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Chapter 1
Perfect codes of graphs

Let Γ = (V (Γ), E(Γ)) be a simple undirected graph on n vertices. For
u, v ∈ V (Γ) and u ̸= v. The distance of u and v, denoted by d(u, v), is the
number of edges of a shortest path connecting them. if u = v, d(u, v) = 0. Let t
be a positive integer and C a subset of V (Γ). We say that C is a perfect t-code
in Γ if for every vertex v ∈ V (Γ) there exists a unique c ∈ C such that d(c, v) ≤ t.
A perfect 1-code is called a perfect code. In addition, C is a total perfect code
in Γ if for every vertex v ∈ V (Γ) there exists a unique c ∈ C such that d(c, v) = 1.
In other words, C is a total perfect code in Γ if every vertex of V (Γ) has exactly
one neighbor in C.
Lemma 1.1. [5] If C is a total perfect code of Γ, then |C| is even.
Proof. By the above definition of total perfect code, C is a total perfect code in
Γ if every vertex of V (Γ) has exactly one neighbor in C. So for each c ∈ C there
is unique c′ ∈ C such that c ̸= c′ and d(c, c′) = 1. We can pair elements in C and
so |C| is even.

The concept of perfect codes in graphs were developed from the work of
Biggs [1]. In Coding Theory, codes that attain the Hamming bound are said to be
perfect. The q-ary perfect codes of length n are precisely the perfect 1-codes in
the Hamming graph H(n, q). The vertex set of H(n, q) is F×

q and two words are
adjacent if they have Hamming distance one.

We shall be interested in perfect codes in Cayley graphs.
Let G be a group and S a nonempty subset of G such that e /∈ S and S = S−1.

The Cayley graph Cay(G,S) of G with respect the connection set S is the graph
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with vertex set G such that for any x, y ∈ G, x and y are adjacent if and only if
yx−1 ∈ S. Since e /∈ S and S−1 = S, the graph is undirected and has no loops.

Let C be a nonempty subset of a group G. Then C is a perfect code (re-
spectively, total perfect code) of G if C is a perfect code (respectively, total
perfect code) in some Caley graph of G. That is, there is a nonempty subset S
of G with e /∈ S and S = S−1 such that C is a perfect code (respectively, total
perfect code) in Cay(G,S).

LetH be a subgroup of a groupG. If we choose a subset {xα} ofG such thatG
is a disjoint union of that right cosets {xαH}, then {xα} is called a left transversal
of right coset representatives of H in G. The right transversal can be defined in
an analogous way. Huang et al. [5] showed the following criteria.

Theorem 1.2. [5] Let H be a subgroup of a group G. Then
(a) H is a perfect code in Cay(G,S) if and only if S ∪ {e} is a left transversal of
H in G.
(b) H is a total perfect code in Cay(G,S) if and only if S is a left transversal of
H in G.

Theorem 1.3. [5] Let G be a group and H a normal subgroup of G. Then
(a) H is a perfect of G if and only if for any g ∈ G, g2 ∈ H implies (gh)2 = e for
some h ∈ H .
(b) H is a total perfect of G if and only if |H| is even and for any g ∈ G, g2 ∈ H

implies (gh)2 = e for some h ∈ H .

Theorem 1.4. [5] Let G be a cyclic group and H a subgroup of G. Then H is a
perfect code of G if and only if either |H| or |G/H| is odd.

In what follows, we shall use Huang’s results to study perfect codes in the
graph Cay(Zn,Zn

×) and perfect codes of GL2(Fq) in Chapters 2 and 4, respectively.
Chapter 3 presents all subgroups that we shall study in Chapter 4.
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Chapter 2
Perfect codes in Cay(Zn,Zn

×)

Let n ≥ 2 be a positive integer and consider the group G = (Zn,+). Feng et
al. [3] gave a necessary and sufficient condition for the graph Cay(Zn, S) to admit
a perfect code as follows.

Theorem 2.1. [3] Let n be a positive integer and p be an odd prime. Then
(a) A Cay(Zn, S) with |S| = p − 1 admits a perfect code if and only if p | n and
s ̸≡ s′ mod p for all distinct s, s′ ∈ S ∪ {0}.
(b) A Cay(Zn, S) with |S| = p admits a total perfect code if and only if p | n and
s ̸≡ s′ mod p for all distinct s, s′ ∈ S.

