ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

2.1 การก่อสร้างกันทางบนชั้นดินอ่อน

การก่อสร้างคันทางโดยส่วนมากแล้วจะเป็นการก่อสร้างงานที่เกี่ยวกับ งานทางรถไฟ งานถนน งานเขื่อนกั้นน้ำหรือกักเก็บน้ำ เป็นค้น การก่อสร้างคันดินหรือคันทาง (Embankment) บนชั้นดินอ่อนโดย ทั่วไปแล้วจะพบกับปัญหาหลักๆ 2 ประการ คือ ปัญหาด้านการทรุดตัว (Settlement) และปัญหาในด้าน เสถียรภาพของเชิงลาด ปัญหาทั้งสองประการนั้นเป็นปัญหาที่มีผลต่อประสิทธิภาพและการใช้ประโยชน์ ของสิ่งก่อสร้างนั้นๆโดยตรง จากปัญหาทั้งสองอย่างนั้นจะมีผลให้เกิดการวิบัติของคันทางได้ การวิบัติ ของลันทางสามารถแยกออกได้ 2 ชนิด คือ

- 1. การวิบัติของคินคันทาง (Side Slope Failure)
- 2. การวิบัติของดินฐานราก (Foundation Failure)

ลักษณะการวิบัติทั้ง 2 ชนิคแสคงคังในรูปที่ 2.1

Sliding Failure รูปที่ 2.1 ลักษณะการวิบัติของคันทาง

การวิบัติชนิดแรกมักเกิดขึ้นเนื่องจากดินกันทางมีกำลังรับด้านการรับแรงที่ต่ำ และส่วนใหญ่แล้ว การวิบัติชนิดนี้จะเกิดกับกันทางที่มีดินฐานรองรับมีกำลังด้านการรับแรงที่สูง สำหรับการวิบัติชนิดที่สอง มักเกิดกับกันทางที่มีสมบัติด้านการรับแรงที่ต่ำของดินที่เป็นฐานรองรับ นั่นคือกรณีที่เป็นกันทางที่ก่อ สร้างบนชั้นดินอ่อน

โคยส่วนมากแล้วเมื่อจะทำการก่อสร้างสิ่งใคก็ตามมักจะพยายามหลีกเลี่ยงการก่อสร้างบนชั้น คินอ่อนหรือคินที่มีสมบัติในค้านวิสวกรรมไม่ดี แต่ในบางกรณีก็ไม่สามารถที่จะหลีกเลี่ยงปัญหาคังกล่าว ใด้ เมื่อไม่สามารถหลีกเลี่ยงได้ก็จำเป็นที่จะต้องทำการปรับปรุงสมบัติของดินให้สามารถทำการก่อสร้าง ได้และแก้ปัญหาทั้งสองประการที่กล่าวมาให้ลดน้อยลงมากที่สุด แต่การที่จะใช้วิธีใดในการปรับปรุง สมบัติของดินนั้นก็ขึ้นอยู่กับปัจจัยหลายๆประการ ซึ่งจำเป็นที่จะต้องเลือกวิธีการที่ให้ผลคุ้มก่าหรือดีที่สุด วิธีการก่อสร้างเพื่อลดและแก้ปัญหาที่กล่าวมาข้างต้นในปัจจุบันได้มีการศึกษาวิจัยเพื่อหาวิธีการที่เหมาะ สมกับสถานที่ และชนิดของดินหลากหลายวิธี เช่น

- การขุดลอกดินอ่อนออกแล้วนำดินที่มีสมบัติที่ดีกว่ามาถมแทนที่ วิธีนี้จะเหมาะสมกับกรณีที่ ชั้นดินอ่อนมีความหนาไม่มากนัก
- การปรับปรุงสมบัติของดินฐานราก (Soil Improvement)
- การใช้เสาเข็มรองรับน้ำหนักและถ่ายน้ำหนักลงสู่ดินชั้นที่มีสมบัติด้านการรับแรงที่ดีกว่า วิธี นี้จะเหมาะสมกับกรณีที่ชั้นดินอ่อนมีความหนามาก วิธีการนี้มักนำมาใช้แก้ปัญหาการวิบัติ ของดินฐานราก
- การใช้วัสดุเสริมแรง (Soil Reinforcement) วิธีการนี้จะเป็นวิธีที่นำวัสดุสังเคราะห์หรือวัสดุที่ มีตามธรรมชาติเสรมเพื่อเพิ่มกำลังรับแรง วิธีการนี้มักนำมาใช้แก้ปัญหาการวิบัติของดินกัน ทาง

Hausmann, M.R.(1990) ได้แยกประเภทวิธีการปรับปรุงสมบัติของคินสามารถแยกตามวิธีการ ออกได้ 4 ประเภทใหญ่ๆ ดังต่อไปนี้

- Mechanical Modification เป็นวิธีการปรับปรุงสมบัติของคินโดยการใช้เครื่องจักรกล ทำ การบดอัดให้คินมีความหนาแน่น และ กำลังรับน้ำหนักสูงขึ้น
- <u>Hydraulic Modification</u> เป็นวิธีการปรับปรุงสมบัติของคินโดยการลดปริมาณความชื้นใน ดิน เช่นวิธีการ Preloading เสาเข็มทราย Prefabricated Vertical Drain (PVD) เป็นต้น
- <u>Physical and Chemical Modification</u> เป็นวิธีการปรับปรุงสมบัติของดินโดยการเปลี่ยน แปลงสมบัติในทางฟิสิกส์ และเคมี เช่น การใช้ปูนซีเมนต์ผสม หรือ การใช้ปูนขาวทั้งการ ผสมโดยตรงหรือใช้วิธีอัดฉีดผสม (Grouting)
- Modification by Inclusions and Confinement เป็นวิธีการปรับปรุงโดยการใช้วัสดุเสริมใน มวลดินเพื่อช่วยในการรับน้ำหนัก เช่น การใช้วัสดุจำพวก Geosynthetic หรือวัสดุที่มีตาม ธรรมชาติ (เช่น ไม้ไผ่)

การปรับปรุงสมบัติของคินทั้ง 4 ประเภท มีความเหมาะสมและความยากง่าย ในการทำงานที่แตก ต่างกันออกไป ในที่นี้จะกล่าวถึงวิธีการปรับปรุงชนิค Modification by Inclusions and Confinement ซึ่ง เป็นวิธีการที่นำมาใช้ในงานก่อสร้างกันคินที่ทำการศึกษาวิจัย

2.2 การปรับปรุงสมบัติของดินโดยวิธีการใช้วัสดุเสริมแรง (Soil Reinforcement)

การปรับปรุงสมบัติของคินโดยวิธีการใช้วัสดุเสริมแรง เป็นวิธีการที่ใช้วัสดุสังเคราะห์จำพวก Geosynthetic หรือ วัสดุที่มีตามธรรมชาติ ช่วยในการเพิ่มกำลังรับน้ำหนักของมวลคิน วัสดุต่างๆที่นำมา เสริมแรงนั้นจะมีสมบัติในด้านกำลังรับรงดึงที่สูงเพื่อที่จะทำหน้าที่แทนมวลดินซึ่งไม่สามารถที่จะรับแรง ดึงได้ ซึ่งงานที่ใช้วัสดุเสริมแรง เช่น งานเขื่อน งานถนนหรือกันดิน กำแพงกันดิน งานเชิงลาด เป็นต้น Koerner, R.M. (1994) ได้ทำการศึกษาการใช้วัสดุ Geosynthetics. ในงานวิศวกรรมปฐพี โดยแยกวัสดุ สังเคราะห์จำพวก Geosynthetic ออกทั้งหมด 7 ชนิด คือ

- 1. Geotextiles.
- 2. Geogrids.
- 3. Geonets.
- 4. Geomembranes.
- 5. Geosynthetic Clay Liners.
- 6. Geopipes.
- 7. Geocomposites.

ทั้ง 7 ชนิด ที่กล่าวมานั้นมีความเหมาะสมกับงานที่แตกต่างกันแล้วแต่จุดประสงค์ของงานนั้นๆ สำหรับโกรงการก่อสร้างกันดินบ่อบำบัดน้ำเสียที่ทำการศึกษาวิจัยนี้ได้มีการใช้ Geosynthetic ชนิด Geotextile และยังมีการนำวัสดุที่มีตามธรรมชาติ คือ ไม้ไผ่ และเข็มไม้ ใช้ในการเพิ่มกำลังรับแรง ซึ่งเป็น วัสดุที่สามารถหาได้ง่าย

2.2.1 การใช้ Geotextile ในงานวิศวกรรมปฐพี

แผ่น Geotextile ที่นำมาใช้ในงานก่อสร้างที่เกี่ยวข้องกับงานค้านวิศวกรรมปฐพิสามารถ แยกตามหน้าที่ ได้ 4 ประเภทหลักๆ คือ

1. ทำหน้าที่ เป็นตัวแบ่งแยกวัสดุ (Separation of Dissimilar Materials)

เป็นการใช้ Geotextile แยกชั้นคินต่างชนิคแยกออกจากกันเพื่อมิให้มวลคินคลุก เกล้ากัน โดยการปูแผ่น Geotextile แยกระหว่างชั้นดินหรือชนิดของดิน สำหรับงานที่มีการใช้ Geotextile ทำหน้าที่ในการแบ่งแยกชั้นดินออกจากกัน เช่น งานถนน งานฐานรากรางรถไฟ เป็นต้น

2. ทำหน้าที่ เป็นตัวกรอง (Filtration)

เป็นการใช้ Geotetile เพื่อกรองวัสดุที่มีขนาดเล็กมิให้ไหลผ่านไปยังชั้นอื่นได้ แต่ น้ำสามารถไหลผ่านได้ ส่วนมากงานที่ใช้ Geotextile เพื่อทำหน้าที่ดังกล่าวจะเป็นงานที่เกี่ยวข้องกับการ ใหลชะล้างหรือการกัดเซาะของน้ำ เช่น งานระบายน้ำในสนาม งานระบายน้ำของกำแพงกันดิน งาน เขื่อนดิน หรือ การป้องกันการกัดเซาะแนวตลิ่งแม่น้ำ เป็นต้น

3. ทำหน้าที่เพิ่มอัตราการระบายน้ำ (Drainage)

Geotextile เป็นวัสคุที่ช่วยในการเร่งอัตราการระบายน้ำออกจากมวลดินได้เร็วขึ้น เพื่อเร่งการทรุคตัว และยังมีผลให้มีเสถียรภาพมากขึ้น งานที่ใช้ เช่น งานเร่งการทรุคตัวโดยการ Preload งานระบายน้ำกำแพงกันดิน งานระบายน้ำใต้อ่างเก็บน้ำ เป็นค้น

