สมบัติเชิงกลของพอลิแอคริเลตที่มีไม้ยางพาราประกอบ

นายสมพัสก์ พฤกษ์ชาติศิริ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์ หลักสูตรปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2544 ISBN 974-03-1312-4 ลิขสิทธิ์ของ จุฬาลงกรณ์มหาวิทยาลัย

MECHANICAL PROPERTIES OF RUBBER WOOD-POLYACRYLATE COMPOSITES

Mr. Sompat Pruckchatsiri

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Petrochemistry and Polymer Science

Program of Petrochemistry and Polymer Science

Chulalongkorn University

Faculty of Science

Academic year 2001

ISBN 974-03-1312-4

MECHANICAL PROPERTIES OF RUBBER WOOD-POLYACRYLATE Thesis Title **COMPOSITES** Ву Mr. Sompat Pruckchatsiri Field of Study Petrochemistry and Polymer Science Thesis Advisor Associate Professor Amorn Petsom, Ph.D. Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree Deputy Dean for Administrative Affairs

Acting Dean, Faculty of Science (Associate Professor Pipat Karntiang, Ph.D.) THESIS COMMITTEE Chairman Chairman (Associate Professor Supawan Tantayanon, Ph.D.) (Associate Professor Amorn Petsom, Ph.D.) (Associate Professor Sophor Roengsumran, Ph.D.) (Associate Professor Somchai Pengprecha, Ph.D.) Warmthan Chavasin Member

(Assistant Professor Warinthorn Chavasiri, Ph.D.)

สมพัสก์ พฤกษ์ชาติศิริ : สมบัติเชิงกลของพอลิแอคริเลตที่มีใม้ยางพาราประกอบ (MECHANICAL PROPERTIES OF RUBBER WOOD-POLYACRYLATE COMPOSITES) อ. ที่ปรึกษา : รศ. คร. อมร เพชรสม ; 88 หน้า. ISBN 974-03-1312-4

งานวิจัยนี้เกี่ยวข้องกับการเตรียมไม้ยางพารา-พอลิแอคริเลตคอมโพสิตจากแอคริเลต มอนอเมอร์ 3 ชนิด ได้แก่ 2-ไฮครอกซี-โพรพิลแอคริเลต, บิวทิลแอคริเลต และ 2-เอทิล-เฮกซิล แอคริเลต ด้วยวิธีการแช่ไม้ให้ชุ่มด้วยมอนอเมอร์ภายใต้การลดความคัน จากนั้นทำให้เกิดการ พอลิเมอไรเซชันโดยการเร่งปฏิกิริยาด้วยความร้อน ผลการศึกษาพบว่า ภาวะที่เหมาะสมในการ เตรียมไม้ตัวอย่างจาก 2-ไฮครอกซี-โพรพิลแอคริเลต คือ ปริมาณเบนโซอิลเปอร์ออกไซด์ 2 ส่วนต่อ สารละลายเตรียมพอลิเมอร์ 100 ส่วน เวลาในการดึงอากาศ 1 ชั่วโมง และเวลาในการแช่ชิ้นตัวอย่าง 4 ชั่วโมง ภาวะที่เหมาะสมในการเตรียมตัวอย่างจาก บิวทิลแอคริเลตคือ ปริมาณเบนโซอิลเปอร์ออกไซด์ 2 ส่วนต่อสารละลายเตรียมพอลิเมอร์ 100 ส่วน เวลาในการดึงอากาศ 2 ชั่วโมง และเวลาในการแช่ชิ้นตัวอย่าง 4 ชั่วโมง ภาวะที่เหมาะสมในการเตรียมตัวอย่างจาก 2-เอทิล-เฮกซิลแอคริเลต คือ ปริมาณเบนโซอิลเปอร์ออกไซด์ 1 ส่วนต่อสารละลายเตรียมพอลิเมอร์ 100 ส่วน เวลาในการดึงอากาศ 2 ชั่วโมง และเวลาในการเตรียมตัวอย่าง 4 ชั่วโมง และเวลาในการดึงอากาศ 2 ชั่วโมง และเวลาในการเตรียมต่อสารละลายเตรียมพอลิเมอร์ 100 ส่วน เวลาในการดึงอากาศ 2 ชั่วโมง และเวลาในการแช่ชิ้นตัวอย่าง 4 ชั่วโมง