Theorem 2.2. [3] Let n, l be positive integers and p be an odd prime such that
pl | n but pl+1 ∤ n. Then
(a) A Cay(Zn, S) with |S| = pl − 1 admits a perfect code if and only if s ̸≡ s′

mod pl for all distinct s, s′ ∈ S ∪ {0}.
(b) A Cay(Zn, S) with |S| = pl admits a total perfect code if and only if s ̸≡ s′

mod pl for all distinct s, s′ ∈ S.

Now, we concern about S = Zn
×. The graph Cay(Zn,Zn

×) is called the unitary
Cayley graph of Zn. Its vertex set is Zn and a, b ∈ Zn are adjacent if gcd(a−b, n) =

1. Write ϕ(n) = |Zn
×|, the cardinality of the group of units of Zn. It is well known

that ϕ(n) is even for all n ≥ 3.

Theorem 2.3. Let n be a positive integer and n ≥ 3. Then there exists a subgroup
H of Zn such that H is a perfect code in Cay(Zn,Zn

×) if and only if ϕ(n) + 1 | n.
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Proof. Assume that H is a subgroup of Zn such that H is a perfect code in
Cay(Zn,Zn

×). By Theorem 1.2 (a), Zn
× ∪ {0} is a left transversal of H in Zn, so

|Zn
× ∪ {0}| = |Zn|

|H|
. Thus, (ϕ(n) + 1)|H| = n, so ϕ(n) + 1 | n.

Conversely, assume that ϕ(n) + 1 | n. Then n = (ϕ(n) + 1)d for some d ∈ N.
Let H = dZn. Then H is subgroup of Zn of order n

d
= ϕ(n) + 1. Since ϕ(n) + 1 is

odd, H is a perfect code of Zn by Theorem 1.4.

Theorem 2.4. If n = p or 2p for an odd prime p, then ϕ(n) + 1 | n.

Proof. Since p is an odd prime, ϕ(p) = p− 1 and ϕ(2p) = p− 1, so ϕ(p) + 1 | p and
ϕ(2p) + 1 | 2p.

Gay [4] asked for other n > 2 such that ϕ(n) + 1 divides n, called Schinzel’s
problem. This problem is related to a problem of Lehmer [6]. Some progression
on this problem can be found in [2]. We suspect that there are no other n > 2

such that ϕ(n) + 1 divides n.
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Chapter 3
Subgroups of GL2(Fq)

Let q be a prime power and let Fq denote the finite field of q elements.
Consider the general linear group of 2× 2 matrices over Fq given by

GL2(Fq) =

{(
a b

c d

)
: a, b, c, d ∈ Fq and ad ̸= bc

}
.

It is well known that |GL2(Fq)| = (q2 − 1)(q2 − q). Define φ : GL2(Fq) → Fq∖{0}
by φ(A) = det(A) for all A ∈ GL2(Fq). Then φ is an onto homomorphism with
kernel

SL2(Fq) =
{
A | A ∈ GL2(Fq) and det(A) = 1

}
.

Thus, SL2(Fq) is a normal subgroup of GL2(Fq) of cardinality

| SL2(Fq)| =
|GL2(Fq)|
|Fq∖{0}|

=
(q2 − 1)(q2 − q)

q − 1
= q(q2 − 1).

It is called the special linear group of 2× 2 matrices over Fq. Let

U =

{(
s 0

0 1

)
: s ∈ Fq∖{0}

}
and A =

{(
1 t

0 1

)
: t ∈ Fq

}
.

Next, consider q is odd. Then there is an element δ in Fq which is not a square
in Fq. Let

Kδ =

{(
x yδ

y x

)
: x, y ∈ Fq not both zero

}
.

Then |U | = q − 1, |A| = q and |Kδ| = q2 − q. We proceed to show that they are
subgroups of GL2(Fq).
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Proposition 3.1. The above sets U , A and Kδ are subgroups of GL2(Fq).

Proof. It is obvious that U , A and Kδ contain
(
1 0

0 1

)
. Let a, x ∈ Fq∖{0}. Then

(
a 0

0 1

)(
x 0

0 1

)−1

=

(
a 0

0 1

)
,

(
x−1 0

0 1

)
=

(
ax−1 0

0 1

)
∈ U.

