ซอลเวชันของบีตา-คี-กลูโคซามีนในน้ำโคยวิธีมอนติคาร์โล

นาย คัชรินทร์ ศิริวงศ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2543 ISBN 974-346-119-1 ลิขสิทธิ์ของ จุฬาลงกรณ์มหาวิทยาลัย

I1947250X

SOLVATION OF β -D-GLUCOSAMINE IN WATER BY MONTE CARLO METHOD

Mr. Khatcharin Siriwong

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry Department of Chemistry Faculty of Science Chulalongkorn University Academic Year 2000 ISBN 974-346-119-1

Thesis Title	Solvation of $\beta\text{-}D\text{-}Glucosamine$ in Water by Monte Carlo Method
By	Mr. Khatcharin Siriwong
Department	Chemistry
Thesis Advisor	Associate Professor Supot Hannongbua, Ph.D.

Accepted by Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master's Degree

PL+T.L. March Dean of Faculty of Science

(Associate Professor Wanchai Phothiphichitr, Ph.D.)

Thesis Committee

(Associate Professor Sirirat Kokpol, Ph.D.)

S. Haghua Thesis Advisor

(Associate Professor Supot Hannongbua, Ph.D.)

Vuolhichii Parnark Member

(Associate Professor Vudhichai Parasuk, Ph.D.)

huftel Schwattamasinitt Member

(Mongkol Sukwattanasinitt, Ph.D.)

กัชรินทร์ ศิริวงศ์ : ซอลเวชันของบีตา-ดี-กลูโกซามีนในน้ำโดยวิธีมอนติคาร์โล (SOLVATION OF β-D-GLUCOSAMINE IN WATER BY MONTE CARLO METHOD) อาจารย์ที่ปรึกษา : รศ. ดร. สุพจน์ หารหนองบัว, 121 หน้า. ISBN 974-346-119-1.

ใด้ทำการศึกษาหาโครงสร้างของสารละลายกลูโคซามีนที่อุณหภูมิ 25 องศาเซลเซียสโดย วิธีมอนติ คาร์โลตามแบบของเมโทรโปลิส ระบบที่ศึกษาประกอบด้วยอนุภาคทั้งหมด 202 อนุภาค ใด้แก่ กลูโคซามีน 1 โมเลกุลซึ่งวางอยู่ตรงกลางของกล่องลูกบาศก์ และน้ำ 201 โมเลกุล ค่าความหนาแน่นของน้ำจากการทดลองที่นำมาใช้มีค่า 1 กรัมต่อลูกบาศก์ และน้ำ 201 โมเลกุล ค่าความหนาแน่นของน้ำจากการทดลองที่นำมาใช้มีค่า 1 กรัมต่อลูกบาศก์เซนติเมตร ความยาว ของกล่องลูกบาศก์ซึ่งมีคุณสมบัติพีริออดิกมีค่าเท่ากับ 18.26 อังสตรอม ในการศึกษานี้ได้พัฒนา ฟังก์ชันศักย์เพื่อแทนแรงกระทำระหว่างกลูโคซามีน-น้ำจากการคำนวณโดยวิธีดีแซดพี*แอบ อินิชิ โอ* ส่วนฟังก์ชันศักย์ที่แทนแรงกระทำระหว่างน้ำ-น้ำได้เลือกใช้ฟังก์ชันเอีมซีวาย ผลการศึษาพบ ว่าชั้นซอลเวชันแรกปรากฏที่ระยะ 4.6 อังสตรอม ห่างจากจุดศูนย์กลางของกลูโคซามีนซึ่ง ประกอบด้วยน้ำ 7 โมเลกุล ซึ่งพบว่าน้ำ 1 โมเลกุลอยู่ที่ระนาบของลิแกนด์ ในขณะที่อีก 2 และ 4 โมเลกุลอยู่ที่ระยะ 2 – 4 อังสตรอม เหนือและใต้ระนาบของลิแกนด์ตามลำดับ ในจำนวนน้ำทั้ง 7 โมเลกุล พบว่ามีเพียง 1 โมเลกุล ที่เกิดพันธะไฮโดรเจนแบบตรงกับอะตอมออกซิเจนที่อยู่ในวง ของกลูโคซามีน นอกจากนี้ยังพบชั้นซอลเวชันที่สองซึ่งประกอบด้วยน้ำ 19 โมเลกุล อย่างชัคเจน

