTCTCAAA CTTTAAATATGTAAGAACGAGCCGTCTCTTGACTTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCATTTTTGG TAAGCAGAACTGGCG

Heimioporus sp. 2 (CP48)
GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTCGAC CGGGGATCAACCTTGCTTTCGGGCTGGGTGTACTTCCTGGCTGACGGGTCAGCATCAGTTTCGATCGTCGTACAATG GCAAGGGGAATGTGGCACTCTTCGGAGTGTGTTATAGCTTCTTGTCGCATGCGGCGCTTGGGACTGAGGAACTCGG CACGACTCCGTTTGTGTCTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAGTCTA ACATGCCTGCGAGTGTTTGGGTGGAAAACTCGAGCGCGAAATGAAAGTGAAAGTCGAGACCTCTGTCATGGAGGGC ACCGACGCCCGGACCTGAGTCTTTGACGACGGATCTGCGGTAGAGCATGTATGTTGGGACCCGAAAGATGGTGAAC TATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCGTCG AATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAGCAG AAACTCATATGTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTCTCAAA CTTTAAATATGTAAGAACGAGCCGTCTCTTGACTTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCATTTTTGG TAAGCAGAACTGGCG

Heimioporus sp. 3 (NN03)
GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTCCGC CGGGGATCAACCTTGCTTTCGGGCTCGGTGTATTTCCTGGCTGACGGGTCAGCATCAGTTTCGATCGTCGTACAATG GCAAAGGGAATGTGGCACTCTTCGGAGTGTGTTATAGCCTTTTGTCCCATCCGGCGCTCGGGACTGAGGAACTCGG CACGACTCCGTTTGTGTCTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAGTCTA ACATGCCTGCGAGTGTTTGGGTGCAAAACTCGAGCGCGAAATGAAAGTGAAAGTCGAGACCTCTGTCATCGAGGGC ACCGACGCCCGGACCTGAGTCTTTGACGATGGATCTGCGGTAGAGCATGTATGTTGGGACCCGAAAGATGGTGAAC TATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCGTCG AATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAGCAG AAACTCATGCATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTCTCAAA CTTTAAATATGTAAGAACGAGCCGTCTCTTGACTTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCATTTTTGG TAAGCAGAACTGGCG

Leccinum extremiorientale (NN18)
GAAAAGAACTTTGAAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTCGGC CGGGGATCAACCTTGCTTTCTTTGCTGGGTGTACTTCCCTGTCGACGGGTCAGCATCAGTTTCGATCGCTGTACAAG GGCGAGGGGAACGTGGCACTCTCTTTGCAGGGTGTGTTATAGCCTTTCGTCATATGCGGTGGTTGGGACTGAGGAA CTCAGCATGGGCAACCGTGCTTAGGATGCTGGCATAATGGCCTTTAAGCGACCCGTCTTGAAACACGGACCAAGGA GTCTAACATGCCTGCGAGTGTTTGGGTGGAAAACCCGAGCGCGCAATGAAAGTGAACGTCGAGACCTCTGTCGTGG AGGGCACCGACGCCCGGACCGGAGTCTTTGACGACGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGATG GTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGA TCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGA TAGCAGAAACTCATTGTATATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCT ATTCTCAAACTTTAAATATGTAAGAACGAGCCGTCTCTTGACTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCC ATTTTTGGTAAGCAGAACTGGCG

Leccinum sp. (NN13)
CAAAAGAACTTTGAAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGACGTCAGTCACGTTCGTT AGGGATCAGCCTTGCTTGACCGCTCGGTGCAATTTCTAGTGGATGGGTCAGCATCAGTTTCGATCGGTGTATAAAGG CGAAGGGAAAGTAGCACTCTCCAGGGAGTGTATTATAGACCCTCGTTGGATGCATCGGTCGGGACTGAGGAAGCTC TGCACGATCAAGTTTGTGCAAGAGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAGT CTAACGTGCCTGCGAGTGTTTGGGTTTGCAAACCCGAGCGCGCAACGAAAGTGAAAGTTGAGATCTCTGTAGTGGA GAGCATCGACGCCCGGACCCGAGTCTTTGACGAGGGATCTGCGGTAGAGCACGCACGTTGGGACCCGAAAGATG GTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGA TCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGA TAGCAGAAACTCATGTTGATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTCGAAACGACCTTAACCT ATTCTCAAACTTTAAATATGTAAGAACGAGCCGTCTCTCGAGCTGGACCGCTCGGCGATTGAAGAGTTTCTAGTGGG CCATTTTTGGTAAGCAGAACTGGCG

Pulveroboletus sp. (MJ33)
GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTCGGC CGGGGATCAACCTTGCTTCTGGCTGGGTGTACTTCCCGGTGGACGGGTCAGCATCAGTTTCGGACGTCGTACAAGG GCGAGAGGAATGTGACACTCTTCGGAGTGTGTTTATAGCCTTTCGTCGTATGCGACGCTCGGGACTGAGGAACTCAG CACGGCTTTCGAGCCCCCTCGTGCTTTTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCA AGGAGTCTAACATGCCTGCGAGTGTTCGAGTGGTAAACCCGAGCGCGCAATGAAAGTGAACGTTGAGACCTCTGTC GTGGAGGGCATCGACGCCCGGACCTGAGTCTTTGACGAAGGATCTGCGGTAGAGCATGCATGCTGGGACCCGAAA GATGGTGAACTATGCCTGAATAGGGCGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAA TCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTC AGGATAGCAGAAACTCATGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAAC CTATTCTCAAACTTTAAATATGTAAGAACGAGCCGTCACTTGGTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGC CATTTTTGGTAAGCAGAACTGGCG