Let b, y ∈ Fq. Then
(
1 b

0 1

)(
1 y

0 1

)−1

=

(
1 b

0 1

)
,

(
1 −y

0 1

)
=

(
1 b− y

0 1

)
∈ A.

Assume that q is odd. Let a, b ∈ Fq not both zero and x, y ∈ Fq not both zero.
Since δ is not a square, a2 − b2δ and x2 − y2δ are nonzero, so Kδ ⊆ GL2(Fq). Then(

a bδ

b a

)(
x yδ

y x

)−1

=
1

x2 − y2δ

(
a bδ

b a

)(
x −yδ

−y x

)

=
1

x2 − y2δ

(
ax− byδ (bx− ay)δ

bx− ay ax− byδ

)
∈ Kδ.

Therefore, U , A and Kδ are subgroups of GL2(Fq).
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Chapter 4
Perfect codes of GL2(Fq)

In this chapter, we show that the subgroups of GL2(Fq) in Chapter 3 are perfect
codes by using Huang’s criteria [5]. We also determine if they are total perfect
codes.

Let q be a prime power. Since SL2(Fq) is a normal subgroup of GL2(Fq) and
we can show that its cardinality is even, we may use Theorem 1.3 to prove that
it is a total perfect code of GL2(Fq) as follows.

Theorem 4.1. SL2(Fq) is a total perfect code of GL2(Fq).

Proof. Let A ∈ GL2(Fq) such that det(A2) = 1. Then det(A) = ±1.
Case 1. det(A) = 1. Then A ∈ SL2(Fq). Since SL2(Fq) is a subgroup of GL2(Fq),
there is a B ∈ SL2(Fq) such that AB =

(
1 0

0 1

)
. Then (AB)2 =

(
1 0

0 1

)
.

Case 2. det(A) = −1. Choose C =

(
0 1

1 0

)
∈ GL2(Fq). Thus, det(CA) =

det(C)det(A) = (−1)(−1) = 1, so CA ∈ SL2(Fq). Since SL2(Fq) is a subgroup
of GL2(Fq), there is a B ∈ SL2(Fq) such that (CA)B =

(
1 0

0 1

)
. Then

AB = C−1

(
1 0

0 1

)
=

(
0 1

1 0

)
and (AB)2 =

(
1 0

0 1

)
.

Therefore, there is a B ∈ SL2(Fq) such that (AB)2 =

(
1 0

0 1

)
. Thus, SL2(Fq) is a
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perfect code of GL2(Fq) by Theorem 1.3 (a). We also have

| SL2(Fq)| =
|GL2(Fq)|
|Fq∖{0}|

=
(q2 − 1)(q2 − q)

q − 1
= q(q2 − 1),

so | SL2(Fqk)| is even. Hence, SL2(Fq) is a total perfect code of GL2(Fq) by Theo-
rem 1.3 (b).

Next, we study the subgroups U , A and Kδ of GL2(Fq) in Proposition 3.1. Note
that these subgroups may not be normal in GL2(Fq). So we cannot use Theorem
1.3. In order to apply Theorem 1.2, we study their left transversals.

Lemma 4.2. For
(
a b

c d

)
,

(
a′ b′

c′ d′

)
∈ GL2(Fq),

(
a b

c d

)
U =

(
a′ b′

c′ d′

)
U if and only if b′ = b, d′ = d, a′ = as, and

c′ = cs for some s ∈ Fq∖{0}.

Proof. Let
(
a b

c d

)
,

(
a′ b′

c′ d′

)
∈ GL2(Fq). Assume that

(
a b

c d

)
U =

(
a′ b′

c′ d′

)
U .

Then (
a b

c d

)−1(
a′ b′

c′ d′

)
=

1

ad− bc

(
d −b

−c a

)(
a′ b′

c′ d′

)

=
1

ad− bc

(
a′d− bc′ b′d− bd′

ac′ − a′c ad′ − b′c

)
∈ U.