ภาควิชา	เคมี
สาขาวิชา	เกมี
ปีการศึกษา .	2543

ลายมือชื่อนิสิต	and an in
ลายมือชื่ออาจารย์ที่ปรึกษา .	XX
ลายมือชื่ออาจารย์ที่ปรึกษา	s່ວນ−

4172237523 : MAJOR CHEMISTRY

KHATCHARIN SIRIWONG : SOLVATION OF β-D-GLUCOSAMINE IN WATER BY MONTE CARLO METHOD. THESIS ADVISOR : ASSOC. PROF. SUPOT HANNONGBUA, Ph.D. 121 pp. ISBN 974-346-119-1.

The solvation structure of glucosamine in aqueous solution at 25 °C has been investigated using the Metropolis Monte Carlo scheme. The system contains 202 rigid particles, including one glucosamine molecule, which fixed at the center of the cube, and 201 water molecules. An experiment density of 1 g.cm⁻³ of water was used, a periodic side length of 18.26 Å was yielded. A glucosamine-water potential function has been newly developed based on DZP *ab initio* calculations, while the MCY potential function was employed to describe water-water interactions. The first solvation shell appears at 4.6 Å from the center of glucosamine with the coordination numbers of 7 water molecules. The results indicate clearly that 1 water molecule lies in the ligand's plane while 2 and 4 water molecules are about 2 - 4 Å above and below the plane, respectively. Among the 7 water molecules, only that binding to ring oxygen atom displays linear H – bond. In addition, second solvation shell with contains 19 water molecules has been also clearly detected.

ภาควิชาเคมี	ลายมือชื่อนิสิต
สาขาวิชาเคมี	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

ACKNOWLEDGEMENTS

This thesis was completely finished with the excellent suggestions from my advisor, Associate Professor Dr. Supot Hannongbua. I therefore would like to express my sincerest gratitude for giving me his guiding, advising, understanding and encouraging. I am very obliged to Associate Professor Dr. Sirirat Kokpol, Associate Professor Dr. Vudhichai Parasuk and Dr. Mongkol Sukwattanasinitt for their substantial advice as thesis committee.

I also would like to gratefully acknowledge financial support from the Shell Centenary Scholarship Fund and the generous supply of computer time by the Austrian-Thai Centre for Computer Assisted Chemical Education and Research, Department of Chemistry, Faculty of Science, Chulalongkorn University, and the National Electronic and Computer Technology Center, Bangkok.

My absolute acknowledgement is dedicated to my parents, brothers and sisters for their understanding and encouragement throughout the entire study.