Pulveroboletus sp. (CP16)
GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTCGGC TGGGGATCAACCTTGCTTCTCGCTGGGTGTACTTCCCGGTGGACGGGTCAGCATCAGTTTCGGACGTCGTACAAGG GCGAGAGGAATGTGACACTCTTCGGAGTGTGTTTATAGCCTTTCGTCGTATGCGACGCTCGGGACTGAGGAACTCAG CACGGCTTTCGAGCCCCCTCGTGCTTTTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCA AGGAGTCTAACATGCCTGCGAGTGTTCGAGTGGTAAACCCGAGCGCGCAATGAAAGTGAACGTTGAGACCTCTGTC GTGGAGGGCATCGACGCCCGGACCTGAGTCTTTGACGAAGGATCTGCGGTAGAGCATGCATGCTGGGACCCGAAA GATGGTGAACTATGCCTGAATAGGGCGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAA TCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTC AGGATAGCAGAAACTCATGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAAC CTATTCTCAAACTTTAAATATGTAAGAACGAGCCGTCACTTGGTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGC CATTTTTGGTAAGCAGAACTGGCG

Pulveroboletus sp. (NN21)

GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTCGGC CGGGGATCAACCTTGCTTCTGGCTGGGTGTACTTCCCGGTGGACGGGTCAGCATCAGTTTCGGACGTCGTACAAGG GCGAGAGGAATGTGACACTCTTCGGAGTGTGTTTATAGCCTTTCGTCGTATGCGACGCTCGGGACTGAGGAACTCAG CACGGCTTTCGAGCCCCCTCGTGCTTTTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCA AGGAGTCTAACATGCCTGCGAGTGTTCGAGTGGTAAACCCGAGCGCGCAATGAAAGTGAACGTTGAGACCTCTGTC GTGGAGGGCATCGACGCCCGGACCTGAGTCTTTGACGAAGGATCTGCGGTAGAGCATGCATGCTGGGACCCGAAA GATGGTGAACTATGCCTGAATAGGGCGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAA TCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTC AGGATAGCAGAAACTCATGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAAC CTATTCTCAAACTTTAAATATGTAAGAACGAGCCGTCACTTGGTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGC CATTTTTGGTAAGCAGAACTGGCG

Pulveroboletus sp. (039)
GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTCGGC CGGGGATCAACCTTGCTTCTGGCTGGGTGTACTTCCCGGTGGACGGGTCAGCATCAGTTTCGGACGTCGTACAAGG GCGAGAGGAATGTGACACTCTTCGGAGTGTGTTTATAGCCTTTCGTCGTATGCGACGCTCGGGACTGAGGAACTCAG CACGGCTTTCGAGCCCCCTCGTGCTTTTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCA AGGAGTCTAACATGCCTGCGAGTGTTCGAGTGGTAAACCCGAGCGCGCAATGAAAGTGAACGTTGAGACCTCTGTC GTGGAGGGCATCGACGCCCGGACCTGAGTCTTTGACGAAGGATCTGCGGTAGAGCATGCATGCTGGGACCCGAAA GATGGTGAACTATGCCTGAATAGGGCGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAA TCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTC AGGATAGCAGAAACTCATGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAAC CTATTCTCAAACTTTAAATATGTAAGAACGAGCCGTCACTTGGTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGC CATTTTTGGTAAGCAGAACTGGCG

Abstract

Strobilomyces mirandus (PH32) GAAAAGCACTTTGGAAAGAGAGTGAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTCGACGGTCAGTCGCGTCG GCCCCGGGGGTCAACCTTGCCTTGATCGGCTCGGCGTACTTCCCGGGCGACGGGTCAGCATCGGTTTCGGTCGGC GCACGAGGGCGAGGGGAACGTGGCACTCTCCGGAGTGTGTTATAGCCCCTCGTCGGACGCGGCGGCGGGGACC GAGGGACTATTTCCAGCACCGCGAGGTGCTCGGGATGCTGGCATAATGGCGTCGAGCGACCCGTCTTGAAACACG GACCAAGGAGTCTAACATGCCTGCGAGTGTTCGGGTGGCAAACCCGCGCGCGCAACGAAAGTGAAGGTCGAGACC TCCGTCGTGGAGGGCACCGACGCCCGGACCAGAGTCTCCGACGACGGATCTGCGGTAGAGCATGCATGTTGGGA CCCGAAAGATGGTGAACTATGCCTGAATAGGGCGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGAC GTGCAAATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGT TTCCCTCAGGATAGCAGACGCTCGACGCGATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTCGAAA CGACCTCAACCTATTCTCAAACTTTAAATATGTAAGAACGGGCCGTCGCTCGATTGGACCGCCCGGCGATTGAGAGT GTCTAGTGGGCCATTTTTGGTAAGCAGAACTGGCG

Strobilomyces sp. 1 (P04)
GAAAAGCACTTTGGAAAGAGAGTGAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTGGATGTCAGTCGCGTCGG CTTGGGGGTCAACCTTGCTTCATCGCTCGGTGTATTTCCTGGTCGACGGGTCAGCGTCCGTTTCGGTCGCCGTACAA GGGTGTGAGGGAACGTGGCACTCCTCGGAGTGTGTTAGAGCCCTCTGTCGTATGCGGTGGTCGGGACGGAAGAGT TCGGTGCTTGGCACTAGAGCCTGCTGGCATAATGGCCTTCAGCGACCCGTCTTGAAACACGGACCAAGGAGTCTAA CATGCCTGCGAGTGTTCGGGTGGCAAACCCGCGCGCGCAATGAAAGTGAACATGGTCGAGACCTCCGACAGGAGG GCACCGACGCCCGGATCAGAGTCTTTGATGATGGCTCCGCGGTAAAGCATGTATGTTGGGACCCGAAAGATGGTGA ACTATGCCTGAACAGGGCGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCGT CGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAGC AGAAACTCGTCGTGTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTCGAAACGACCTCAACCTATTCT CAAACTTTGAATATGTAAGAACGGGCGGTCGCTCGGATGGACCGCCCGGCGAGATTGAGAGTTTCTAGTGGGCCAT TTTTGGTAAGCAGAACTGGCG