4. ทำหน้าในการเพิ่มกำลังรับน้ำหนัก (Reinforcement)

Geotextile เป็นวัสดุที่สามารถรับแรงคึงได้สูง ในขณะที่มวลดินไม่สามารถรับแรง ดึงได้ จึงมักใช้เสริมในงานปฐพีเพื่อช่วยในการรับน้ำหนัก และ เพื่อเพิ่มเสถียรภาพ งานที่ใช้ส่วนมากจะ เป็นงานที่เกี่ยวข้องกับเชิงลาด หรือ เสถียรภาพของงานกันดิน เป็นต้น

2.2.2 คุณสมบัติและการเลือกใช้ Geotextile

เกณฑ์การวิเคราะห์ออกแบบงานที่ใช้ Geotextile เสริมแรงจะต้องเลือก Geotextile ให้ เหมาะสม คุณสมบัติที่เป็นข้อกำหนดในการเลือก Geotextile มาใช้งานนั้นมีดังต่อไปนี้

- คุณสมบัติทางด้านฟิสิกส์
- 2. คุณสมบัติทางด้านกลศาสตร์
- 2.2.2.1 คุณสมบัติทางด้านฟิสิกส์ (Physical Properties)

กุณสมบัติทางด้านฟิสิกส์มีความสำคัญในการเลือกชนิดของแผ่นใยสังเคราะห์ นั่น คือ การเลือกลักษณะของเส้นใย หรือ วิธีการผลิตแผ่นใยสังเคราะห์ ทั้งนี้เนื่องจากแผ่นใยสังเคราะห์ที่มี ลักษณะของเส้นใย หรือวิธีการผลิตที่แตกต่างกันก็จะมีกุณสมบัติในทางฟิสิกส์ที่แตกต่างกัน เช่น ค่าการ ซึมผ่านของน้ำ ขนาดของช่องว่าง ความหนา เป็นต้น

2.2.2.2 คุณสมบัติทางกลศาสตร์ (Mechanical Properties)

คุณสมบัติทางกลศาสตร์มีความสำคัญอย่างยิ่งในการเลือกใช้ Geotextile ในการ เสริมแรง ทั้งนี้เพราะโดยส่วนมากแล้วการใช้ Geotextile ในการเสริมแรงนั้นเพื่อหน้าที่หลักคือรับแรงคึง ดังนั้นการเลือก Geotextile จำเป็นที่จะต้องมีกำลังรับแรงคึงที่เหมาะสม คุณสมบัติทางด้านกลศาสตร์ที่ เกี่ยวข้องมีดังต่อไปนี้

- 1. กำลังรับแรงดึง (Tensile Strength)
- 2. ค่าโมดูลัส (Tensile Modulus)
- กำลังรับแรงเนื้อนระหว่างมวลดินกับ Geotextile (Siol Geotextile Friction)
- 4. กำลังความด้านทานต่อการกระแทก การฉีกขาด
- 5. ความคงทน อายุการใช้งาน

ตารางที่ 2.1 คุณสมบัติของ Geotextile [Hausmann.,1990]

ชนิดของ Geotextile	Tensile Strength , kN/m.	Elongation (max load) ,%	
Wovens.			
- Monofilaments	20 - 80	5 – 35	
- Multifilaments	40 - 800	5 – 30	
- Tape	8 - 90	15 – 20	

ชนิคของ Geotextile	Tensile Strength, kN/m.	Elongation (max load) ,%	
Nonwovens :			
- Melt bonded	3 – 25	20 - 60	
- Needle punched	7 – 90	50 - 80	
- Resin bonded	4-30	30 - 50	
Knitteds:	2 – 5	300 - 600	
- Welf	20 - 120	12 –15	
- Warp	15 - 800	15 - 30	
Stich bonded			

ตารางที่ 2.1(ต่อ) คุณสมบัติของ Geotextile [Hausmann, 1990]

ตารางที่ 2.2 การเลือกใช้ แผ่นใยสังเคราะห์ (Geotextile) [Hausmann.,1990]

Application area	Fabric Strength	Fabric modulus
Description	kN/m.	kN/m.
Retaining Structure		
- Low height	13.1 – 17.5	35.0 - 52.4
- Moderate height	17.5 - 21.9	43.7 - 87.4
- High height	21.9 - 26.2	61.2 – 175
Slope Stabilization		
- Close spacing	13.1 - 21.9	26.2 - 61.2
- Moderate spacing	17.5 – 26.2	35.0 - 70.0
- Wide spacing	26.2 - 52.4	43.7 – 175
Unpaved Roads.		2
- CBR ≤ 4	13.1 - 21.9	52.4 - 87.4
- CBR ≤ 2	17.5 - 26.2	87.4 – 175
- CBR ≤ 1	21.9 - 52.4	175 – 525
Foundation		
- Nominal	26.2 - 69.9	175 – 350
- Moderate	43.7 - 87.4	350 - 874
- Large	69.9 - 175	700 – 1750
Embankment over soft soils.	1	
- Str.* > 9.6 kPa.	87.4 – 262	874 – 1750
- Str.* > 4.8 kPa.	175 – 350	1750 – 3500
- Str.* > 2.4 kPa.	262 - 524	3500 - 6120

Application area	Fabric Strength	Fabric modulus	
Description	kN/m.	kN/m.	
Mattress or Load Support (composites)			
- Moderate	350 - 700	874 – 1750	
- Heavy	700 – 1050	1750 - 4370	
Direct road support (composites)			
- Moderate	87.4 - 875	874 – 2620	
- Heavy	875 – 2100	2620 - 7000	
หมายเหตุ Str.* = กำลังรับแรงเฉือนของมวลคินที่เป็นฐานรองรับ			

ตารางที่ 2.2(ต่อ) การเลือกใช้ แผ่นใยสังเคราะห์ (Geotextile) [Hausmann.,1990]

กำลังรับแรงเฉือนระหว่าง มวลดินกับ Geotextile พิจารณาเป็นไปตามกฏการวิบัติของมวลดิน ของ Mohr Coulomb โดยที่กฏการวิบัติของมวลดินตาม Mohr Coulomb เขียนอยู่ในฟังก์ชันของก่าความ เชื่อมแน่น (Cohesion Intercept) และก่ามุมต้านทานภายใน (Internal Friction of Angle) ดังแสดงในสม การที่ 2.1

$$\tau = c + \sigma_n \tan \phi \qquad \dots \dots (2.1)$$

ในกรณีที่มีการเสริมแรงด้วย Geotextile กำลังรับแรงเมือนระหว่าง มวลดินกับแผ่นใยสังเคราะห์ มีก่าดังสมการที่2.2

ค่าสัมประสิทธิ์หรือประสิทธิภาพทั้งสองจะมีค่าระหว่าง 0 ถึง 1.0

Martin et al.[1984] ได้ทำการศึกษาหาด่ามุมต้านทานระหว่างมวลดินกับแผ่นใยสังเคราะห์ (δ) เป็นการศึกษามุมต้านทานระหว่างมวลดินที่ไม่มีความเชื่อมแน่นกับแผ่นใยสังเคราะห์ ซึ่งให้ผลดังแสดง ในตารางที่ 2.3 และจากการศึกษาของ Kruse,T. and Voigt,T.(1992) แสดงดังในรูปที่ 2.2

ตารางที่ 2.3 ค่ามุมเสียคทานระหว่าง มวลคินที่ไม่มีความเชื่อมแน่นกับแผ่นใยสังเคราะห์

Geotextile Type	Concrete Sand $(\phi = 30^{\circ})$	Rounded Sand ($\phi = 28^{\circ}$)	Silty Sand ($\phi = 26^{\circ}$)
Woven , monofilament	26 (84%)	-	-
Woven , slit-film	24 (77%)	24 (84%)	23 (87%)
Nonwoven, heat-bonded	26 (84%)	-	-
Nonwoven, needle-punched	30 (100%)	26 (92%)	25 (96%)

[Kruse, T.and Voigt, T., 1992]

2.2.3 การใช้แผ่นใยสังเคราะห์สำหรับงานกันทาง

Koemer, R.M. (1994) ได้อธิบายถึงการใช้แผ่นใยสังเคราะห์ในงานคันดินเป็นการเสริม เพื่อเพิ่มเสถียรภาพของเชิงลาด และ เพื่อเพิ่มกำลังการรับแรง โดยแผ่นใยสังเคราะห์จะทำหน้าที่ รับแรงดึงเป็นหลักเพื่อต้านทานการวิบัติของคันดิน ลักษณะของการเสริม Geotextile ในงานก่อ สร้างคันทางแสดงคังรูปที่ 2.3

รูปที่ 2.3 ลักษณะของการเสริม Geotextile ในงานก่อสร้างคันทาง[Koerner, R.M.,1994]

การออกแบบเสริมแผ่นใยสังเคราะห์ สำหรับงานคันทางจำเป็นที่จะด้องพิจารณาลักษณะการ วิบัติของคันทางเมื่อเสริมแผ่นใยสังเคราะห์ การวิบัติของคันทางที่เสริมแผ่นใยสังเคราะห์ ที่อาจจะเกิดขึ้น มีลักษณะต่างๆกัน ดังแสดงในรูปที่ 2.4 ซึ่งสามารถแยกออกได้ 5 แบบ คือ

 การวิบัติแบบ Bearing Capacity การวิบัติแบบลักษณะนี้จะเกิดขึ้นในกรณีที่มวลดินฐานราก ไม่สามารถที่จะรองรับน้ำหนักจากกันทางได้ ดังแสดงในรูปที่ 2.4ก ดังนั้นในการออกแบบจำเป็นที่จะต้อง พิจารณาค่ากำลังแบกทานที่ยอมให้ของมวลดินฐานราก ดังสมการที่ 2.5

$$q_{allow} = \frac{cN_c}{FS.} \qquad \dots (2.5)$$

เมื่อ q_{allow} =γ.H_{allow} = กำลังแบกทานที่ยอมให้ของมวลดินฐานราก H_{allow} = ความสูงของคันดินที่ยอมให้ c = กำลังรับแรงเฉือนของมวลดินฐานราก N_c = Bearing capacity factor FS. = ค่าอัตราส่วนความปลอคภัย