It follows that

b′d = bd′, ac′ = a′c, ad′ − b′c = ad− bc and a′d− bc′ = (ad− bc)s

for some s ∈ Fq∖{0}. Then (ad′ − b′c)b = (ad− bc)b. Since b′d = bd′, we have

(ad− bc)b′ = (ad− bc)b,

so b′ = b because ad− bc ̸= 0. Also, (a′d− bc′)a = (ad− bc)as impiles (ad− bc)a′ =

(ad− bc)as. Since ad− bc ̸= 0, we get a′ = as. Similarly, we can show that d′ = d

and c′ = cs.
Conversely, assume that b′ = b, d′ = d, a′ = as and c′ = cs for some s ∈ Fq∖{0}.
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Then

(
a b

c d

)−1(
a′ b′

c′ d′

)
=

1

ad− bc

(
d −b

−c a

)(
as b

cs d

)

=
1

ad− bc

(
(ad− bc)s 0

0 ad− bc

)
=

(
s 0

0 1

)
∈ U

Therefore,
(
a b

c d

)
U =

(
a′ b′

c′ d′

)
U .

Lemma 4.2 says that the coset representatives of U in GL2(Fq) are parametrized
by the second column of the representatives. Now, let

(
a b

c d

)
∈ GL2(Fq).

Case 1. b = 0. Then a ̸= 0 and(
a 0

c d

)
U =

(
as 0

cs d

)
U for all s ∈ Fq∖{0}.

Thus, let s = −1/a, we may choose its representative to be
(
−1 0

c̄ d

)
where

c̄ = −c/a.
Case 2. b ̸= 0 and d = 0. Then c ̸= 0 and(

a b

c 0

)
U =

(
as b

cs 0

)
U for all s ∈ Fq∖{0}.

Thus, let s = −1/cb, we have the representative
(

ā b

−b−1 0

)
where ā = −a/cb.

Case 3. b ̸= 0 and d ̸= 0. We consider the following subcases.
Subcase 3.1. c = 0. Then a ̸= 0 and(

a b

0 d

)
U =

(
as b

0 d

)
U for all s ∈ Fq∖{0}.

Since a ̸= 0, let s = 1/a, we have the representative
(
1 b

0 d

)
.

Subcase 3.2. c ̸= 0 and a = 0. Then(
0 b

c d

)
U =

(
0 b

cs d

)
U for all s ∈ Fq∖{0}.
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Since c ̸= 0, let s = −1/bc, we have the representative
(

0 b

−b−1 d

)
.

Subcase 3.3. c ̸= 0 and a ̸= 0. Then(
a b

c d

)
U =

(
as b

cs d

)
U for all s ∈ Fq∖{0}.

Since a ̸= 0 and c ̸= 0, let s =
−1

ad− bc
, we have the representative

(
ā b

c̄ d

)
where ā =

−a

ad− bc
and c̄ =

−c

ad− bc
. Hence, we have shown:

Theorem 4.3. If

W1 =

{(
−1 0

c d

)
: c, d ∈ Fq and d ̸= 0

}
,W2 =

{(
a b

−b−1 0

)
: a, b ∈ Fq and b ̸= 0

}
,

W3 =

{(
1 b

0 d

)
: b, d ∈ Fq∖{0}

}
,W4 =

{(
0 b

−b−1 d

)
: b, d ∈ Fq∖{0}

}
and

W5 =

{(
a b

c d

)
: a, b, c, d ∈ Fq∖{0} and ad− bc = −1

}
,

then W1 ∪̇ W2 ∪̇ W3 ∪̇ W4 ∪̇ W5 is a left transversal of U in GL2(Fq). Moreover,
if q is odd, this transversal does not contain

(
1 0

0 1

)
.

Theorem 4.4. Let q be a prime power. Then
(a) If q is odd, then U is a total perfect code of GL2(Fq).
(b) If q is even, then U is a perfect code of GL2(Fq) but it is not a total perfect
code.

Proof. Let S = W1 ∪̇ W2 ∪̇ W3 ∪̇ W4 ∪̇ W5 be the left transversal of U in GL2(Fq)

as in Theorem 4.3. Next, we show that S = S−1. Let A ∈ W1. Then A =

(
−1 0

c d

)
for some c, d ∈ Fq and d ̸= 0. Thus,

A−1 =
−1

d

(
d 0

−c −1

)
=

(
−1 0

cd−1 d−1

)

10



is in W1, so W1 = W−1
1 . Let B ∈ W3, then B =

(
1 b

0 d

)
for some b, d ∈ Fq∖{0}.