GHULALONGKORIU UnIVERSITY

Strobilomyces sp. 2 (P01)

GAAAAGGACTTTGAAAAGAGAGTTAAACAGTATGTGAAATCGTTGAAAGGGAAACGCTTGATGTCAGTCGTGTCGGC CGGGGGTCAACCTTGCTTCATCGCTCGGTGTACTTCTCAGTCGACAGGTCAGCATTGGCTTTGGTCATCACACAATG GTGGGGGGAACGTGGCACTTCGGTGTGTTATAGCCCTCCATCGCCTGTGGTGGTCGGGGCTGAGGACTCTCAGCA CTTGTCGCTGATGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAGTCTAACATGCCTG CGAGTGTACGGGTGGAAAACCTGCATGCGAAATGAAAGTGAAGGTCGGGACCTCCCTCGCGGAGGGCACCGACG CCCGGACTAGAGTCATGGACGACGGATCTGCGGTGGAGCATGTATGTTGGGACCCGAAAGATGGTGAACTATGCCT GAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCGTCGAATTTGG GTATGGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAGCAGAAACTCA TGTGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCATTGGGGTTGGAACGATCTCGACCTATTCTCAAACTTTG AATGTGTAAGAGCGAGCGGTCGCTCGATTGGACCGGTCGGACGATTGAGAGTTTCTAGTGGGCCATTTTTGGTAAGC AGAACTGGCG

Strobilomyces sp. 2 (P14)

GAAAAGGACTTTGAAAAGAGAGTTAAACAGTATGTGAAATCGTTGAAAGGGAAACGCTTGATGTCAGTCGTGTCGGC CGGGGGTCAACCTTGCTTCATCGCTCGGTGTACTTCTCAGTCGACAGGTCAGCATTGGCTTTGGTCATCACACAATG GTGGGGGGAACGTGGCACTTCGGTGTGTTATAGCCCTCCATCGCCTGTGGTGGTCGGGGCTGAGGACTCTCAGCG CTTGTCGCTGATGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAGTCTAACATGCCTG CGAGTGTACGGGTGGAAAACCCTGCATGCGAAATGAAAGTGAAGGTCGGGACCTCCCTCGCGGAGGGCACCGAC GCCCGGACTAGAGTCATGGACGACGGATCTGCGGTGGAGCATGTATGTTGGGACCCGAAAGATGGTGAACTATGC CTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCGTCGAATTT GGGTATGGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAGCAGAAAC TCATGTGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCATTGGGGTTGGAACGATCTCGACCTATTCTCAAACT TTGAATGTGTAAGAGCGAGCGGTCGCTCGATTGGACCGGTCGGACGATTGAGAGTTTCTAGTGGGCCATTTTTGGTA AGCAGAACTGGCG

Strobilomyces sp. 3 (CP43)
GAAAAGGACTTTGGAAAGAGAGTCAAACAGTACGTGAAATTGCTGGAAGGGAAACGCTGGACGTCAGTCGCGTCGA GCCGGGGGTCAGCCTCGCCTTGAGCAGGGCGTACTTCCCGGTCGGCGGGTCAGCATCGGTCTCTGGTCGCGGCA CAAGGGTCGGAGGAAGGTGGCACTCCTCGGAGTGTGTTTATAGCCTCCGGCCGCATGCCAGCGGTGGGGACCGA CGAGGCTCGGCGCCTTCGGGGCGCCAGAGATGCTGGCGTAATGGCGTTCAGCGACCCGTCTTGAAACACGGACC AAGGAGTCTAACGTGCGTGCGAGCGTTCGGGCGGCAAACCCGTGCGCGGAATGAAAGTGACCGTCGAGACCTCC GTCGTGGAGGGCACCGACGCCCGGACCCGAGTCTCTGACGAGGGCCCTGCGGCGGAGCATGTACGTTGGGACCC GAAAGATGGTGAACTATGCCTGAGTAGGGCGAAGCCAGAGGAAACTCTGGTGGAGGCTCGCAGCGATTCTGACGT GCAAATCGATCGTCGAACTTGGGTATGGGGGCGAAAGACTAATCGAACCGTCTGGTAGCTGGTTCCTGCCGAAGTTT CCCTCAGGATAGCAGAAGCTCGCCTCGCGTCAGATTTATGCGGTAAAGCGAATGATTAGAGGCCTTGGGGTCGAAA CGACCTCAACCTATTCTCAAACTTTGAATGTGTAAGAACGAGCCGTCGCCCCGTCGGACCGCTCGGCGATTGAGAG CTTCTAGTGGGCCATTTTTGGTAAGCAGAACTGGCG

Tylopilus eximius (CP35)
GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTCGGC CAGGGATCAACCTTGCTCGATCGCTGGGTGTACTTCCTGGTGGACGGGTCAGCATCAGTTTCGATCGGCGTAGAAA GACTAGGGGAACGTGGCACTCCTCGGAGTGTGTTATAACCCTTGGTCATATGCGGTGGTCGGGACTGAGGAACTCG GCACGAACCCCCTTCAGGCTTGTGTCTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCA AGGAGTCCAACATGCCTGCAAGTGTTTGGGTGGAAAACCCGAGCGCGCAACGAAAGTGAAAGTTGAGACCTCTGTC GTGGAGGGCATCGACGCCCGGACCTAAGTCTTTGACGAAGGATCTGCGGTAGAGCGCATGCATGTTGGGACCCGA AAGATGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCA AATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCC TCAGGATAGCAGAAACTCATGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTA ACCTATTCTCAAACTTTAAATATGTAAGAACGAGCCGTCTCTTGAGCTTGGACCGCTCGGCGATTGAGAGTTTCTAGT GGGCCATTTTTGGTAAGCAGAACTGGCG