 การวิบัติแบบ Global Stability การวิบัติชนิดนี้สามารถเกิดขึ้นได้ในกรณีที่การออกแบบใช้ Geotextile ที่มีกำลังรับแรงดึงต่ำหรือมีกำลังรับแรงดึงไม่เพียงพอ ลักษณะการวิบัติจะเกิดแนวการวิบัติผ่าน กันดินและ Geotextile ดังแสดงในรูปที่ 2.4ข. ดังนั้นการออกแบบจำเป็นที่จะต้องใช้ Geotextile ที่มีกำลัง รับแรงดึงที่เพียงพอ ซึ่งสามารถกำนวณได้จาก

$$T_{allow} = \frac{T_{ult}}{RF_{ID} \times RF_{CR} \times RF_{CD} \times RF_{BD}} \qquad \dots (2.6)$$

ເນື່ອ

RF_{ID} , RF_{CR} , RF_{CD} , RF_{BD} = เป็นก่าตัวกูณลดกำลังเนื่องจากผลต่างๆ ดังแสดงในตารางที่ 2.4

	Rang of Reduction Factors.			
	Installation		Chemical	Biological
Application Area	Damage,	Creep , <i>RF_{CR}</i>	Degradation,	Degradation ,
	RF _{ID}		RF _{CD}	RF _{BD}
Separation	1.1 to 2.5	1.5 to 2.5	1.0 to 1.5	1.0 to 1.2
Cushioning	1.1 to 2.0	1.2 to 1.5	1.0 to 2.0	1.0 to 1.2
Unpave roads	1.1 to 2.0	1.5 to 2.5	1.0 to 1.5	1.0 to 1.2
Walls	1.1 to 2.0	2.0 to 4.0	1.0 to 1.5	1.0 to 1.3
Embankments	1.1 to 2. 0	2.0 to 3.5	1.0 to 1.5	1.0 to 1.3
Bearing capacity	1.1 to 2.0	2.0 to 4.0	1.0 to 1.5	1.0 to 1.3
Slope stabilization	1.1 to 1.5	2.0 to 3.0	1.0 to 1.5	1.0 to 1.3
Pavement overlays	1.1 to 1.5	2.0 to 2.0	1.0 to 1.5	1.0 to 1.1
Railroad(filter/sep.)	1.5 to 3.0	1.0 to 1.5	1.5 to 2.0	1.0 to 1.2
Flexible forms	1.1 to 1.5	1.5 to 3.0	1.0 to 1.5	1.0 to 1.1
Silt fences	1.5	1.5 to 2.5	1.0 to 1.5	1.0 to 1.1

ตารางที่ 2.4 ก่าตัวคูณลดกำลัง $RF_{_{ID}}$, $RF_{_{CR}}$, $RF_{_{CD}}$, $RF_{_{BD}}$ [Koemer,R.M.,1994]

 การวิบัติแบบ Elastic Deformation การวิบัติชนิดนี้จะเกิดขึ้นเนื่องจากการเลือกใช้ Geotextile ที่มีคุณสมบัติในด้านเปอร์เซนการยืด – หดตัว ที่สูงเกินไปทำให้มีการทรุดตัวที่สูงตามไปด้วย ดังแสดงใน รูปที่ 2.4ก. U.S. Army Corps.of Engineering กำหนดให้มีเปอร์เซนการยืด-หด ตัวได้ไม่เกิน 10%

$$E = \frac{I_{reqd.}}{\varepsilon_{r}}$$

$$E = \frac{T_{reqd.}}{0.10}$$

$$E_{reqd.} = 10T_{reqd.}$$
.....(2.7)

เมื่อ $E_{reqd.} = -$ ก่าโมดูลัสของ Geotextile ที่ต้องการ
$$T_{reqd.} = -$$
ก่าหน่วยแรงดึงที่ด้องการของ Geotextile

 การวิบัติแบบ Pullout or Anchorage เป็นลักษณะการวิบัติที่เกิดขึ้นเนื่องจากการใช้ Geotextile ที่มีระยะฝังในมวลดินนอกขอบเขตการวิบัติที่ไม่เพียงพอ ดังแสดงในรูปที่ 2.4ง. ในการออกแบบสามารถ คำนวณได้จาก

เมื่อ

$$L = L_e + L_R \qquad \dots (2.8)$$
$$T_{act.} = 2\tau_R L_e = 2.(c_a + \sigma_v \tan \delta).L_e$$

$$L_{e} = \frac{T_{act.}}{2(c_{a} + \sigma_{v} \tan \delta)}$$

$$L_{e} = \frac{T_{act.}}{2.\eta_{e}(c + \sigma_{v} \tan \phi)} \qquad \dots (2.9)$$

$$L_{e} = \frac{T_{allow} \cdot (FS.)}{2\tau \eta_{e}} \qquad \dots (2.10)$$

ความยาวทั้งหมดของ Geotextile เมื่อ L = ระยะกวามยาวของ Geotextile ที่ฝังยึดนอก ขอบเขตการวิบัติ L = ระยะความยาวของ Geotextile ที่ฝังยึดภายในขอบเขตการวิบัติ L_R = หน่วยแรงดึงที่ยอมให้ของ Geotextile T_{allow} = หน่วยแรงดึงที่เกิดขึ้นจริงใน Geotextile T_{act.} = Anchorage or Pullout efficiency มีค่า 0.8 - 1.2 $\eta_{_e}$ =

5. การวิบัติแบบ Lateral Spreading เป็นลักษณะการวิบัติที่เกิดขึ้นเนื่องจากค่ากำลังรับแรงเนือน ระหว่างมวลดินกับ Geotextile มีค่าน้อย ส่งผลให้เกิดการเลื่อนไถลของดินคันทางไปตามแนว Geotextile ดังแสดงในรูปที่ 2.4จ ในการออกแบบจำเป็นที่จะต้องเลือกแผ่นใยสังเคราะห์ที่ให้ค่ากำลังรับแรงเนือน ระหว่างมวลดินกับแผ่นใยสังเคราะห์ที่เพียงพอโดยพิจารณาจาก

$$\begin{split} P_{a} &= \tau. L \\ P_{a} &= (\sigma_{v(avg.)} \tan \delta) L \\ 0.5\gamma H^{2} \kappa_{a} &= (0.5 \gamma. H. \tan \delta) L \\ \tan \delta_{reqd} &= \frac{H \kappa_{a}}{L} \qquad \dots (2.11) \\ \tan \delta_{reqd.} &= \eta_{e\phi} \tan \phi \; (\eta_{e} \, \Bar{in} \Bar$$

เมื่อ

รูปที่ 2.4 ลักษณะการวิบัติของคันคินที่เสริมแรงด้วยแผ่นใยสังเคราะห์ [Koemer, R.M., 1994]

2.3 เทกนิกการก่อสร้างโดยวิธีการใช้เสาเข็ม

การก่อสร้างโดยวิธีนี้เป็นวิธีที่ค่อนข้างจะมีความยุ่งยาก ซึ่งจำเป็นที่จะต้องใช้เครื่องจักรกลหนัก ซึ่ง วิธีนี้เป็นการใช้เสาเข็มรับน้ำหนักและส่งถ่ายแรงลงสู่ดินชั้นที่มีสมบัติด้านวิศวกรรมที่ดีกว่า ในปัจจุบัน การใช้เข็มหรือ เสาเข็มในงานก่อสร้างคันดินมีอยู่หลายวิธีด้วยกัน สำหรับในประเทศไทยวิธีที่นิยมใช้กัน เช่น

- เข็มซีเมนต์ (Cement Column)
- เขิ่มทราย (Sand Column)
- เข็มหิน (Stone Column)
- เสาเข็มไม้หรือเสาเข็มคอนกรีต
- การใช้เข็มหรือเสาเข็มร่วมกับการใช้วัสคุ Geosynthetics.

ในแต่ละวิธีที่กล่าวมานั้นมีความเหมาะสมที่แตกต่างกันขึ้นอยู่กับปัจจัยหลายประการ เช่น ชนิดของดิน ฐานราก สถานที่ ค่าใช้จ่าย เป็นด้น ลักษณะของการใช้เสาเข็มเสริมแรงในงานกันทางแสดงดังในรูปที่ 2.5

รูปที่ 2.5 ลักษณะการเสริมเสาเข็มในงานก่อสร้างคันทาง

2.3.1 การใช้เข็มเสริมเสถียรภาพของเชิงลาด

การใช้เสาเข็มเสริมในงานเสถียรภาพของเชิงลาคในการวิเคราะห์เสถียรภาพจำเป็นที่จะต้องคำนึง ถึงความสามารถในการรับแรงค้านข้างของเสาเข็ม (Lateral Resistance of Pile) ลักษณะการใช้เสาเข็ม เสริมในงานเพิ่มเสถียรภาพแสดงคังรูปที่ 2.6

รูปที่ 2.6 ลักษณะการใช้เสาเข็มเสริมในงานเพิ่มเสถียรภาพ [Poulos, H.G.1980]

2.3.1.1 การวิเคราะห์แรงต้านทานด้านข้างของเสาเข็มโดยโดยวิธีของ Broms, B.B. (1974)

2.3.1.1.1 การวิเคราะห์แรงต้านทานด้านข้างของเสาเข็มในดินเหนียว

(Laterall Resistance of Piles in Cohesive Soils)

Broms, B.B. (1974) ได้เสนอวิธีการวิเคราะห์ความสามารถในการรับแรงด้านข้างของ เสาเข็มในดินเหนียว โดยแยกประเภทของเสาเข็มออกเป็น 2 ประเภท คือ

- 1. แบบ เสาเข็มหัวอิสระ (Free Head or Unrestrained Pile)
- เสาเข็มสั้น (Short Pile)
- เสาเข็มยาว (Long Pile)
 - 2. และแบบเสาเข็มหัวยึด (Restrained Pile)
- เสาเข็มสั้น (Short Pile)
- เสาเข็มยาว (Long Pile)

โดยลักษณะการวิบัติของเสาเข็มทั้งสองประเภทแสดงดังรูปที่ 2.7 และลักษณะของการกระจาย ของหน่วยแรงแสดงดังรูปที่ 2.8

ก. เสาเข็มชนิดหัวอิสระ

ข. เสาเข็มชนิดหัวยึด

รูปที่ 2.7 ลักษณะการวิบัติของเสาเข็มรับแรงกระทำค้านข้าง [Broms, B.B.1964]

หลักการพิจารณาเสาเข็มว่าเป็นประเภทใคนั้นขึ้นอยู่กับค่าสติฟเนสระหว่างเสาเข็มกับมวลดิน ดัง แสคงในตารางที่ 2.5