CONTENTS

	CT IN THAI	iv
ABSTRA	CT IN ENGLISH	v
ACKNOV	VLEDGEMENT	vi
LIST OF	FIGURES	х
LIST OF	ΓABLES	xiv
CHAPTE	R 1 INTRODUCTION	1
1.3	Liquid State and Computer Simulations	1
1.2	2 What and Why is Glucosamine?	3
CHAPTE	R 2 THEORETICAL BACKGROUND	6
2.1	Schrödinger Equation	7
2.1 2.2	Schrödinger Equation 2 Hartree-Fock Wavefunction	7 9
2.1 2.2 2.3	Schrödinger Equation Hartree-Fock Wavefunction Hartree-Fock Approximation	7 9 11
2.1 2.2 2.3 2.4	 Schrödinger Equation. Hartree-Fock Wavefunction. Hartree-Fock Approximation. Mulliken Population Analysis. 	7 9 11 17
2.1 2.2 2.2 2.4 2.4	 Schrödinger Equation. Hartree-Fock Wavefunction. Hartree-Fock Approximation. Mulliken Population Analysis. Basis Functions. 	7 9 11 17 18
2.1 2.2 2.2 2.4 2.4 2.4 2.4	 Schrödinger Equation. Hartree-Fock Wavefunction. Hartree-Fock Approximation. Mulliken Population Analysis. Basis Functions. Basis Set Superposition Error (BSSE). 	7 9 11 17 18 21
2.1 2.2 2.3 2.4 2.5 2.6	 Schrödinger Equation. Hartree-Fock Wavefunction. Hartree-Fock Approximation. Mulliken Population Analysis. Basis Functions. Basis Set Superposition Error (BSSE). 	7 9 11 17 18 21
2.1 2.2 2.3 2.4 2.5 2.6 CHAPTE	 Schrödinger Equation. Hartree-Fock Wavefunction. Hartree-Fock Approximation. Mulliken Population Analysis. Basis Functions. Basis Set Superposition Error (BSSE). R 3 POTENTIAL FUNCTIONS. 	7 9 11 17 18 21 23
2.1 2.2 2.2 2.4 2.4 2.5 2.6 CHAPTE	 Schrödinger Equation. Hartree-Fock Wavefunction. Hartree-Fock Approximation. Mulliken Population Analysis. Basis Functions. Basis Set Superposition Error (BSSE). R 3 POTENTIAL FUNCTIONS. 	7 9 11 17 18 21 23
2.1 2.2 2.3 2.4 2.5 2.6 CHAPTEI 3.1	 Schrödinger Equation. Hartree-Fock Wavefunction. Hartree-Fock Approximation. Mulliken Population Analysis. Basis Functions. Basis Set Superposition Error (BSSE). R 3 POTENTIAL FUNCTIONS. 	7 9 11 17 18 21 23 23
2.1 2.2 2.3 2.4 2.5 2.6 CHAPTEI 3.1 3.2	 Schrödinger Equation. Hartree-Fock Wavefunction. Hartree-Fock Approximation. Mulliken Population Analysis. Basis Functions. Basis Set Superposition Error (BSSE). R 3 POTENTIAL FUNCTIONS. Pair Potential. Analytical Form of Potential Functions. 	7 9 11 17 18 21 23 23 23 27

1

CHAPTER 4 MONTE CARLO METHOD	
4.1 Principles of Monte Carlo Method	28
4.2 Metropolis Monte Carlo Method	
4.3 Conditions of Calculations	
4.3.1 Simulation Cube	30
4.3.2 Optimal Number for Particles	31
4.3.3 Starting Configuration	31
4.3.4 Periodic Boundary Condition	32
4.3.5 Minimal Image Convention	33
4.3.6 Spherical Cut-Off	34
4.3.7 Long-Range Interactions	35
4.4 Calculating Procedures	36
4.5 Radial Distribution Functions and Integration Numbers	39
CHAPTER 5 DETAILS OF CALCULATIONS	41
5.1 Geometry of Molecules	41
5.2 Selection of the Suitable Basis Set for the SCF Calculations	46
5.3 Development of Intermolecular Potential Function	47
5.4 Monte Carlo Simulation	52
CHAPTER 6 RESULTS AND DISCUSSION	54
6.1 Selection of the Suitable Basis Set for the SCF Calculations	54
6.2 Glucosamine-Water Potential Function	59
6.3 Solvent Structure	61

6.4 Water Structure Around the Glucosamine Molecule	63
CHAPTER 7 CONCLUSION	89
REFERENCES	90
APPENDICES	97
Appendix I Exponents and Coefficients for the Basis Set	98
Appendix II The MCY Potential for Water-Water Interactions	104
Appendix III Source Codes for Program Fortran77	105
Appendix IV Input Files for Gaussian98 Program	110
CURRICULUM VITAE	121