Abstract

Tylopilus sp. 1 (NN22) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACACTTGATGTCAGTCGCGTCCAC CGGGGATCAACCTTGCCTTTCCGGCTCGGTGTACTTCCCGGTCGGACGGGTCAGCGTCAGTTTCGGTGCGCCGTAC AAGGGCGAGGGGAACGTGGCACTCTTCGGAGTGTGTTATAGCCTTTCGTCGTATGCGGCGCTTGGGACTGAGGAAC TCAGCATGGCTTCGGTCTGTGCTTAGGATGCTGGCATAATGGCCTTAAGTGACCCGTCTTGAAACACGGACCAAGGA GTCTAACATGCCTGCGAGTGTTTGGGTGCCAAACCCGAGCGCGCAATGAAAGTGAACGTCGAGACCTCCGTCAATG GAGGGCATCGACGCCCGGACCCGAGTCTTTGACGAAGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGAT GGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCG ATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGG ATAGCAGAAACTCGTGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTA TTCTCAAACTTTAAATATGTAAGAACGGGCTGTCGCTCCGTTGGACAGCTCGGCGATTGAGAGTTTCTAGTGGGCCAT TTTTGGTAAGCAGAACTGGCG

Tylopilus sp. 2 (CP41) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGACGTCAGTCACGTCGGC TGGGGATCAACCTTGCTTTCTTGGCTGGGTGTATTTCCTGGTGGACGGGTCAGCATCAGTTTCGGTCGCCGTACAAG GGTGGGGGGAATGTGGCACTCTTCGGGGTGTGTTATAGCCTCTCATCACATGCGGTGGTCGAGACTGAGGAACTCA GCACGGCTTTGCTTGTGCTTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAGTCT AACATGCCTGCGAGTGTTTGGGTGGAAAACTCGAGCGCACAATGAAAGTGAAAGTCGGGACTTCTGTCGTGGAAAG CACCGACGCCCGGACCTGAGTCTTTGACGAAGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGATGGTGA ACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCGT CGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAGC AGAAACTCGTAGATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTCTC AAACTTTAAATATGTAAGAACGAGCCGTCTCTCGGTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCATTTTTG gTAAGCAGAACTGGCG

Tylopilus sp. 3 (PH40) GAAAAGAACTTTGAAAAGAGAGTTAAACAGTACGTGAAATCGTTGAAAGGGAAACGCTTGACGTCAGTCTCGTCGGT CGGGGATCAACCTAGGTCTTTTTCTGGGTGCACTTCCCGCTCGACGGGTCAGCATCAGTTTCGATCCCCGTCGTACA ACGGCGAGAGCGAATGTGCCACGCTCCGGCGTGCGTTATAGCCTCTCGTCCTATGCGACGGTCGGGACTGAGGAA CTCGGCACGCCCTCGCGGCGCGTCCCAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCA AGGAGTCCAACATGCCTGCGAGTGTTTGGGTGGAAAACTCCGAGCGCGAAATGAAAGTGAAAGTCGGGACCTTCGT CACTGGAGGGCACCGACGCCCGGATCGACCGTCTTCTGACGATCACTCTGCGGTAGAGCATGCATGTTGGGACCC GAAAGATGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTG CAAATCGATCGTCAAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTC CCTCAGGATAGCAGAAACTCATTGTATGTTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCATTGGGGTTGAAATG ATCTCGACCTATTCTCAAACTTTAAATATGTAAGAACGGGCCGTCTCTTCGAATTAATGGACCGCCTCGGCGATTGAG AGTTTCTAGTGGGCCATTTTTGGTAAGCAGAACTGGCG

Abstract

Tylopilus sp. 4 (CP10) GAAAAGAACTTTGAAAAGAGAGTTAAACAGTACGTGAAATCGTTGAAAGGGAAACGCTTGACGTCAGTCTCGTCGGT CGGGGATCAACCTAGGTCACTCTGGGTGTACTTCCCGCTCGACGGGTCAGCATCAGTTTCGATCGTCGTACAATGAT GAGAGCGAATGTGCCACGCTCCGGCGTGTGTTATAGCCTCTCCTCGCATGCGACGGCCGGGACTGAGGAACTCGG CACCGGCCAACCCCGGTGTCTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAG TCCAACATGCCTGCGAGGGTTTGGGTGCAAAACTCGAGCCGCGAAATGAAAGTGGAAAGTCGAGACCTTCGTCACT GGAGGGCATCGATGCCCGGATCCATCGTCTTCTGACGATGACTCCGAGGTAGAGCATGCATGTTGGGACCCGAAA GATGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAA TCGATCGTCAAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCA GGATAGCAGAAACTCATCGGGTATTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCATTGGGGTTGAAATGACCTT GACCTATTCTCAACCTTTAAATATGTAAGAACGGGCCGTTTCTTGAATTGGACCGCCTCGGCGATTGAGAGTTTCTAG TGGGCCATTTTTGGTAAGCAGAACTGGCG

\section*{Tylopilus sp. 4 (MJ01)}

GAAAAGAACTTTGAAAAGAGAGTTAAACAGTACGTGAAATCGTTGAAAGGGAAACGCTTGACGTCAGTCTCGTTGGT CGGGGATCAACCTAGGTCACTCTGGGTGTACTTCCCGCTCGACGGGTCAGCATCAGTTTCGATCGTCGTACAATGAT GAGAGCGAATGTGCCACGCTCCGGCGTGTGTTATAGCCTCTCCTCGCATGCGACGGTCGGGACTGAGGAACTCGG CACCGGCCAACCCCGGTGTCTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAG TCCAACATGCCTGCGAGTGTTTGGGTGCAAAACTCGAGCGCGAAATGAAAGTGAAAGTCGAGACCTTCGTCACTGG AGGGCATCGATGCCCGGATCCATCGTCTTCTGACGATGACTCCGAGGTAGAGCATGCATGTTGGGACCCGAAAGAT GGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCG ATCGTCAAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGG ATAGCAGAAACTCATCGGGTATTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCATTGGGGTTGAAATGACCTTGA CCTATTCTCAAACTTTAAATATGTAAGAACGGGCCGTCTCTTGAATTGGACCGCCTCGGCGATTGAGAGTTTCTAGTG GGCCATTTTTGGTAAGCAGAACTGGCG