รูปที่ 2.8 ลักษณะการกระจายของหน่วยแรงภายใต้แรงกระทำค้านข้าง [Broms, B.B.1964]

ตารางที่ 2.5 การพิจารณาชนิดของเข็ม [Tomlinson,M.J 1991]

Dile Ture	Soil Modulus			
rite Type	Linear Increasing	Constant		
Rigid (free head)	$L \leq 2T$	$L \leq 2R$		
Elastic (free head)	$L \ge 4T$	$L \ge 3.5R$		

เมื่อ L = ระยะความยาวฝังจมของเสาเข็มในดิน

$T = s \sqrt{\frac{EI}{n_h}}$	(2.12)
$R = 4 \sqrt{\frac{EI}{EI}}$	(2.13)

$$K \approx \frac{k_1}{5R} \qquad \dots \dots (2.14)$$

ตารางที่ 2.6 ค่า Subgrade Reaction (k_1)

Consistency	Stiff	Very Stiff	Hard
Undrained Shear Strength , (C_u) kN/m ²	50 - 100	100 - 200	> 200
Range of k_1 MN/m ³ .	15 - 30	30 - 60	> 60
Soil modulus (K) MN/m ²	3 – 6	6 – 12	> 12

แรงกระทำด้านข้างที่เสาเข็มสามารถรับได้นั้นแยกการวิเคราะห์ตามชนิดและประเภทของเสาเข็ม ดังต่อไปนี้

- 1. แบบเลาเข็มหัวอิสระ (Free Head or Unrestrained Pile)
 - n. แบบ เสาเข็มสั้น (Short Pile)

การวิบัติเกิดขึ้นของเสาเข็มประเภทนี้ส่วนมากเนื่องจากคินไม่สามารถที่จะรองรับหรือ ด้านทานแรงกระทำด้านข้างได้ ลักษณะการแอ่นตัวด้านข้าง แรงปฏิกิริยาของดิน และการกระจายของ โมเมนต์แสดงดังในรูปที่ 2.10 แรงต้านทานด้านข้าง (P_{ut}) สามารถกำนวณได้โดยการใช้กราฟที่แสดงใน รูปที่ 2.11 หรือสมการที่ 2.15 ถึงสมการที่ 2.17

รูปที่ 2.10 ลักษณะการแอ่นตัวด้านข้าง แรงปฏิกิริยาของดิน และการกระจายของ โมเมนต์ ของเสาเข็มสั้น [Broms, B.B.1964]

$$f = \frac{P}{9C_{\mu}D} \qquad \dots \dots (2.15)$$

$$M_{max}^{pos} = P(e+1.5D+0.5f)$$
(2.16)

$$M_{max}^{\rho os} = 2.25D g^2 \dots (2.17)$$

รูปที่ 2.11 แรงด้านทานด้านข้างของเสาเข็มสั้น [Broms, B.B.1964]

ข. เสาเข็มยาว (Long Pile)

การวิบัติเกิดขึ้นของเสาเข็มประเภทนี้ส่วนมากเนื่องจากเสาเข็มไม่สามารถที่จะรอง รับหรือต้านทานแรงกระทำด้านข้างได้ ลักษณะการแอ่นตัวด้านข้าง แรงปฏิกิริยาของดิน และการกระจาย ของโมเมนต์แสดงดังในรูปที่ 2.12 แรงด้านทานด้านข้าง (*P_{ult}*) สามารถคำนวณได้โดยการใช้กราฟที่แสดง ในรูปที่ 2.13

รูปที่ 2.13 แรงต้านทานด้านข้างของเสาเข็มยาว [Broms, B.B.1964]

2. แบบ เสาเข็มหัวยึด (Restrained Pile)

ก. แบบ เสาเข็มสั้น (Short Pile)

การวิบัติเกิดขึ้นของเสาเข็มประเภทนี้ส่วนมากเนื่องจากดินไม่สามารถที่จะรองรับหรือ ต้านทานแรงกระทำด้านข้างได้ และเสาเข็มเกิดการเคลื่อนตัวไปตามแนวนอน ลักษณะการแอ่นตัวด้านข้าง แรงปฏิกิริยาของดิน และการกระจายของโมเมนต์แสดงดังในรูปที่ 2.14 แรงต้านทานด้านข้าง (P_{ult}) สามารถกำนวณได้โดยการใช้กราฟที่แสดงในรูปที่ 2.11 หรือดังสมการที่ 2.18

$$P_{ult} = 9C_u D(L-1.5D)$$
(2.18)

 $P_{ult} (0.5L + 0.75D) \leq M_{vield}$

รูปที่ 2.14 ลักษณะการแอ่นตัวค้านข้าง แรงปฏิกิริยาของคิน และการกระจายของ โมเมนต์ของเสาเข็มสั้นชนิคหัวยึด[Broms, B.B.1964]

บ. เสาเข็มยาวปานกลาง (Intermediate Pile)

การวิบัติของเสาเข็มประเภทนี้ส่วนมากเกิดขึ้นเนื่องจากเกิดโมเมนต์คัคสูงสุดใต้จุดยึคมี ค่ามากกว่ากำลังกลากของเสาเข็ม ลักษณะการแอ่นตัวค้านข้าง แรงปฏิกิริยาของดิน และการกระจายของ โมเมนต์แสดงดังในรูปที่ 2.15 แรงค้านทานค้านข้าง (*P_{ult}*) สามารถกำนวณได้จากสมการที่ 2.15 และสม การที่ 2.16

รูปที่ 2.15 ลักษณะการแอ่นตัวค้านข้าง แรงปฏิกิริยาของดิน และการกระจายของ โมเมนต์ของเข็มยาวปานกลางชนิดหัวยึด [Broms, B.B.1964]

ถาเข็มยาว (Long Pile)

การวิบัติเกิดขึ้นของเสาเข็มประเภทนี้ส่วนมากเนื่องจากเกิด Plastic hing 2 จุด โดยที่จุด แรกเกิดขึ้นใต้จุยึดและจุดที่สองเกิดที่ตำแหน่งความลึก 1.5D+f ลักษณะการแอ่นตัวด้านข้าง แรง ปฏิกิริยาของดิน และการกระจายของโมเมนต์แสดงดังในรูปที่ 2.16 แรงด้านทานด้านข้าง (P_{ut}) สามารถ กำนวณได้จากสมการที่ 2.19

$$P_{ult} = \frac{2M_{yield}}{(1.5D + 0.5f)} \dots \dots (2.19)$$

โดยที่

รูปที่ 2.16 ลักษณะการแอ่นตัวด้านข้าง แรงปฏิกิริยาของคิน และการกระจายของโมเมนต์ ของ เสาเข็มยาวชนิดหัวยึด [Broms,B.B.1964]

2.3.1.1.2 การวิเคราะห์แรงต้านทานด้านข้างของเสาเข็มในดินทราย

(Lateral Resistance of Piles in Cohesionless Soils)

เสาเข็มรับแรงด้านข้างที่อยู่ในชั้นดินทรายมีลักษณะการวิบัติและการกระจาย ของหน่วยแรงดันทางด้านข้างแสดงดังรูปที่2.17 พฤติกรรมการเคลื่อนตัวของมวลดินที่อยู่ด้านหน้าของเสา เข็มจะเกิดการเคลื่อนตัวขึ้นในลักษณะของ Heave และพยายามเคลื่อนดัวอ้อมเสาเข็มไปยังด้านหลังเสา เข็ม ในส่วนของมวลดินที่อยู่ด้านหลังของเสาเข็มจะเกิดการเคลื่อนตัวลงโดยการแทนที่ช่องว่างที่เกิดจาก การเคลื่อนตัวของเสาเข็ม การกระจายของหน่วยแรงดันด้านข้าง (*Q*) ที่ระดับความลึก z จากผิวดินสมมติ ให้มีก่าเท่ากับ

$$Q = 3D \gamma Z K_p$$
(2.20)
เมื่อ $K_p =$ Coefficient of passive earth pressure $= \frac{1 + sin \phi}{1 - sin \phi}$
 $D =$ ขนาดเส้นผ่าศูนย์กลางของเสาเข็ม
 $Z =$ ความลึกจากผิวดิน

รูปที่ 2.17 ลักษณะการวิบัติและการกระจายของหน่วยแรงภายใต้แรงกระทำค้านข้าง

ของเสาเข็มในคินทราย (Broms, 1964)

Brom,1964 ได้แยกพิจารณาเสาเข็มรับแรงกระทำด้านข้างที่อยู่ในคินทรายเช่นเคียวกับเสาเข็มรับ แรงกระทำด้านข้างที่อยู่ในดินเหนียว คือ

1. แบบ เสาเข็มหัวอิสระ (Free Head or Unrestrained Pile)

- เสาเข็มสั้น (Short Pile)
- เสาเข็มยาว (Long Pile)

2. แบบเสาเข็มหัวยึด (Restrained Pile)

- เสาเข็มสั้น (Short Pile)
- เสาเข็มยาว (Long Pile)

เสาเข็มรับแรงกระทำด้านข้างแต่ละชนิดมีรายละเอียดการวิเคราะห์ดังต่อไปนี้

1. เสาเข็มหัวอิสระ (Free Head or Unrestrained Pile)

ก. เสาเข็มสั้น (Short Pile)

ลักษณะการวิบัติ การกระจายของหน่วยแรงและ โมเมนต์ที่เกิดขึ้นของเสาเข็มประเภทนี้ จะขึ้นอยู่กับความลึกระยะฝังของเสาเข็มคังแสคงในรูปที่ 2.18 ลักษณะการวิบัติจะเกิดการหมุนรอบจุดๆ หนึ่งใต้ผิวดินสอดกล้องกับหน่วยแรงคันด้านข้างและ โมเมนต์ พิจารณาแรงกระทำทางด้านข้าง (P) และ แรงเยื้องศูนย์ (R) มีผลให้เกิดโมเมนต์(M_d) ที่ตำแหน่งปลายเสาเข็มมีก่าเท่ากับ

$$M_d = P(L+e) + R.a \qquad \dots (2.21)$$

ก่าโมเมนต์ดังกล่าวมีก่าสอดคล้องกับโมเมนต์ที่จุดวิบัติของเสาเข็ม ($M_{
m p}$) ซึ่งสามารถกำนวณได้จาก

$$M_r = 0.5\gamma DL^3 K_p$$
(2.22)