LIST OF FIGURES

Figures		Pages
1.1	The β-D-glucosamine molecules in each form	3
1.2	The chitosan molecule	4
3.1	The Lennard-Jones potential	24
3.2	The Lennard-Jones potential is constructed from a repulsive (Ar ⁻¹²)	
	and attractive (Cr ⁻⁶) component	25
3.3	(a) the hard-sphere potential, (b) the square-well potential and	
	(c) the soft-sphere potential with repulsion parameter $\kappa=1$	26
4.1	A two-dimensional periodic	33
4.2	The minimal image convention in a two-dimensional system	35
4.3	The calculating steps of Monte Carlo simulations	37
5.1	Structure of glucosamine with atomic numbering	43
5.2	Glucosamine-water configurations for investigating suitable basis set;	
	O atom of water molecule lie in C3-C14-O18 plane which perpendicular	
	With the plane of H-O-H of water molecule	47
5.3	Definition of the glucosamine-water configuration	49
5.4	Energy profile at equilibration of glucosamine-water simulation	53
6.1	Glucosamine-water stabilization energies for the optimal configuration	
	(see Figure 5.2) as a function of the distance between center of	
	glucosamine molecule and oxygen atom of water molecule,	
	calculated by DZP ab initio calculations with (dashed line) and	
	without (solid line) BSSE corrections	57
6.2	Glucosamine-water stabilization energies obtained from the DZP	
	ab initio calculations (circle) and from the potential function (line)	
	with the fitting parameters summarized in Table 6.3 for the complex	
	configuration shown in Figure 5.2	60

Figures

Pages

6.3	Comparison between the fitted energies (ΔE_{FIT}) and the SCF	
	energies (ΔE_{SCF}) obtained from the DZP <i>ab initio</i> calculations	
	and from the potential function with the fitting parameters	
	summarized in Table 6.3	60
6.4	Comparison between the fitted energies (ΔE_{FIT}) and the SCF	
	energies (ΔE_{SCF}) for the testing procedure	61
6.5	Water-water radial distribution functions obtained from the Monte	
	Carlo simulations of water with one glucosamine molecule (solid line)	
	and pure water (dash line) [60], (a) $g_{OO}(r)$, (b) $g_{OH}(r)$ and (c) $g_{HH}(r)$	62
6.6	Radial distribution functions from O (solid line) and H (dash line)	
	of water molecules to the center of glucosamine molecule	63
6.7	Space around glucosamine molecule was divided by x- and y-axis	
	into 4 quadrants	64
6.8	Radial distribution functions from center of glucosamine to O	
	(solid line) and H (dash line) atoms of water molecules lying in	
	(a) quadrant 1, (b) quadrant 2, (c) quadrant 3 and (d) quadrant 4	67
6.9	Radial distribution functions from O (solid line) and H (dash line)	
	atoms of water molecules to (a) N5, (b) O2, (c) O9, (d) O12, (e) O16	
	and (f) O18 atoms (see Figure 5.1) of glucosamine molecule	70
6.10	Radial distribution functions (solid line) and running integration	
	numbers (dash line) from O atoms of water molecules to (a) H1,	
	(b) H6, (c) H7, (d) H10, (e) H13 and (f) H17 atoms (see Figure 5.1)	
	of glucosamine molecule	73
6.11	Periodic cube was sliced into several layers by the plane parallel to	
	The xy-plane	74
6.12	Radial distribution functions (solid line) and running integration	
	numbers (dash line) from O atoms of water molecules lying in	