Tylopilus sp. 4 (K04) GAAAAGAACTTTGAAAAGAGAGTTAAACAGTACGTGAAATCGTTGAAAGGGAAACGCTTGACGTCAGTCTCGTCGGT CGGGGATCAACCTAGGTCACTCTGGGTGTACTTCCCGCTCGACGGGTCAGCATCAGTTTCGATCGTCGTACAATGAT GAGAGCGAATGTGCCACGCTCCGGCGCGTGTTATAGCCTCTCCTCGCATGCGACGGCCGGGACTGAGGAACTCGG CACCGGCCAACCCCGGTGTCTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAG TCCAACATGCCTGCGAGTGTTTGGGTGCAAAACTCGAGCGCGAAATGAAAGTGAAAGTCGAGACCTTCGTCACTGG AGGGCATCGATGCCCGGATCCATCGTCTTCTGACGATGACTCCGAGGTAGAGCATGCATGTTGGGACCCGAAAGAT GGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCG ATCGTCAAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGG ATAGCAGAAACTCATCGGGTATTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCATTGGGGTTGAAATGACCTTGA CCTATTCTCAAACTTTAAATATGTAAGAACGGGCCGTCTCTTGAATTGGACCGCCTCGGCGATTGAGAGTTTCTAGTG GGCCATTTTTGGTAAGCAGAACTGGCG

Abstract

Tylopilus sp. 4 (CP24) GAAAAGAACTTTGAAAAGAGAGTTAAACAGTACGTGAAATCGTTGAAAGGGAAACGCTTGACGTCAGTCTCGTCGGT CGGGGATCAACCTAGGTCACTCTGGGTGTACTTCCCGCTCGACGGGTCAGCATCAGTTTCGATCGTCGTACAATGAT GAGAGCGAATGTGCCACGCTCCGGCGTGTGTTATAGCCTCTCCTCGCATGCGACGGCCGGGACTGAGGAACTCGG CACCGGCCAACCCCGGTGTCTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAG TCCAACATGCCTGCGAGTGTTTGGGTGCAAAACTCGAGCGCGAAATGAAAGTGAAAGTCGAGACCTTCGTCACTGG AGGGCATCGATGCCCGGATCCATCGTCTTCTGACGATGACTCCGAGGTAGAGCATGCATGTTGGGACCCGAAAGAT GGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCG ATCGTCAAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGG ATAGCAGAAACTCATCGGGTATTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCATTGGGGTTGAAATGACCTTGA CCTATTCTCAAACTTTAAATATGTAAGAACGGGCCGTCTCTTGAATTGGACCGCCTCGGCGATTGAGAGTTTCTAGTG GGCCATTTTTGGTAAGCAGAACTGGCG

Tylopilus sp. 5 (NN10) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTCCTC CAGGGATCAACCTCGCCTTTTTGGCTGGGTGTATTTCCTGGCGGACGGGTCAGCATCGGTCTCGGTCGCTGTACAA GGGCAAAGGGAACGTGGCACCCCTCGGGGTGTGTTATAGCCTTTCGTCGCATGCAGCGCTCGGGACCGAGGAACT CAGCACGGCTTTCGCTCGTGCTTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGA GTCTAACATGCCTGCGAGTGTTCGGGTGGAAAACTCGAGCGCGCAACGAAAGTGAAAGTCGAGACCTCTGTCATGG AGGGCACCGACGCCCGGACCCGAGTCTTTGACGAAGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGATG GTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGA TCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGA TAGCAGAAACTCGCATGTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTAT TCTCAAACTTTAAATATGTAAGAACGAGCCGTCGCTTGAATTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCAT TTTTGGTAAGCAGAACTGGCG hiulalongiororn University

\section*{Tylopilus sp. 6 (CPB)}

GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCACGTCGGT CAGGGATCAACCTTGCTTCATCGCTGGGCGTACTTCCTGGCTGATGGGTCAGCATCAGTTTTGATCACCATACAAGG GCAGAGGGAATGTGGCACTCCTTGGAGTGTGTTATAGCCTTTTGTCGCATGTGGTGATCAGGACTGAGGAACTCAGC ATGGCTTCTGCTTGTGCTCAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAGTCTA ACATGCCTGCGAGTGTTTGGGTGGAAAACTCGAGCGCGTAATGAAAGTGAAAGTCGAGACCTTTGTCATGGAGGGC ATCGACGCCCGGACCTGAGTCTTTGACGAAGGATCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGATGGTGAAC TATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCGTCG AATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAGCAG AAACTCGAGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTCGAAATGACCTTAACCTATTCTCAA ACTTTAAATATGTAAGAACGGGCCGTCGCTTGATTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCATTTTTGGT AAGCAGAACTGGCG

Abstract

Tylopilus sp. 7 (NN01) GAAAAGAACTCTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTCGG CCAGGGATCAACCTTGCTTCTCGCTGGGTGCATTTCCTGGTCGACGGGTCAGCATCAGTTTCGATCGCCGTACAATG GCAAAGGGAACGTGGCACTCCTCGGGGTGTGTTATAGCCTTTCGTCGCATGCGATGGTCGGGACTGAGGAACTCAG CACAGGCTTCTAGCTTTTCGTGCTTAGGATGCTGGCGTAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGG AGTCTAACATGCCTGCGAGTGTTCGGGTGGAAAACCCGAGCGCGAAATGAAAGTGAAAGTCGAGACCTCTGTCGTG GAGGGCACCGACGCCCGGACCTGAGTCTTTGACGACGGTTCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGAT GGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCG ATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGG ATAGCAGAAACTCGTATGTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTA TTCTCAAACTTTAAATATGTAAGAACGAGCCGTCTCTTGACTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCA TTTTTGGTAAGCAGAACTGGCG