ไม้ยางพารา-คอมโพสิตที่เครียมขึ้นจากภาวะดังกล่าวให้ค่าการดูดซับน้ำที่ต่ำกว่าไม้ ยางพาราธรรมชาติโคยให้ค่าต่ำสุดที่ 22.63 % และยังปรับปรุงสมบัติเชิงกลโดยให้ค่ามอดูลัสยืด หยุ่นประมาณ 7013-8412 เมกกะปาสคาล ความทนแรงบิดงอประมาณ 117.6-130.3 เมกกะปาสคาล และการทนแรงอัดประมาณ 63.63-75.02 นิวตันต่อดารางมิลลิเมตร สัณฐานวิทยาของไม้ยางพารา-พอลิแอคริเลตคอมโพสิตศึกษาได้ด้วยกล้องจุลทรรศน์อิเลคตรอนแบบส่องกราด

ภาควิชา	ปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์	ลายมือชื่อนิสิต	Restar	พกาลิก	8 FEA
	ปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์			1	
ปีการศึกษา	2544	ลายมือชื่ออาจารย์	ัที่ปรึกษาร่วม		

4272415023: MAJOR PETROCHEMISTRY AND POLYMER SCIENCE

KEY WORD: RUBBER WOOD / IMPREGNATION / POLYACRYLATE / COMPOSITES

SOMPAT PRUCKCHATSIRI : MECHANICAL PROPERTIES OF

RUBBER WOOD-POLYACRYLATE COMPOSITES. THESIS ADVISOR:

ASSOC. PROF. AMORN PETSOM, Ph.D. 88 pp. ISBN 974-03-1312-4

This research involves the preparation of rubber wood-polyacrylate composites

from 3 types of acrylate monomer such as 2-hydroxy-propylacrylate, butylacrylate and 2-ethyl-

hexylacrylate by impregnation of rubber wood with monomer under reduced pressure then

subsequent polymerization by catalyst-heat treatment. Results of this study showed that the

suitable condition in the preparation of impregnated samples of 2-HPA was 2 phr. benzoyl

peroxide in prepolymer solution, 1 hour evacuating time and 4 hours soaking time and the

suitable condition in the preparation of impregnated samples of BA was 2 phr. benzoyl peroxide,

2 hours evacuating time and 4 hours soaking time. The suitable condition in the preparation of

impregnated samples of 2-EHA was 1 phr. benzoyl peroxide, 2 hours evacuating time and 4 hours

soaking time.

Impregnated samples obtained from the optimum conditions gave the lowest water

absorption at 22.63%, which was lower than natural rubber wood. Moreover, Mechanical

properties were improved. They gave modulus of elasticity at about 7013-8412 MPa, flexure

stress at about 117.6-130.3 MPa and compression parallel to grain at about 63.63-75.02 N/mm².

The morphology of the composites was examined using scanning electron microscopy.

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my advisor, Associate Professor Dr. Amorn Petsom, for his valuable instruction, concern, and encouragement throughout this study. I am grateful to Associate Professor Dr. Sophon Roengsumran for his kind instruction, valuable advice, and support.

I would like to thank the chairman and members of the Thesis committee for their valuable suggestions and comments.

I am indebted to Siam Chemical Industry Co. Ltd. for some chemicals and Bangkok Shuttle Industry Co. Ltd. for providing the rubber wood used in this research. My thanks are due to the Graduate School of Chulalongkorn University for partial fund of the thesis.

Thanks go towards everyone who has contributed suggestions and supports throughout this research.

Finally, I am grateful to my family for their love, understanding and great encouragement throughout the course of this study.

CONTENTS

	PAGE
Abstract in Thai	iv
Abstract in English	v
Acknowledgement	vi
Contents	vii
List of Tables	x
List of Figures	xi
List of Abbreviations	xiii
CHAPTER I INTRODUCTION	1
1.1 Object of the research work	2
1.2 Scopes of the research work	3
CHAPTER II THEORY AND LITERATURE REVIEW	4
2.1 Hardwoods and Softwoods	5
2.2 Rubber wood	8
2.2.1 Technical properties and utilization of rubber wood	8
2.2.2 Anatomy of rubber wood	8
2.2.3 Physical and mechanical properties of rubber wood	10
2.3 Wood Properties	10
2.3.1 Density	10
2.3.2 Hygroscopicity	11
2.3.3 Shrinkage and swelling	11
2.3.4 Deterioration of wood	11
2.3.5 Strength	12
2.4 Wood-Polymer Composites (WPC)	13
2.4.1 Impregnation process	13
2.4.2 The chemicals used for modifying wood	14
2.5 Properties of WPC	17
2.5.1 Mechanical properties	17

CONTENTS (continued)