Thus,

B−1 =
1

d

(
d −b

0 1

)
=

(
1 −bd−1

0 d−1

)

is in W3, so W3 = W−1
3 . Let C ∈ W2. Then C =

(
a b

−b−1 0

)
for some a, b ∈ Fq and

b ̸= 0. Thus,

C−1 =

(
0 −b

b−1 a

)

is in W4, so W4 = W−1
2 . Conversely, Let D ∈ W4. Then D =

(
0 b

−b−1 d

)
for some

b, d ∈ Fq and b ̸= 0. Thus,

D−1 =

(
d −b

b−1 0

)

is in W2, so D ∈ W−1
2 and we have W2 = W−1

4 . let E ∈ W5, then E =

(
a b

c d

)
where a, b, c, d ∈ Fq∖{0} and ad− bc = −1. Then

E−1 =
1

ad− bc

(
d −b

−c a

)
=

(
−d b

c −a

)
and ad− bc = −1, so E−1 ∈ W5. Hence, W5 = W−1

5 . Therefore, S = S−1.
Assume that q is odd. Then the left transversal S of U does not contain(

1 0

0 1

)
and S = S−1. By Theorem 1.2 (b), U is a total perfect code of Cay(GL2(Fq), S).

Finally, we assume that q is even. Then 1 = −1 in Fq, so
(
1 0

0 1

)
∈ S. Choose

S ′ = S∖

(
1 0

0 1

)
. Then S ′ = S ′−1 and S ′ ∪ {e} = S is a left transversal od U in

GL2(Fq), so U is a perfect code in Cay(GL, S ′) by Theorem 1.2 (a). Since |U | = q−1

is odd, U is not a total perfect code by Lemma 1.1.
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Lemma 4.5. For
(
a b

c d

)
,

(
a′ b′

c′ d′

)
∈ GL2(Fq) ,

(
a b

c d

)
A =

(
a′ b′

c′ d′

)
A if and only if a′ = a, c′ = c, b′ = b+ at,

and d′ = d+ ct for some t ∈ Fq.

Proof. Let
(
a b

c d

)
,

(
a′ b′

c′ d′

)
∈ GL2(Fq). Assume that

(
a b

c d

)
A =

(
a′ b′

c′ d′

)
A.

Then (
a b

c d

)−1(
a′ b′

c′ d′

)
=

1

ad− bc

(
d −b

−c a

)(
a′ b′

c′ d′

)

=
1

ad− bc

(
a′d− bc′ b′d− bd′

ac′ − a′c ad′ − b′c

)
∈ A.

It follows that
a′d− bc′ = ad− bc, ac′ = a′c, ad′ − b′c = ad− bc and b′d− bd′ = (ad− bc)t

for some t ∈ Fq. Then (a′d− bc′)c = (ad− bc)c. Since a′c = ac′, we have
(ad− bc)c′ = (ad− bc)c,

so c′ = c because ad− bc ̸= 0. Also, (ad′ − b′c)b = (ad− bc)b implies
a(b′d− (ad− bc)t)− b′cb = (ad− bc)b.

Since ad − bc ̸= 0, we get b′ = b + at. Similarly, we can show that a = a′ and
d′ = d+ ct.

Conversely, we assume that a′ = a, c′ = c, b′ = b+ at and d′ = d+ ct for some
t ∈ Fq. Then (

a b

c d

)−1(
a′ b′

c′ d′

)
=

1

ad− bc

(
d −b

−c a

)(
a b+ at

c d+ ct

)

=
1

ad− bc

(
ad− bc (ad− bc)t

0 ad− bc

)

=

(
1 t

0 1

)
∈ A.
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Therefore,
(
a b

c d

)
A =

(
a′ b′

c′ d′

)
A.

Lemma 4.5 says that the right coset representatives of A in GL2(Fq) are
parametrized by the first column of the representatives. Now, let

(
a b

c d

)
∈

GL2(Fq). Then we distinguish two cases, namely, a = 0 and a ̸= 0.
Case 1. a = 0. Then c ̸= 0 and(

0 b

c d

)
A =

(
0 b

c d+ ct

)
A for all t ∈ Fq.