\section*{Tylopilus sp. 7 (PK01)}

GAAAAGAACTCTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTCGG CCAGGGATCAACCTTGCTTCTCGCTGGGTGCATTTCCTGGTCGACGGGTCAGCATCAGTTTCGATCGCCGTACAATG GCAAAGGGAACGTGGCACTCCTCGGGGTGTGTTATAGCCTTTCGTCGCATGCGATGGTCGGGACTGAGGAACTCAG CACAGGCTTCTAGCTTTTCGTGCTTAGGATGCTGGCGTAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGG AGTCTAACATGCCTGCGAGTGTTCGGGTGGAAAACCCGAGCGCGAAATGAAAGTGAAAGTCGAGACCTCTGTCGTG GAGGGCACCGACGCCCGGACCTGAGTCTTTGACGACGGTTCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGAT GGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCG ATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGG ATAGCAGAAACTCGTATGTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTA TTCTCAAACTTTAAATATGTAAGAACGAGCCGTCTCTTGACTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCA TTTTTGGTAAGCAGAACTGGCG

Ghilalongkonn University

Tylopilus sp. 7 (CM03) GAAAAGAACTCTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTCGG CCAGGGATCAACCTTGCTTCTCGCTGGGTGCATTTCCTGGTCGACGGGTCAGCATCAGTTTCGATCGCCGTACAATG GCAAAGGGAACGTGGCACTCCTCGGGGTGTGTTATAGCCTTTCGTCGCATGCGATGGTCGGGACTGAGGAACTCAG CACAGGCTTCTAGCTTTTCGTGCTTAGGATGCTGGCGTAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGG AGTCTAACATGCCTGCGAGTGTTCGGGTGGAAAACCCGAGCGCGAAATGAAAGTGAAAGTCGAGACCTCTGTCGTG GAGGGCACCGACGCCCGGACCTGAGTCTTTGACGACGGTTCTGCGGTAGAGCATGCATGTTGGGACCCGAAAGAT GGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCG ATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGG ATAGCAGAAACTCGTATGTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTA TTCTCAAACTTTAAATATGTAAGAACGAGCCGTCTCTTGACTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCA TTTTTGGTAAGCAGAACTGGCG

Abstract

Tylopilus sp. 8 (NNO7) GAAAAGAACTTTGAAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTCGATGTCAGTCGCGTCGGT CAGGGATCAACCTTGCTTTTTTCGCTGGGCGTATTTCCTGGTCGACGGGTCAGCATCAGTTTCGGTTCGCCGTACAAA GGCGAGAGTGAATGTGCCACGCTTCGGCGTGCGTTATAGCCTCTCGTCGGATGCGGCGGTCGGGACTGAGGAACT CGGCGGTGCATCCCTCGTGGGTGTATCGCTCAGGATGCTGGCATAATGGCCTTGAGCGACCCGTCTTGAAACACGG ACCAAGGAGTCTAACATGCATGCGAGTGTTTGGGTGCAAAACTCAAGCGCGCAATGAAAGTGAACGTCGAGACCTT CGTCGTGGAGGGCATCGACGCCCGGACCGGACTCTTTCGACGATGGATCCGCGGTAGAGCATGCACGTTGGGACC CGAAAGATGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAAGCTCGTAGCGATTCTGACGT GCAAATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTT CCCTCAGGATAGCAGAAACTCGTCATGCTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTCGAAACG ACCTTAACCTATTCTCAAACTTTAAATATGTAAGAACGGGCCGTCTCTCTTTTGGACCGCCCGGCGATTGGGAGTTTCT AGTGGGCCATTTTTGGTAAGCAGAACTGGCG

\section*{Tylopilus sp. 9 (CP39)}

GAAAAGAACTTTGAAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTCGATGTCAGTCGCGTCGGT CAGGGATCAACCTTGCTTTTTTTCGCTGGGCGTATTTCCGGGCCGACGGGTCAGCATCAGTTTCGGTTCGCCGTACA AGGGCAAGAGTGAATGTGCCACGCTTCGGCGGGCGTTATAGCTCCTCGCCGGAGGCGGCGGTCGGGACTGAGAA ATTCGGCGGCGCAGGTCCGTCGCTAAGGATGCTGGCTTAATGGCTTTGAGCGACCCGTCTTGAAACACGGACCAAG GAGTCTAACATGCATGCGAGTGTTTGGGTGCAAAACTCAAGCGCGCAATGAAAGTGAACGTCGAGACCTTCGTCGT GGAGGGCATCGACGCCCGGACCGGACTCTTTCGACGATGGATCCGCGGTAGAGCATGCACGTTGGGACCCGAAA GATGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAAGCTCGTAGCGATTCTGACGTGCAAA TCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTC AGGATAGCAGAAACTCGTCATGCTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTCGAAACGACCTT AACCTATTCTCAAACTTTAAATATGTAAGAACGGGCCGTCTCTCTTTTGGACCGCCCGGCGATTGGGAGTTTCTAGTG GGCCATTTTTGGTAAGCAGAACTGGCG