เมื่อพิจารณาที่จุดวิบัติของเสาเข็ม ($M_{_d}=M_{_f}$) และพิจารณากรณีที่แรงเยื่องศูนย์ (R) มีก่าเท่ากับ ศูนย์ จะได้แรงด้านทานด้านข้างของเสาเข็มมีก่าเท่ากับ

$$P = \frac{0.5\gamma DL^{3}K_{p}}{(e+L)} \qquad \dots \dots (2.23)$$

ในทางกลับกันเมื่อพิจารณาที่จุดวิบัติของเสาเข็ม ($M_a = M_p$) และพิจารณากรณีที่แรงกระทำ ด้านข้าง(P)มีก่าเท่ากับศูนย์ จะได้แรงแรงเยื้องศูนย์ (R) ของเสาเข็มมีก่าเท่ากับ

$$R = \frac{0.5\gamma DL^3 K_p}{a} \qquad \dots (2.24)$$

นอกจากนี้สามารถวิเคราะห์ได้โดยอาศัยกราฟกวามสัมพันธ์ระหว่าง *P / K _pY D*³ กับอัตราส่วน ระหว่าง *L / D* ดังแสดงในรูปที่ 2.19

รูปที่ 2.18 ลักษณะการวิบัติ การกระจายของหน่วยแรงและ โมเมนต์ ของเสาเข็มสั้นหัวอิสระ [Broms,1964]

รูปที่ 2.19 แรงด้านทานด้านข้างสูงสุดของเสาเข็มสั้น [Broms,1964]

เสาเข็มยาว (Long Pile)

ลักษณะการวิบัติ การกระจายของหน่วยแรงและโมเมนต์ที่เกิดขึ้นของเสาเข็มประเภทนี้ แสดงดังในรูปที่ 2.20 การวิบัติจะเกิดขึ้นในกรณีที่เสาเข็มไม่สามารถรองรับหรือด้านทานแรงกระทำด้าน ข้างได้ มีผลให้เสาเข็มเกิดการวิบัติก่อนโดยที่มีจุด Plastic hinge ที่ตำแหน่งระยะ f จากผิวดินโดยที่ ตำแหน่งดังกล่าวเกิดโมเมนต์ดัดสูงสุด(M^{pos}_{max}) โดยที่ตำแหน่งระยะ f ถำนวณได้จาก

$$f = 0.82 \sqrt{\frac{P}{\gamma DK_p}} \qquad \dots (2.25)$$

และ โมเมนต์คัคสูงสุค(M ^{pos}) มีค่าเท่ากับ

$$M_{max}^{pos} = P(e+067f) + Q.a \qquad \dots (2.20)$$

พิจารณาที่จุดวิบัติของเสาเข็มเมื่อมีก่าโมเมนต์คัคัดสูงสุด (M^{pos}) เท่ากับก่าโมเมนต์คัคของเสาเข็มที่ สามารถรองรับได้ (M_{yield}) กรณีที่ให้แรงกระทำ (Q) มีก่าเท่ากับศูนย์ จะได้

$$P = \frac{M_{yield}}{\left(e + 0.54\sqrt{\frac{P}{\gamma DK_{\rho}}}\right)} \qquad \dots (2.26)$$

หรือสามารถวิเคราะห์ได้โดยอาศัยกราฟความสัมพันธ์ระหว่าง $P/K_p \gamma D^3$ กับอัตราส่วนระหว่าง $M_{yield} / (D^4 \gamma K_p)$ ดังแสดงในรูปที่ 2.21

รูปที่ 2.20 ลักษณะการวิบัติ การกระจายของหน่วยแรงและโมเมนต์ ของเสาเข็มยาวหัวอิสระ [Broms,1964]

- 2. เสาเข็มหัวยึด (Restrained Pile)
 - ก. เสาเข็มสั้น (Short Pile)

ในกรณีของเสาเข็มชนิดนี้จะเกิดการวิบัติของมวลคิน ในขณะที่เสาเข็มรับแรงกระทำยัง ไม่ถึงจุดคลาก (Yield) ลักษณะการวิบัติ การกระจายของหน่วยแรงคันด้านข้างและ โมเมนต์ที่เกิดขึ้นแสดง ดังรูปที่ 2.22 เมื่อพิจารณาให้แรงกระทำด้านข้างมีก่าเท่ากับแรงต้านทานด้านข้างสูงสุดของมวลดิน จะได้

$$P = 1.5 \gamma L^2 D.K_p \qquad \dots \dots (2.27)$$

หรือสามารถวิเคราะห์ได้โดยอาศัยกราฟความสัมพันธ์ระหว่าง $P / K_p \gamma D^3$ กับอัตราส่วนระหว่างL / Dด้งแสดงในรูปที่ 2.19

รูปที่ 2.22 ลักษณะการวิบัติ การกระจายของหน่วยแรงดันด้านข้างและโมเมนต์ ของเสาเข็มสั้นแบบหัวยึด [Brom, 1964]

ข. เสาเข็มยาวปานกลาง (Long Pile)

ลักษณะการวิบัติ การกระจายของหน่วยแรงคันด้านข้างและโมเมนต์ที่เกิดขึ้นแสดงดัง รูปที่ 2.23 การวิบัติเกิดขึ้นเนื่องจากเกิดโมเมนต์ลบที่บริเวณใต้ฐานของหัวยึคมีค่าเท่ากับโมเมนต์ที่จุดคราก ของเสาเข็ม แรงกระทำทางด้านข้างสูงสุดสามารถคำนวณใด้โดยอาศัยหลักการสมดุลย์ของหน่วยแรงคัน ทางด้านข้างของเสาเข็ม โดยมีก่าเท่ากับ

$$P = 0.5\gamma D L^{2} K_{p} - M_{yield} \qquad \dots (2.28)$$

หรือสามารถวิเคราะห์ได้โดยอาศัยกราฟความสัมพันธ์ระหว่าง *P / K_p γ D*³ กับอัตราส่วนระหว่าง*L / D* ดังแสดงในรูปที่ 2.19

รูปที่ 2.23 ลักษณะการวิบัติ การกระจายของหน่วยแรงคันด้านข้างและโมเมนต์ ของเสาเข็มยาวปานกลางแบบหัวยึด [Brom, 1964]

ค. เสาเข็มยาว (Long Pile)

การวิบัติเกิดขึ้นของเสาเข็มประเภทนี้ส่วนมากเนื่องจากเกิด Plastic hing 2 จุด เมื่อเกิด โมเมนต์บวกสูงสุดที่ระดับความลึกเท่ากับ f จากผิวดินและในขณะเดียวกันเกิดโมเมนต์ลบสูงสุดที่ ตำแหน่งใต้ฐานหัวยึด ลักษณะการวิบัติ การกระจายของหน่วยแรงดันด้านข้างและโมเมนต์ที่เกิดขึ้นแสดง ดังรูปที่ 2.24 แรงกระทำทางด้านข้างสูงสุดสามารถกำนวณได้จาก

$$P = \frac{M_{max}^{pos} + M_{yield}^{neg}}{e + 0.54 \sqrt{\frac{P}{\gamma D K_p}}} \qquad \dots (2.29)$$

หรือสามารถวิเกราะห์ได้โดยอาศัยกราฟกวามสัมพันธ์ระหว่าง $P/K_p \gamma D^3$ กับอัตราส่วนระหว่าง M_{yield} /($D^4 \gamma K_p$) ดังแสดงในรูปที่ 2.21

2.3.1.2 การวิเคราะห์แรงค้านทานด้านข้างของเสาเข็มโดยวิธีของ Hansen, J.B., (1961)

Hansen, J.B., (1961) ใด้เสนอการวิเคราะห์แรงด้านทานทางด้านข้างของเสาเข็มโดยที่ สามารถวิเคราะห์ได้ทั้งในชั้นดินชนิดเดียวกันทั้งชั้น (Uniform soil) หรือชั้นดินที่มีการเปลี่ยนแปลง (Layered soil) การวิเคราะห์จะพิจารณาจากผลรวมโมเมนต์ของแรงต้านทานด้านข้าง ณ จุด X ดังแสดงใน รูปที่ 2.25 โดยที่แรงดันทางด้านข้างมีก่าดังสมการที่ 2.30

$$p_z = \sigma_{vo} K_q + c K_z \qquad \dots (2.30)$$

เมื่อ p_ = แรงดันทางด้านข้าง

 K_q , $K_c =$ สัมประสิทธิ์แรงคันทางค้านข้าง คังแสคงในรูปที่ 2.26

เมื่อพิจารณาผลรวมโมเมนต์ของแรงคันทางค้านข้างเนื่องจากมวลคินรอบจุค X มีค่าเท่ากับ

$$\sum M = \sum_{z=0}^{z=x} p_z \frac{L}{n} (e+z) B - \sum_{z=x}^{z=L} p_z \frac{L}{n} (e+z) B \qquad \dots \dots (2.31)$$

ด้งนั้นมื่อพิจารณาผลรวมโมเมนต์ของแรงดันทางด้านข้างเนื่องจากมวลดินและแรงกระทำที่หัว ของเข็ม(H ู) รอบจุค X มีค่าเท่ากับ

$$H_{u}(e+x) = \sum_{0}^{x} p_{z} \frac{L}{n} B(x+z) + \sum_{x}^{x+L} p_{z} \frac{L}{n} B(z-x) \qquad \dots (2.32)$$

ເມື່ອ

L = ระยะฝังจมของเสาเข็ม

= จำนวน element ของแรงคันทางค้านข้าง п

= ระยะตำแหน่งแรงกระทำที่หัวเสาเข้ม е

= ความกว้างของเสาเข็ม В

- z = ความลึกใดๆ จากผิวคิน
- x = ระยะจากผิวคินถึงตำแหน่งจุด X

(a) Soil reactions (b) Shearing force diagram (c) Bending moment diagram

รูปที่ 2.25 ลักษณะหน่วยแรงคันทางค้านข้างของเสาเข็ม [Tomlinson,M.J 1991]

รูปที่ 2.26 ค่าสัมประสิทธิ์ K_{a} , K_{c} [Hansen, J.B., 1961]

ในกรณีที่ชั้นดินมีการเปลี่ยนแปลง ในการวิเคราะห์จะพิจารณาเปลี่ยนค่าความลึก z ใดๆ เพื่อนำ ไปหาค่าสัมประสิทธิ์ K_q ,K_c โดยที่เริ่มจากระดับที่มีการเปลี่ยนชั้นดังแสดงในรูปที่ 2.27

รูปที่ 2.27 ลักษณะแรงคันทางค้านข้างที่กระทำต่อเสาเข็มกรณีที่ชั้นคินมีการเปลี่ยนแปลง