Thus, let t = −d/c, we may choose its representative to be
(
0 b

c 0

)
.

Case 2. a ̸= 0. Then(
a b

c d

)
A =

(
a b+ at

c d+ ct

)
A for all t ∈ Fq.

Since a ̸= 0, let t = −b/a, we have the representative
(
a 0

c d̄

)
where d̄ = d− bc

a
=

ad− bc

a
̸= 0. Hence, we have shown:

Theorem 4.6. If

V1 =

{(
0 b

c 0

)
: b, c ∈ Fq∖{0}

}
and V2 =

{(
a 0

c d

)
: a, d ∈ Fq∖{0} and c ∈ Fq

}
,

then V1 ∪̇ V2 is a left transversal of A in GL2(Fq).
Theorem 4.7. Let q be a prime power. Then
(a) If q is odd, then A is a perfect code of GL2(Fq) but is not a total perfect code.
(b) If q is even, then A is a total perfect code of GL2(Fq).
Proof. Let S =

(
V1 ∪̇ V2

) be the left transversal of A in GL2(Fq) in Theorem
4.6. Next, we show that S = S−1. Let A ∈ V1. Then A =

(
0 b

c 0

)
for some

b, c ∈ Fq∖{0}. Thus,

A−1 =
−1

bc

(
0 −b

−c 0

)
=

(
0 c−1

b−1 0

)
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is in V1, so V1 = V −1
1 . Let B ∈ V2. Then B =

(
a 0

c d

)
for some a, c, d ∈ Fq and

a, d ̸= 0. Thus,

B−1 =
1

ad

(
d 0

−c a

)
=

(
a−1 0

−c(ad)−1 d−1

)

is in V2, so V2 = V −1
2 . Therefore, S = S−1.

Assume q is odd. Let S ′ = S∖

{(
1 0

0 1

)}
. Then S ′ = S ′−1 and S ′∪

{(
1 0

0 1

)}
is a left transversal of A is GL2(Fq) by Theorem 4.6. By Theorem 1.2 (a), A is a
perfect code of Cay(GL2(Fq), S

′). Since |A| = q is odd, A is not a total perfect
code of GL2(Fq) by Lemma 1.1.

Finally, we assume that q is even. Since
(
1 1

0 1

)
∈ A and

(
1 1

0 1

)2

=

(
1 0

0 1

)
,

so
(
1 1

0 1

)
=

(
1 1

0 1

)−1

. Let S ′′ =
(
S∖

{(
1 0

0 1

)})
∪

{(
1 1

0 1

)}
. Then S ′′ = S ′′−1

and S ′′ is a left transversal of A in GL2(Fq). By Theorem 1.2 (b), A is a total perfect
code of Cay(GL2(Fq), S

′′).

Finally, we assume that q is an odd prime power and let δ be a nonsquare
element in Fq. We now study the subgroup Kδ. First, we determine its left
transversal.

Theorem 4.8. The set{(
a b

0 −1

)
Kδ : a, b ∈ Fq and a ̸= 0

}

consists of all right cosets of Kδ in GL2(Fq). Hence,

T =

{(
a b

0 −1

)
: a, b ∈ Fq and a ̸= 0

}

is a left transversal of Kδ in GL2(Fq). Moreover, T does not contain
(
1 0

0 1

)
.
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Proof. Let a, b, c, d ∈ Fq and a, c ̸= 0 be such that
(
a b

0 −1

)
Kδ =

(
c d

0 −1

)
Kδ.

Then (
a b

0 −1

)−1(
c d

0 −1

)
=

−1

a

(
−1 −b

0 a

)−1(
c d

0 −1

)

=

(
a−1 ba−1

0 −1

)(
c d

0 −1

)

=

(
ca−1 (d− b)a−1

0 1

)
∈ Kδ.

It follows that ca−1 = 1 and (d− b)a−1 = 0. Since a ̸= 0, a = c and b = d. Thus,∣∣∣∣∣
{(

a b

0 −1

)
Kδ : a, b ∈ Fq and a ̸= 0

}∣∣∣∣∣ = q(q − 1) = q2 − q.

Also,
[GL2(Fq) : Kδ] =

|GL2(Fq)|
|Kδ|

=
(q2 − 1)(q2 − q)

q2 − 1
= q2 − q.