Tylopilus sp. 10 (CP23) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATCGTTGAAAGGGAAACGCTTGATGTCAGTCTCGTCGGT CGGGGATCAACCTTTGCTCTTCTGCTGGGTGCACTTCCTGGTCGACGGGTCAGCATCAGTTTCGATCGTCATACAAG GGCGAGAGCGAATGTGTCATGCTCTGGCATGTGTTATAGCCTCTCGTCGTACGTGTCGGTCGGGACTGAGGAACTC GGCGTGCGTCTCGCGCGTGCGTCCAGGATGCTGGCGTAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAG GAGTCCAACATGCCTGCGAGTGTTCGGGCGGAAAACCCGAGCGCGCAATGAAAGTGAAAGTCGAGACCTTCGTCA CTGGAGGGCATCGACGCCCGGATCGAAGTCTTTCCCGACGACGTCTCCGCGGTAGAGCATGCATGTTGGGACCCG AAAGATGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGC AAATCGATCGTCAAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCC CTCAGGATAGCAGAAGCTCGTCGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCATTGGGGTTGAAACGAAC CTCGACCTATTCTCAAACTTTAAATATGTAAGAACGGGCCGTCTCTTGGATTGGACCGCCTCGGCGATTGAGAGTTTC TAGTGGGCCATTTTTGGTAAGCAGAACTGGCG

Abstract

Tylopilus sp. 10 (CP45) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATCGTTGAAAGGGAAACGCTTGATGTCAGTCTCGTCGGT CGGGGATCAACCTTTGCTCTTCTGCTGGGTGCACTTCCCGGTCGACGGGTCAGCATCAGTTTCGATCGTCATACAAG GGCGAGAGCGAATGTGTCATGCTCCGGCATGTGTTATAGCCTCTCGTCGTACGTGTCGGTCGGGACTGAGGAACTC GGCGTGCGTCTCGCGCGTGCGTCCAGGATGCTGGCGTAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAG GAGTCCAACATGCCTGCGAGTGTTCGGGCGGAAAACCCGAGCGCGCAATGAAAGTGAAAGTCGAGACCTTCGTCA CTGGAGGGCATCGACGCCCGGATCGAAGTCTTTCCCGACGACGTCTCCGCGGTAGAGCATGCATGTTGGGACCCG AAAGATGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGC AAATCGATCGTCAAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCC CTCAGGATAGCAGAAGCTCGTCGTATCAGATTTATGTGGTAAAGCGAATGATTAGAGGCATTGGGGTTGAAACGAAC CTCGACCTATTCTCAAACTTTAAATATGTAAGAACGGGCCGTCTCTTGGATTGGACCGCCTCGGCGATTGAGAGTTTC TAGTGGGCCATTTTTGGTAAGCAGAACTGGCG

\section*{Tylopilus sp. 12 (NN06)}

GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTAGGT CGGGGATCAACCTCGCTTTAACTAGCTTGGTGTACTTCCTGGCCTATGGGTCAGCATCAGTTTCTGCCGCTCGTACAA TGGCGAGAGCGAATGTGGCACTGAAGTGTGTTATAGCCTTTCGTCGTATGCGGTGGTGGGGACTGAGGAACTCAGC ACTTTCCTATGGAGTAGTGCTTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAGT TTAACATGCATGCGAGTGTTTGGGTGGAAAACCCGTGCGCGCAACGAAAGTGAAAGTCAAGATCTCTGTCATGGAGA GCATTGACGCCCCGGACCCGAGTCTTTGACAAAGGATCTGCGGTAGAGCATGCATGTTGAGACCCGAAAGATGGTG AACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATCG TCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCGTCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATAG CAGAAGCTCGTATATCAGATTTATGTGGTAAAGCGAATGATTAGAGGTCTTGGGGTTGAAACAACCTTAACCTATTCTC AAACTTTAAATATGTAAGAACGGGACGTCTCTTGACATGGACCTCCCGGCGATTGAGAGTTTCTAGTGGGCCATTTTT GGTAAGCAGAACTGGCG

Tylopilus sp. 13 (CP05) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTCGAGGTCAGTCGCGTCGT CCGGGGATCAACCTTGCTCTCGAGGCGGGGTGTACTTCCTGGTCGACGGGTCAGCGTCAGTTTCGGTCGGCGTAC AAGGGCGGAGGGAAGGTGGCACTCTTCGGGGTGTGTTATAGCCTTTCGCCGGATGCCTCGGCCGGGACTGAGGGA CTCGGCACGGCCCCCAGCGGGTCTGTCGCCTAGGATGCTGGCATAATGGCCTCGAGCGACCCGTCTTGAAACACG GACCAAGGAGTCTAACATGCCTGCGAGTGTTTGGGTGGAAAACCCCGAGCGCGCAACGAAAGTGTTCGGTCGGGA CCTCCGTCGCGGGGGGCACCGACGCCCGGACCAGAGTCTACGACGACGGATCTGCGGTAGAGCATGCATGTTGG GACCCGAAAGATGGTGAACTATGCCTGAATAGGGCGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCT GACGTGCAAATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGA AGTTTCCCTCAGGATAGCAGAAGCTCCCATGTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTCGAA ACGACCTTAACCTATTCTCAAACTTTAAATATGTAAGAACGGGCCGTCGCTCGATTGGACCGCTCGGCGATTGAGAG TTTCTAGTGGGCCATTTTTGGTAAGCAGAACTGGCG

Abstract

Tylopilus sp. 13 (CP37) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTCGAGGTCAGTCGCGTCGT CCGGGGGATCAACCTTGCCGTCGCGGCGGGGTGTACTTCCTGCTCGACGGGTCAGCGTCAGTCTCGCTCGGCGTA CAAGGGCGGGGGGAAGGTGGCACTCTTCGGGGTGTGTTATAGCCTTTCGCCGGGATGCGTCGCCCGGGACTGAG GGACTCGGCACGGCCCCCAGCGGGTCTGTCGCCTAGGATGCTGGCATAATGGCCTTGAGCGACCCGTCTTGAAAC ACGGACCAAGGAGTCTAACATGCCTGCGAGTGTTTGGGTGGAAAACCCCGAGCGCGCAACGAAAGTGTTCGGTCG GGACCTCCGTCGCGGGGGGCACCGACGCCCGGACCAGAGTCTACGACGATGGATCTGCGGTCGAGCATGCATGT TGGGACCCGAAAGATGGTGAACTATGCCTGAATAGGGCGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGAT TCTGACGTGCAAATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGC CGAAGTTTCCCTCAGGATAGCAGAAGCTCGCATCTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTC GAAACGACCTTAACCTATTCTCAAACTTTAAATATGTAAGAACGGGCCGTCGCTCCATTGGACCGCTCGGCGATTGA GAGTTTCTAGTGGGCCATTTTTGGTAAGCAGAACTGGCG