	PAGE
2.5.2 Dimensional stability	18
2.5.3 Termite resistance	18
2.6 Literature reviews	18
CHAPTER III EXPERIMENTAL PROCEDURES	22
3.1 Materials.	22
3.1.1 Rubber wood	22
3.1.2 Monomers	22
	22
3.1.3 Initiator	
3.2 Apparatus and equipments	22
3.3 Experimental Procedures	24
3.3.1 Preparation of rubber wood-polymer composites	24
3.3.2 The study of the factors influencing in the preparation of	
rubber wood-polymer composites	25
3.3.3 Testing for physical properties	26
3.3.4 Mechanical properties	27
3.3.5 Termite resistance	30
3.3.6 Microstructure of WPC specimens	32
CHAPTER IV RESULT AND DISCUSSION	33
4.1 Characteristic of natural rubber wood	33
4.2 Effect of evacuating time on the polymer loading of WPC	34
4.3 Effect of soaking time on the polymer loading of WPC	35
4.4 Effect of initiator content on the properties of WPC	37
4.5 Evacuation of WPC specimens for termite resistance	49
4.6 Scanning Electron Microscopy (SEM) of WPC	50
4.7 Application of rubber wood-polymer composites	52
CHAPTER V CONCLUSION	54

CONTENTS (continued)

	PAGE
REFERENCES.	56
APPENDICES	58
Appendix A Data of testing properties	59
Appendix B Graphs of testing results	81
VITAE	88

LIST OF TABLES

TABLE		PAGE
2.1	Cell Types in Hardwoods and Softwoods	6
4.1	Characteristic of natural rubber wood and Redwood	33
4.2	Properties of rubber wood-polyacrylate composite prepared	
	from various evacuating times	34
4.3	Properties of rubber wood-polyacrylate composite	
	prepared from various soaking times	35
4.4	Properties of rubber wood-2-HPA composites prepared	
	from various initiator contents.	37
4.5	Properties of rubber wood-2-BA composites prepared	
	from various initiator contents	41
4.6	Properties of rubber wood-2-EHA composites prepared	
	from various initiator contents	44
4.7	The properties of rubber wood-polyacrylate composites	47
4.8	The result of rating of termite attack.	49
4.9	Comparison of the properties of rubber wood-polymer composites	
	with other woods	52
5.1	The suitable condition in preparation of rubber wood-composites	54

LIST OF FIGURES

FIC	SUKE	PAGE
2.1	The Unique Cell Structure of Non-pored Timber-Softwood	5
2.2	Scanning electron micrographs of (right) Ash and (left) Scots pine	6
2.3	Transverse sections of annual growth rings	7
2.4	Anatomy and physiology of rubber wood	9
2.5	The apparatus of impregnation process	14
3.1	Apparatus for vacuum impregnation	23
3.2	Dimension of specimen for flexure stress and MOE testing	28
3.3	The testing machine of flexure stress and MOE	28
3.4	Dimension of a specimen for compression Parallel to grain testing	29
3.5	Tested samples from compression parallel to grain testing	29
3.6	Typical ratings of termite attack on test blocks	31
3.7	Apparatus of termite testing.	32
4.1	Effect of evacuating time on polymer loading of impregnated samples	34
4.2	Effect of soaking time on polymer loading of impregnated samples	36
4.3	Physical properties of rubber wood-2-HPA composites prepared	
	from various initiator contents	38
4.4	Mechanical properties of rubber wood-2-HPA composites prepared	
	from various initiator contents	39
4.5	Physical properties of rubber wood-BA composites prepared	
	from various initiator contents	42
4.6	Mechanical properties of rubber wood-BA composites prepared	
	from various initiator contents	43
4.7	Physical properties of rubber wood-2-EHA composites prepared	
	from various initiator contents	45
4.8	Mechanical properties of rubber wood-2-EHA composites prepared	
	from various initiator contents	46
4.9	Scanning electron microscopy of transverse section of	
	empty rubber wood cells (2 000X)	50

LIST OF FIGURES (continued)

FIGURE		PAGE
4.10	Scanning electron microscopy of transverse section of	
	polymer filled cells (2,000X)	51
4.11	Scanning electron microscopy of transverse section of	
	polymer filled cells (2,000X)	52

LIST OF ABBREVIATIONS

WPC

Wood polymer composites

2-HPA

2-Hydroxy-propylacrylate

BA

Butylacrylate

2-EHA

2-Ethyl-hexylacrylate

BPO

Benzoyl peroxide

AM

Acrylamide

MMA

Methyl methacrylate

T

Tangential

R

Radial

L

Longitudinal

phr

Per hundred resin

N/mm²

Newton per square millimeter

MPa

Mega Pascal

MOE

Modulus of elasticity

WA

Water absorption

S

Volumetric swelling coefficient

ASE

Antiswell efficiency

SEM

Scanning electron microscopy