Hence, the set
{(

a b

0 −1

)
Kδ : a, b ∈ Fq and a ̸= 0

}
consists of all right cosets of

Kδ in GL2(Fq). Therefore, T is a left transversal of Kδ in GL2(Fq). Since q is odd,
1 ̸= −1 in Fq so T does not contain

(
1 0

0 1

)
.

Theorem 4.9. Kδ is a total perfect code of GL2(Fq).

Proof. Let S = T . By Proposition 4.8, S is a left transversal of Kδ in GL2(Fq). Next,
we show that S = S−1. Let

(
a b

0 −1

)
∈ S. Then a ̸= 0 and

(
a b

0 −1

)−1

=
−1

a

(
−1 −b

0 a

)
=

(
a−1 ba−1

0 −1

)

is also in S. By Theorem 1.2, Kδ is a total perfect code of Cay(GL2(Fq), S).
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Background and Rationale and Scope

Let Γ = (V (Γ), E(Γ)) be a simple undirected graph on n vertices. For
u, v ∈ V (Γ) and u ̸= v. The distance of u and v, denoted by d(u, v), is the
number of edges of a shortest path connecting them. If u = v, d(u, v) = 0. Let t
be a positive integer and C a subset of V (Γ). We say that C is a perfect t-code
in Γ if for every vertex v ∈ V (Γ) there exists a unique c ∈ C such that d(c, v) ≤ t.
A perfect 1-code is called a perfect code.
In addition, C is a total perfect code in Γ if for every vertex v ∈ V (Γ) there exists
a unique c ∈ C such that d(c, v) = 1. In other words, C is a total perfect code in
Γ if every vertex of V (Γ) has exactly one neighbor in C.

Let G be a finite group and S a subset of G with e ̸∈ S and S = S−1. The
Cayley graph Cay(G,S) with respect to the connection set S is the graph with
vertex set G such that x, y ∈ G are adjacent if and only if xy−1 ∈ S.

Huang et al. [1] showed that for a subgroup H of G, we have
(a) H is a perfect code in Γ if and only if S ∪ {e} is a left transversal of H in G.
(b) H is a total perfect code in Γ if and only if S is a left transversal of H in G.
Later, Feng et al. [2] gave a necessary and sufficient condition for Cay(Zn, S)
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graph of degree p – 1 admit a perfect code and degree p admit a total perfect
code, where p is an odd prime. Here, degree is |S|.

Let R be a finite commutative ring with identity 1. The unitary Cayley graph
of R is the Cayley graph Cay(R,R×) where R× is the group of units of R.

In this project we shall study a perfect code in the unitary Cayley graph of
R. We plan to determine R such that a perfect code or a total perfect code in
Cay(R,R×) exists by using the work of Huang [1] and Feng [2].
Objectives

To find some characteristics of a finite commutative ring R such that a perfect
code or a total perfect code in Cay(R,R×) exists.
Project Activities

1. Study the work of Huang [1] and Feng [2].

2. Review basic knowledge on Number Theory, Abstract Algebra and Algebraic
Graph Theory which relates to our project.

3. Use properties of a perfect code and a total perfect code of G to find
some properties in S such that Cay(Zn, S) exists a perfect code and a total
perfect code.

4. Work on condition of a perfect code and a total perfect code in Cay(R,R×).

5. Write a report.
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Activities Table

Project Activities August 2018 - April 2019
Aug Sep Oct Nov Dec Jan Feb Mar Apr

1.Study the work of
Huang [1] and Feng
[2].
2.Review basic know-
ledge on Number
Theory, Abstract Al-
gebra and Algebraic
Graph Theory which
relates to our pro-
ject.

3.Use properties of
a perfect code and
a total perfect code
of G to find some
properties in S such
that Cay(Zn, S) exists
a perfect code and a
total perfect code.
4.Work on condition
of a perfect code and
a total perfect code
in Cay(R,R×).
5.Write a report.
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Benefits

To obtain some characteristics of a finite commutative ring R such that a
perfect code and total perfect code in Cay(R,R×) exists by using results of Huing
and Feng.

Equipment

1. Computer

2. Paper

3. Printer

4. Stationery
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