Tylopilus sp. 13 (NN17) GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTCGAGGTCAGTCGCGTCGT CCGGGGATCAACCTTGCCCTCGCGGCGGGGTGTACTTCCTGCTCGACGGGTCAGCGTCAGTCTCGGTCGGCGTAC AAGGGCGGAGGGAAGGTGGCACTCTTAGGGGTGTGTTATAGCCTTTCGCCGGATGCGTCGGCCGGGACTGAGGGA CTCGGCACGGCCCCCAGCGGGGTCTGTCGCCTAGGATGCTGGCATAATGGCCTCGAGCGACCCGTCTTGAAACAC GGACCAAGGAGTCTAACATGCCTGCGAGTGTTTGGGTGGAAAACCCCGAGCGCGCAACGAAAGTGTTCGGTCGGG ACCTCCGTCGTGGGGGGCACCGACGCCCGGACCAGAGTCTACGACGACGGATCTGCGGTAGAGCATGCATGTTG GGACCCGAAAGATGGTGAACTATGCCTGAATAGGGCGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTC TGACGTGCAAATCGATCGTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCG AAGTTTCCCTCAGGATAGCAGAAACTCGCATCTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTCGA AACGACCTTAACCTATTCTCAAACTTTAAATATGTAAGAACGGGCCGTCGCTTGATTGGACCGCTCGGCGATTGAGAG TTTCTAGTGGGCCATTTTTGGTAAGCAGAACTGGCG

Zangia sp. (P02)
GAAAAGAACTTTGGAAAGAGAGTTAAACAGTACGTGAAATTGCTGAAAGGGAAACGCTTGATGTCAGTCGCGTCGGC CGGGGGTCAACCTTGCTCATTCGCTCGGTGTATTTCCTGGTCGACGGGTCAGCATCAGTTTCGTACTCGCCGTACAA GGGCGAAGGGAACGTGGCACTCTTAGGAGTGTGTTATAGCCTTTCGTCGTATGCGGTGGTCGGGACTGAGGAACTC AGCACGGCTTCGGTCTGTGCTTAGGATGCTGGCATAATGGCCTTAAGCGACCCGTCTTGAAACACGGACCAAGGAG TCTAACATGCCTGCGAGTGTTCGGGTGTCAAACTCGTGCGCGTAATGAAAGTGAAAGTCGAGACCTCCGTCGTGGG GGGCATCGACGCCCGGACCTGAGTCTTTGACCAAGGATCTGCGGTAGAGCATGCATGTTAGGACCCGAAAGATGGT GAACTATGCCTGAATAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATCGATC GTCGAATTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTCCCTCAGGATA GCAGAAACTCGTATGTCAGATTTATGTGGTAAAGCGAATGATTAGAGGCCTTGGGGTTGAAACAACCTTAACCTATTC TCAAACTTTAAATATGTAAGAACGAGCCGTCTCTTGGTTGGACCGCTCGGCGATTGAGAGTTTCTAGTGGGCCATTTT TGGTAAGCAGAACTGGCG

BIOGRAPHY

Miss Pawara Pachit was born on September 18, 1986 in Phitsanulok province, Thailand. She graduated with Bachelor Degree of Science in Botany (2008), Department of Botany, Faculty of Science, Chulalongkorn University. After gradution B. Sc., she continued her Master Degree in Botany Department of Botany, Faculty of Science, Chulalongkorn University. Throughout her M. Sc. Study, she had received the financial support from the Development and Promotion of Talented Science and Technology Scholarship, CU.Graduate School Thesis Grant and The Thai government budget 2011, under the Research Program on Conservation and Utilization of Biodiversity and the Center of Excellence in Biodiversity, Faculty of Science, Chulalongkorn University.

Academic Presentation
Pachit, P., Piapukiew, J., and Phosri, C. 2011. Molecular phylogeny of ectomycorrhizal fungus Tylopilus in Thailand. $16^{\text {th }}$ Biological Sciences Graduate Congress. 12-14 December 2011. Singapore. (Oral)

Pachit, P., Piapukiew, J., and Phosri, C. 2012. Molecular phylogeny of ectomycorrhizal fungus Tylopilus based on nuLSU rDNA in Thailand. $23^{\text {rd }}$ Annual Meeting of the Thai Society for Biotechnology. 1-2 Febuary 2012. Bangkok, Thailand. (Poster)

Pachit, P., Piapukiew, J., and Phosri, C. 2012. Molecular phylogeny of ectomycorrhizal fungi in genus Boletus Fr. based on nuLSU rDNA in Thailand. $6^{\text {th }}$ Botanical Conference of Thailand. 28-30 March 2012. Songkhla, Thailand. (Oral)

[^0]: A dashed line (-) indicates fail to amplified or sequencing in each region. The underline ($_$) in column base pair indicates incomplete full length in sequencing.

[^1]: A dashed line (-) indicates fail to amplified or sequencing in each region. The underline (_) in column base pair indicates incomplete full length in sequencing.

[^2]: A dashed line (-) indicates fail to amplified or sequencing in each region. The underline ($\left(_\right)$in column base pair indicates incomplete full length in sequencing.

[^3]: A dashed line (-) indicates fail to amplified or sequencing in each region. The underline (_) in column base pair indicates incomplete full length in sequencing.