2.3.1.3 การวิเคราะห์แรงต้านทานด้านข้างของเสาเข็มโดยโดยวิธีของ Ito. et al., (1975)

Ito.et al., (1975)ได้เสนอวิธีการวิเคราะห์แรงด้านทานด้านข้างของเสาเข็มในกรณีด้าน ทานการวิบัติของเชิงลาด ได้พิจารณาผลของระยะห่างระหว่างเสาเข็มและขนาดเส้นผ่านศูนย์กลางของเสา เข็มดังแสดงในรูปที่ 2.28 โดยอาศัยทฤษฎีการเคลื่อนตัวแบบพลาสติก พิจารณาลักษณะการเคลื่อนตัวของ มวลดินดังแสดงในรูปที่ 2.29 และมีสมุติฐานในการวิเคราะห์ดังต่อไปนี้

- 1. เมื่อมวลดินเกิดการเกลื่อนตัวจะเกิดแนวการเกลื่อนตัว 2 แนว คือ *AEB* และ *A' E' B'* โดยที่แนว \overline{EB} และแนว $\overline{E'B'}$ ทำมุม $\left(\frac{\pi}{4} + \frac{\phi}{2}\right)$ กับแกน x
- มวลดินในบริเวณ AEBB' E' A' มีสภาพเป็นพลาสติก โดยที่การวิบัติเป็นไปตามกฎ ของ Mohr Coulomb
- 3. ชั้นดินมีลักษณะเป็น Plane Strain
- เมื่อมีแรงเสียดทานเกิดขึ้นที่แนว AEB และแนว A' E' B' การกระจายหน่วยแรงใน มวลดิน AEBB' E' A' เป็นเหมือนกับกรณีที่ไม่มีแรงเสียดทานที่ผิวดังกล่าว
- 5. เสาเข็มมีสมบัติเป็น Rigid

รูปที่ 2.28 ลักษณะของการใช้เสาเข็มแถวด้านการวิบัติ [Ito. et al., 1975]

ก. ลักษณะการเคลื่อนตัวในส่วน *AEBB' E' A'* ข. ส่วนย่อย *AEE' A'* ค.ส่วนย่อย *EBB' E'* รูปที่ 2.29 ลักษณะการเคลื่อนตัวของมวลดินระหว่างเสาเข็ม [Ito. et al., 1975]

จากผลการศึกษาของ Ito. et al., (1975) หน่วยแรงดันทางด้านข้างของเสาเข็มคำนวณได้จากสม การที่ 2.33 และสมการที่ 2.34 กรณีดิน ไม่มีความเชื่อมแน่น (Cohesionless Soils)

$$p = \frac{\gamma_z}{N_{\phi}} \left\{ D_1 \left(\frac{D_1}{D_2} \right)^{\left(\sqrt{N_{\phi}} \tan \phi + N_{\phi}^{-1}\right)} \cdot e^{\left(\frac{D_1 - D_2}{D_2} \right) \cdot N_{\phi} \tan \phi \tan \left(\frac{\pi}{8} + \frac{\phi}{4} \right)} - D_2 \right\} \quad \dots (2.33)$$

กรณีดินมีความเชื่อมแน่น (Cohesive Soils)

2.4 การทรุดตัวในมวลดิน

เมื่อมีหน่วยแรงภายนอกมากระทำต่อมวลดิน จะทำให้มวลดินเกิดการเกลื่อนตัวและการเกลื่อน ดัวนี้จะเกิดขึ้นได้ทั้งในแนวดิ่งและในแนวนอน การเกลื่อนตัวนี้ถ้าหากเกิดมากเกินพิกัดจะทำให้เกิดความ เสียหายต่อสิ่งก่อสร้าง หรือไม่ก็อาจจะทำให้สิ่งก่อสร้างนั้นไม่สามารถที่จะใช้งานได้ตามวัตถุประสงค์ที่ ด้องการได้ เพราะฉนั้นผู้ออกแบบจำเป็นที่จะต้องออกแบบให้เกิดการเกลื่อนตัวอยู่ในพิกัด ดังนั้นการ วิเกราะห์หาการเกลื่อนตัวของมวลดินและสิ่งก่อสร้างจึงเป็นสิ่งที่สำคัญอย่างยิ่งในงานวิศวกรรมโยธา ทฤษฎีที่ใช้ในการวิเกราะห์หาก่าการทรุดตัวมีอยู่หลายวิธี แต่ละวิธีมีรากฐานและสมมุติฐานที่ไม่เหมือน กัน ซึ่งทำให้ในแต่ละวิธีได้ผลการวิเกราะห์ที่แตกต่างกัน กวามเหมาะสมและความถูกต้องในการใช้งาน แต่ละทฤษฎีนั้นประเมินได้จากการเปรียบเทียบพฤติกรรมการทรุดตัวของสิ่งก่อสร้างที่เกิดขึ้นจริงใน สนามว่าใกล้เกียงกับการกาดกะเนการทรุดตัวจากทฤษฎีเพียงใด และทฤษฎีที่ใช้ในการวิเกราะห์หาก่าการ ทรุดตัวแต่ละวิธีนั้นก็ไม่ได้เหมาะสมกับทุกสถานที่เสมอไป ทั้งนี้ขึ้นอยู่กับคุณสมบัติของดินในแต่ละ สถานที่การทรุดตัวของมวลดินสามารถแยกออกได้เป็น 3 ลักษณะ ดังนี้

- การทรุดตัวที่เป็นฟังก์ชันกับเวลา (Consolidation Settlement , ρ_τ) เป็นลักษณะการทรุด ตัวที่ขึ้นอยู่กับระยะเวลา นั่นถือ เมื่อเวลาเพิ่มขึ้นการทรุดตัวก็เพิ่มมากขึ้นด้วยแต่จะเพิ่มขึ้น ด้วยอัตราที่ลดลงเรื่อยๆ

 การทรุดตัวเนื่องจากการอัดตัวครั้งที่สอง (Secondary Compression Settlement) เป็นการทรุด ตัวที่เกิดขึ้นภายหลังจากการทรุตัวเนื่องจากการอัดตัวคายน้ำเสร็จสิ้นลง ซึ่งมีปริมาณที่น้อย เมื่อเทียบกับปริมาณการทรุดตัว 2 แบบแรก

ปริมาณการทรุคตัวในมวลคินจะเกิดขึ้นมากหรือน้อยขึ้นอยู่กับปัจจัยหลายประการ ปัจจัยที่มีผลต่อ ปริมาณการทรุคตัว ได้แก่

- 1. ชนิดของดิน
- ประวัติหน่วยแรง
- 3. อัตราการให้น้ำหนักบรรทุก
- 4. ขนาดน้ำหนักบรรทุกสูงสุด
- 5. มิติความกว้าง ยาว ของน้ำหนักบรรทุก
- 2.4.1 การวิเกราะห์หน่วยแรงในมวลดินเนื่องจากแรงกระทำภายนอก

2.4.1.1 แรงกระทำแบบแผ่สม่ำเสมอเป็นแถบ (Loading on an Infinite Strip)

เป็นลักษณะของแรงกระทำที่มีด้านยาว ยาวกว่าด้านสั้นมากดังแสดงในรูปที่

รูปที่ 2.30 ลักษณะของหน่วยแรงกร[ี]ะทำแบบแผ่สมำเสมอเป็นแถบ [Poulos, H.G.1967] ก่าหน่วยแรงในมวลดิน กำนวณได้จาก

$$\Delta \sigma_{zz} = \frac{p}{\pi} \left[\alpha + \sin \alpha \cos(\alpha + 2\delta) \right] \qquad \dots (2.35)$$

$$\Delta \sigma_{xx} = \frac{p}{\pi} \left[\alpha - \sin \alpha \cos(\alpha + 2\delta) \right] \qquad \dots (2.36)$$

$$\Delta \tau_{xz} = \frac{\rho}{\pi} \sin \alpha \, \sin(\alpha + 2\delta) \qquad \dots (2.37)$$

Poulos, H.G. (1967) ได้เสนอวิธีการวิเคราะห์โดยที่พิจารณาผลที่ชั้นดินประกอบด้วยชั้นดินที่ เคลื่อนดัวได้ง่ายและแข็งแรงน้อยกว่าชั้นที่รองรับ ซึ่งสามารถพิจารณาว่าไม่มีการเคลื่อนตัวเลย (Rigid Base) ดังแสดงในรูปที่ 2.31 และสำหรับก่า $\Delta \sigma_{zz}$ ที่ความลึกใดๆ สามารถใช้กราฟกวามสัมพันธ์ดัง แสดงในรูปที่ 2.32 และรูปที่ 2.33 ในการวิเคราะห์ผลได้

I21044624

รูปที่ 2.31 ลักษณะของหน่วยแรงกระทำแบบแผ่สม่ำเสมอเป็นแถบ เมื่อมีฐานรองรับที่แข็งแรง

รูปที่ 2.32 ค่า $I_{_{sr1}}$ สำหรับการคำนวณค่า $\varDelta \sigma_{_{zz}}$ ที่ขอบของหน่วยแรงเมื่อค่า v มีค่าต่าง ๆ กัน [Poulos, H.G.1967]

รูปที่ 2.33 ค่า $I_{_{st2}}$ สำหรับการคำนวณค่า $\varDelta heta$ ที่ขอบของหน่วยแรงเมื่อค่า u มีค่าต่าง ๆ กัน [Poulos, H.G.1967]

การคำนวณค่าหน่วยแรงในมวลดินที่เสนอโดย Poulos, H.G. (1967) สามารถคำนวณหาได้จาก สมการดังต่อไปนี้

$$\Delta \sigma_{z} = \frac{p}{\pi} I_{st1} \qquad \dots (2.38)$$

$$\Delta \sigma_{\theta} = \frac{p}{\pi} I_{st2} = \Delta \sigma_{xx} + \Delta \sigma_{yy} + \Delta \sigma_{zz} \qquad \dots (2.39)$$

$$\Delta \sigma_{yy} = \upsilon \left(\Delta \sigma_{xx} + \Delta \sigma_{z} \right) \qquad \dots (2.40)$$

เมื่อ I_{sr1} = ค่าแฟกเตอร์ขึ้นอยู่กับอัตราส่วนปัวซองส์และคำแหน่งพิจารณา (จากรูปที่ 2.32) I_{sr2} = ค่าแฟกเตอร์ขึ้นอยู่กับอัตราส่วนปัวซองส์และคำแหน่งพิจารณา (จากรูปที่ 2.33)