- -

	upper half (see Figure 6.11) of quadrant 1 to center of glucosamine	
	molecule	75
6.13	Radial distribution functions (solid line) and running integration	
	numbers (dash line) from O atoms of water molecules lying in	
	upper half (see Figure 6.11) of quadrant 2 to center of glucosamine	
	molecule	76
6.14	Radial distribution functions (solid line) and running integration	
	numbers (dash line) from O atoms of water molecules lying in	
	upper half (see Figure 6.11) of quadrant 3 to center of glucosamine	
	molecule	77
6.15	Radial distribution functions (solid line) and running integration	
	numbers (dash line) from O atoms of water molecules lying in	
	upper half (see Figure 6.11) of quadrant 4 to center of glucosamine	
	molecule	78
6.16	Radial distribution functions (solid line) and running integration	
	numbers (dash line) from O atoms of water molecules lying in	
	lower half (see Figure 6.11) of quadrant 1 to center of glucosamine	
	molecule	79
6.17	Radial distribution functions (solid line) and running integration	
	numbers (dash line) from O atoms of water molecules lying in	
	lower half (see Figure 6.11) of quadrant 2 to center of glucosamine	
	molecule	80
6.18	Radial distribution functions (solid line) and running integration	
	numbers (dash line) from O atoms of water molecules lying in	
	lower half (see Figure 6.11) of quadrant 3 to center of glucosamine	
	molecule	81

Figures

Pages

6.19	Radial distribution functions (solid line) and running integration	
	numbers (dash line) from O atoms of water molecules lying in	
	lower half (see Figure 6.11) of quadrant 4 to center of glucosamine	
	molecule	82
6.20	Contour plots of the xy-coordinate of water molecules in the	
	upper half of each quadrant (Q) in the first coordination shell of	
	glucosamine	84
6.21	Contour plots of the xy-coordinate of water molecules in the	
	lower half of each quadrant (Q) in the first coordination shell of	
	glucosamine	85
6.22	Distribution of running integration number in the first solvation	
	shell of glucosamine (up to 4.6 Å)	87
6.23	Summarized positions of 7 water molecules (W) in the first	
	solvation shell of glucosamine (the letters A, B, C, and D and	
	the signs plus and minus show the z-axis value; see Figure 6.11)	87
6.24	Snapshot (one out of 16 million equilibrium configurations)	
	of the first solvation shell of glucosamine consisting of 7	
	water molecules	88

xiii

.

LIST OF TABLES

Tables		Pages
5.1	Cartesian coordinates of water molecule (in Angstroms)	41
5.2	Cartesian coordinates (in Angstroms) obtained from the experiment	
	and atomic net charges (in a.u.) of glucosamine molecule obtained	
	from <i>ab initio</i> calculations using DZ basis set	42
5.3	Bond distances of glucosamine molecule (in Angstroms)	43
5.4	Bond angles of glucosamine molecule (in degree)	44
5.5	Dihedral angles of glucosamine molecule (in degree) obtained	
	from the experiment and from <i>ab initio</i> calculation using DZ	
	basis set (*)	45
5.6	Group of atoms of glucosamine molecule (see Figure 5.1)	
	classified by atomic net charges	51
6.1	Total energy (E in atomic units), molecular dipole moment	
	(μ in Debye), optimal stabilization energy with and without	
	BSSE corrections (ΔE and ΔE_{BSSE} in kcal.mol ⁻¹), corresponding	
	distance from the O atom (of water molecule) to the center of	
	glucosamine molecule (r and r_{BSSE} in Å), and CPU time for	
	glucosamine-water dimer on a PC LINUX PIII 550 (in hour:	
	min:second), calculate from various basis sets	55
6.2	Stabilization energies of DZP basis set with and without BSSE	
	corrections (ΔE_{BSSE} and ΔE , respectively, in kcal/mol) at different	
	distances (r, in Å) for the optimal directions of the glucosamine-	
	water configuration given in Figure 5.2	56
6.3	Final optimized parameters for the <i>i</i> th atoms of glucosamine	
	molecule interacting with the <i>j</i> th atoms of water molecule	58

Tables

6.4	Running integration numbers of water molecules integrated	
	up to 4.6 Å of the RDFs in Figures $6.12 - 6.19$ (a, b, and	
	m are the points in Figures 6.20 and 6.21)	83