- *p* = ขนาดหน่วยแรงกระทำภายนอก
- 2.4.1.2 แรงกระทำแบบกันดินถม (Loading on an Embankment)

งานก่อสร้างที่มีลักษณะของหน่วยแรงกระทำแบบคันคินถม เช่น เงื่อนดิน คันคิน หรือถนน เป็นต้น ดังแสดงในรูปที่ 2.34

รูปที่ 2.34 ลักษณะของหน่วยแรงกระทำแบบคันคินถม [Poulos, H.G.1967]

การคำนวณหาหน่วยแรงในมวลคินได้จากสมการ

$$\Delta \sigma_{=} = \frac{q}{\pi} \left[\left(\frac{a+b}{a} \right) (\alpha_1 + \alpha_2) - \frac{b}{a} \alpha_2 \right] \qquad \dots (2.41)$$

หรือ ใช้กราฟหาก่าแฟกเตอร์ I ดังแสดงในรูปที่ 2.35 ก่าหน่วยแรงในมวลดินสามรถกำนวณได้จากสม การ

รูปที่ 2.35 ค่าแฟคเตอร์ I สำหรับการกำนวณหาค่า $\Delta\sigma_{zz}$ [NAVFAC DM-7.1]

2.5 ชนิดของการทรุดตัว

2.5.1 การทรุดตัวที่เกิดขึ้นแบบทันที (Immediate Settlement, ρ_i)

การทรุดตัวลักษณะนี้เป็นการทรุดตัวที่เกิดขึ้นทันทีที่มีหน่วยแรงภายนอกมากระทำ ซึ่งดิน จะเกิดกวามเกรียดขึ้นทันที กวามเกรียดหรือการทรุดตัวที่เกิดขึ้นทันทีจะขึ้นอยู่กับชนิดของดิน กวาม สามารถในการระบายน้ำของดินซึ่งขึ้นอยู่กับชนิดของดินโดยตรง ระบบของหน่วยแรงที่มากระทำและ ขอบเขตจำกัดของทิสทางที่กวามเกรียดจะเกิดขึ้น ในกรณีปัญหาทางด้านวิสวกรรมปฐพีกวามเกรียดอาจ เกิดขึ้นได้เฉพาะในแนวดิ่ง (คือ เป็นการทรุดตัวที่เกิดขึ้นในลักษณะ 1 มิติ โดยที่กวามเกรียดที่เกิดขึ้นใน แนวนอนนั้นให้เป็นสูนย์หรือไม่เกิดขึ้น) หรืออาจเกิดขึ้นได้ในลักษณะ 2 มิติ (กือ กวามเกรียดจะเกิดขึ้น ในแนวดิ่ง และ แนวนอน นั่นคือ Plane Strain Condition) และอาจเกิดขึ้นได้ในลักษณะ 3 มิติ (เป็นกรณี ที่ไม่มีขอบเขตจำกัดในทิสทางที่เกิดกวามเกรียด)

การทรุดตัวชนิดที่เกิดขึ้นแบบทันทีนี้จะเป็นการทรุดตัวส่วนที่มีความสำคัญมากสำหรับคินเม็ด หยาบ เช่น กรวด ทราย และทรายแป้งชนิดที่ไม่มีพลาสติกซิตี้ ในคินจำพวกนี้การทรุดตัวที่เกิดขึ้นในมวล ดินส่วนใหญ่จะเป็นการทรุดตัวที่เกิดขึ้นทันที และเกิดขึ้นได้ไม่ว่าระบบของความเครียดที่เกิดขึ้นจะเป็น ในลักษณะใด การทรุดตัวของคินเม็ดหยาบเกิดจากการไหลซึมของน้ำและอากาศออกจากช่องว่างของมวล ดิน ปริมาตรของมวลดินจึงมีการเปลี่ยนแปลงการไหลซึมของน้ำออกมาได้ทันทีเมื่อมีหน่วยแรงกระทำเกิด ขึ้น เพราะดินเม็ดหยาบมีสัมประสิทธิ์ของการซึมสูง จึงสามารถระบายน้ำออกมาได้อย่างรวดเร็ว ในดิน เม็ดหยาบการทรุดตัวที่เป็นฟังก์ชั่นกับเวลาอาจมีอยู่บ้างด้วยผลของครีพ (Creep) แบบระบายน้ำ แต่ปริมาณ การทรุดตัวชนิดนี้มักมีไม่มากในดินเม็ดหยาบ

การทรุดตัวที่เกิดขึ้นทันทีในดินเหนียวนั้นก็เกิดขึ้นได้เช่นกัน แต่จะมีปริมาณการทรุดตัวที่น้อย กว่าการทรุดตัวแบบอัดตัวคายน้ำที่เป็นฟังก์ชั่นกับเวลา ขอบเขตจำกัดของทิสทางของความเครียดที่เกิดขึ้น และระดับการอิ่มตัวด้วยน้ำของดินเหนียวเป็นองก์ประกอบที่สำคัญสำหรับการทรุดตัวที่เกิดขึ้นทันที ดิน เหนียวเป็นดินที่มีสัมประสิทธิ์การซึมต่ำมาก ทั้งน้ำและอากาสไม่สามารถระบายออกจากดินเหนียวได้ สะดวก เมื่อดินเหนียวอิ่มตัวด้วยน้ำถูกหน่วยแรงกระทำ ทันทีที่หน่วยแรงกระทำปริมาตรของดินเหนียวได้ สะดวก เมื่อดินเหนียวอิ่มตัวด้วยน้ำถูกหน่วยแรงกระทำ ทันทีที่หน่วยแรงกระทำปริมาตรของดินเหนียวจะ ไม่มีการเปลี่ยนแปลง การทรุดตัวในแนวดิ่งจึงเกิดขึ้นได้ก็ต่อเมื่อมีการขยายตัวทางด้านข้างเพื่อให้ปริมาตร กงที่ ด้วยเหตุนี้การทรุดตัวที่เกิดขึ้นทันทีในดินเหนียวที่อิ่มตัวด้วยน้ำจึงเกิดขึ้นได้เฉพาะในระบบของ หน่วยแรงและความเครียดที่ซึ่งความเกรียดเกิดขึ้นได้ไฟลักษณะ 2 หรือ 3 มิติ สำหรับดินเหนียวที่ไม่อิ่ม ตัวด้วยน้ำทันทีที่หน่วยแรงกระทำปริมาตรของดินเหนียวเกิดการเปลี่ยนแปลงได้ การทรุดตัวที่เกิดขึ้นทัน ทีจึงเกิดขึ้นได้ไม่ว่าระบบของกวามเกรียดจะเกิดขึ้นในลักษณะใด การเปลี่ยนแปลงในปริมาตรนี้เกิดจาก การละลายของฟองอากาศในน้ำในช่องว่างของมวลดินและอากาสบางส่วยถูกขับออก การทรุดตัวที่เกิดขึ้นทัก ขึ้นทันทีจากหน่วยแรงภายนอกที่มากระทำต่อดินเหนียวที่อิ่มตัวด้วยน้ำมักจะถูกเรียกว่าการทรุดตัวที่เกิด ขึ้นทันทีจากหน่วยแรงภายนอกที่มากระทำต่อดินเหนียวที่อิ่มดัวด้วยน้ำมักจะถูกเรียกว่าการทรุดตัวที่เกิด 2.5.2 การทรุดตัวที่เป็นฟังก์ชั่นของเวลา (Time Dependent Settlement , ρ_{τ})

การทรุดตัวชนิดนี้เกิดขึ้นได้จากกลไกสามชนิด คือ การทรุดตัวอันเป็นผลของขบวนการ อัดตัวกายน้ำ (Consolidation Process) การทรุดตัวที่เป็นผลของครีพทั้งในสภาพที่ไม่ระบายน้ำ และระบาย น้ำ การทรุดตัวที่เกิดจากการวิบัติของมวลดินเหนียวบางตำแหน่ง (Local Yield) เนื่องจากการก่อสร้างใช้ พิกัดความปลอดภัยต่ำ จนกระทั่งในบางตำแหน่งหน่วยแรงเฉือนในดินเกิดขึ้นเท่ากับกำลังแรงเฉือนของ ดิน ในดินเหนียวที่มีสภาพอัดแน่นปกติ การทรุดตัวที่เป็นฟังก์ชั่นกับเวลาเป็นส่วนที่สำคัญและการทรุดตัว จะเกิดจากกลไกทั้งสองชนิด โดยที่มีปริมาณการทรุดตัวจากขบวนการอัดตัวกายน้ำมากที่สุด

2.5.3 การทรุดตัวเนื่องจากการอัดตัวกรั้งที่สอง (Secondary Compression Settlement, ρ_s)

เป็นการทรุดตัวที่เกิดขึ้นภายหลังจากการทรุตัวเนื่องจากการอัดตัวกายน้ำเสร็จสิ้นลง ซึ่ง มีปริมาณที่น้อยเมื่อเทียบกับปริมาณการทรุดตัว 2 แบบแรก

จากชนิดลักษณะ และกลไกการทรุดตัวที่ได้กล่าวมาแล้วนั้น การทรุดตัวรวม ($ho_{ au}$) ของมวลดิน สามารถกำนวณได้ดังนี้

การทรุดตัวรวมสำหรับดินเม็คหยาบ

$$\rho_{T} = \rho_{i} + \rho_{s} \qquad \dots (2.43)$$

เมื่อ ho_i คือ การทรุดตัวที่เกิดขึ้นแบบทันที

 ค. กือ การทรุคตัวเนื่องจากกรีพแบบระบายน้ำซึ่งถือว่าน้อยมากหรือเท่ากับ สูนย์ ในดินเม็คหยาบ

การทรุดตัวรวมสำหรับคินเหนียว

การทรุคตัวรวม ($ho_{ au}$) ของดินเหนียวอิ่มตัวด้วยน้ำขึ้นอยู่กับสภาพกวามเกรียดที่เกิดขึ้น ในดิน

ในกรณีที่มีความเครียดเกิดขึ้นได้เพียง 1 มิติ

$$\rho_r = \rho_c + \rho_s \qquad \dots \dots (2.44)$$

 $\rho_{\rm s}$ คือ การทรุดตัวเนื่องจาการอัดตัวกรั้งที่สอง (Secondary Settlement)

2. ในกรณีที่มีความเครียดเกิดขึ้นได้ 2 และ 3 มิติ

$$\rho_{\tau} = \rho_i + \rho_{cf} + \rho_s \qquad \dots (2.45)$$

2.6 การกาดกะเนการทรุดตัวของดินเหนียว

การกาดกะเนการทรุดตัวทั้งหมดของดินเหนียวสามารถกำนวณได้จากสมการที่ 2.45 ซึ่งจำเป็นต้อง กำนวณการทรุดตัวที่เกิดขึ้นแบบทันที (Immediate Settlement) การทรุดตัวที่เกิดขึ้นเนื่องจากการอัดตัว คายน้ำ (Consolidation Settlement) และการทรุดตัวเนื่องจากครีพแบบระบายน้ำ (Secondary Settlement) การทรุดตัวจากกลไกต่างๆสามารถคำนวณได้ดังนี้

2.6.1 การกาดกะเนการทรุดตัวที่เกิดขึ้นทันที (Immediate Settlement)

D'Appolonia et al. (1971) ได้อธิบายถึงพฤติกรรมการทรุดตัวของมวลดินภายใต้น้ำ หนักกระทำชนิดที่เกิดขึ้นทันทีสามารถแบ่งการวิเคราะห์ออกได้ 3 ช่วง ดังแสดงในรูปที่ 2.36

- การทรุดตัวในช่วงอีลาสติก (Elastic Range , ช่วง OA) การทรุดตัวชนิดนี้สามารถกาดกะเน ได้โดยใช้ทฤษฏีอีลาสติก (Elastic Theory)
- การทรุดตัวในช่วง AB เป็นช่วงที่เกิดการวิบัติของมวลดินเป็นจุดๆ (Local Yield) เนื่องจาก หน่วยแรงเฉือนในมวลดินที่เกิดจากหน่วยแรงกระทำภายนอกมีค่าเท่ากับกำลังรับแรงเฉือน แบบไม่ระบายน้ำของมวลดิน (q_u = S_u) การเคลื่อนตัวของมวลดินจะเป็นในสภาพ Plastic Flow
- ในช่วงที่ 3 เป็นช่วงที่มวลดินเกิดการวิบัติ เนื่องจากหน่วยแรงกระทำภายนอกมีค่ามากกว่า ค่ากำลังแบกทานของมวลดิน (q>q_{ult}) ซึ่งในช่วงนี้จะต้องทำการวิเคราะห์เสถียรภาพ (Stability Analysis)

2.6.1.1 การกาดกะเนโดยทฤษฎีอีลาสติก (Elastic Theory)

$$\rho_{i} = \frac{qB\left(1 - \mathcal{O}_{u}^{2}\right)I_{p}}{E_{u}} \qquad \dots \dots (2.46)$$

เมื่อ

q

= หน่วยแรงที่กระทำที่ทำให้เกิดการทรุดตัว (Net Bearing Stress)

 U_{μ} = สัคส่วน Poisson

ตารางที่ 2.7 ค่า Influence Factor, I_p

	Center of Rigid		Corner of Fle	xible Rectang	gular Area	
H/B Circular Area		$\mathbf{L}/\mathbf{R} = 1$	I /P - 2	I/R = 5	L/R = 10	(Strip)
	Diameter = B					L/B = 1
			U = 0.50			
0	0.00	0.00	0.00	0.00	0.00	0.00
0.5	0.14	0.05	0.04	0.04	0.04	0.04
1.0	0.35	0.15	0.12	0.10	0.10	0.10
1.5	0.48	0.23	0.22	0.18	0.18	0.18
2.0	0.54	0.29	0.29	0.27	0.26	0.26
3.0	0.62	0.36	0.40	0.39	0.38	0.37
5.0	0.69	0.44	0.52	0.55	0.54	0.52
10.0	0.74	0.48	0.64	0.76	0.77	0.73
	U = 0.33					
0	0.00	0.00	0.00	0.00	0.00	0.00
0.5	0.20	0.09	0.08	0.08	0.08	0.08
1.0	0.40	0.19	0.18	0.16	0.16	0.16
1.5	0.51	0.27	0.28	0.25	0.25	0.25
2.0	0.57	0.32	0.34	0.34	0.34	0.34
3.0	0.64	0.38	0.44	0.46	0.45	0.45
5.0	0.70	0.46	0.56	0.60	0.61	0.61
10.0	0.74	0.49	0.66	0.80	0.82	0.81

รูปที่ 2.37 ตำแหน่งที่พิจารณาค่าแฟคเตอร์ I _p [NAFVAC DM-7.1]

2.6.1.2 การประมาณการทรุดตัวโดยวิธี Poulos, H.G. (1967)

Poulos, H.G. (1967) ได้เสนอวิธีการกาดกะเนการเกลื่อนตัวในแนวดิ่งและการ เกลื่อนตัวทางด้านข้าง ภายใต้แรงกระทำแบกระจายสม่ำเมอ Plain Strain โดยพิจารณากรณีที่มีชั้นดินที่ไม่ เกิดการเกลื่อนตัวรองรับอยู่ชั้นล่างดังแสดงในรูปที่ 2.38 การวิเกราะห์การเกลื่อนตัวจะพิจารณาที่ขอบของ หน่วยแรงกระทำ โดยสมการที่ 2.47 และ สมการ 2.48

$$\rho_{ev} = \frac{ph}{\pi E} I_{st} \qquad \dots (2.47)$$

$$\rho_{eh} = \frac{ph}{\pi E} I_{st} \qquad \dots (2.48)$$

เมื่อ ρ_{ev} , ρ_{eh} = ปริมาณการเกลื่อนตัวในแนวดิ่งและการเกลื่อนตัวทางด้านข้าง

- *p* = ขนาดของหน่วยแรงกระทำที่ผิวดิน
- *h* = ความหนาของชั้นดินที่พิจารณา
- E = ค่าโมดูลัสของมวลดิน
- I = ค่า Influence Factor (แสดงดังรูปที่ 2.39 และ2.40)

[Poulos, H.G. 1967]

รูปที่ 2.39 ก่า Influence Factor สำหรับการวิเกราะห์การเกลื่อนตัวค้านข้าง[Poulos, H.G.1967]

รูปที่ 2.40 ค่า Influence Factor สำหรับการวิเคราะห์การเคลื่อนตัวในแนวคิ่ง

[Poulos, H.G.1967]

2.6.1.3 การประมาณการทรุดตัวโดยวิธี D'Appolonia et al. (1971)

การประมาณการทรุดตัวกรณีเกิดการวิบัติเป็นจุดๆ เป็นการประมาณการทรุดตัวที่ พิจารณาผลของการเกิดการวิบัติของมวลดินเป็นจุดๆ ซึ่งสภาพดังกล่าวเกิดขึ้นเนื่องจากสภาพของหน่วย แรงเฉือนในมวลดินที่เกิดจากหน่วยแรงภายนอกมากระทำมีก่าเท่ากับกำลังรับแรงเฉือน แบบอันเดรน (Su) ของมวลดิน ในสภาพดังกล่าวมวลดินจะเกิดการเกลื่อนตัวในลักษณะ Plastic Flow ซึ่งจะเกิดการทรุด ตัวที่มากกว่าในสภาพที่มวลดินไม่เกิดการวิบัติเป็นจุดๆ D'Appolonia et al. (1971) ได้เสนอวิธีการ ประมาณการทรุดตัวที่เกิดขึ้นโดยใช้ก่าปรับแก้ (Settlement Ratio, SR) ผลของการเกิดการวิบัติเป็นจุดๆ ในมวลดิน ดังสมการที่ 2.49

$$\rho_i = \frac{\rho_e}{SR} \qquad \dots \dots (2.49)$$

เมื่อ

 ho_i = การทรุดตัวที่พิจารณาผลของการเกิดการวิบัติเป็นจุดๆ

 $ho_{_{e}}$ = การทรุดตัวที่เกิดขึ้นทันที่งากทฤษฎีอีลาสติก

SR = ค่าปรับแก้ผลของการเกิดการวิบัติเป็นจุดๆ ในมวลดิน

ี่ ก่าแฟกเตอร์ SR เป็นค่าแฟกเตอร์ที่ขึ้นอยู่กับ

1. อัตราส่วน
$$\frac{H}{B}$$

เมื่อ H = ความหนาของชั้นดิน
B = ความกว้างของหน่วยแรงภายนอกที่มากระทำ
2. ค่าอัตราส่วนหน่วยแรงเริ่มด้น (Initial Stress Ratio, f) โดยที่
 $f = \frac{q_o}{S_u} = \frac{(\sigma'_{vo} - \sigma'_{ho})}{2S_u} = \frac{(1 - K_o)\sigma'_{vo}}{2S_u} \dots (2.50)$

ที่ 2.41

เมื่อ

รูปที่ 2.41 ความสัมพันธ์ระหว่างค่า f กับค่า OCR [NAVFAC DM-7.1]

3. ก่าอัตราส่วนหน่วยแรงกระทำต่อหน่วยแรงด้านทานสูงสุดของมวลดิน

Applied Stress Ratio =
$$\frac{q}{q_{ult}}$$
(2.51)
 $q = หน่วยแรงกระทำภายนอก$

$$N_c = n' Bearing Capacity Factor$$

D'Appolonia et al. (1971) ได้เสนอค่าแฟคเตอร์ปรับแก้ *SR* เป็นฟังก์ชันกับค่า Applied Stress Ratio ดังแสดงในรูปที่ 2.42

2.6.2 การกาดกะเนการทรุดตัวที่เกิดขึ้นจากการอัดตัวกายน้ำ (Consolidation Settlement)

การคาดคะเนการทรุดตัวที่เกิดขึ้นจากการอัดตัวคายน้ำ (ho_{cf}) ที่ใช้กันมาจากผลของการ ทดสอบการอัดตัวคายน้ำแบบ 1 มิติ แล้วมีการปรับแก้สำหรับผลของความเครียดที่เกิดได้ในลักษณะ 2 และ 3 มิติ ในแต่ละวิธีคำนวณได้จาก

$$\begin{aligned}
 \rho_{q} &= \sum_{i=1}^{i=n} \mathcal{E}_{u} H_{i} & \dots (2.52) \\
 \rho_{q} &= ninrsnsqnerizaqnni utilisevannniseneri$$

2.6.2.1 การกาดกะเนโดยวิธีการของ Terzaghi and Peck (1948)

เมื่อ

วิธีการของ Terzaghi and Peck (1948) ใช้สมมุติฐานว่า ho_{cf} ที่เกิดในสนามไม่ ว่าจะเกิดในสภาพความเครียดลักษณะใด สามารถคาดกะเนได้โดยกำนวณ ho_{cf} ที่กิดในสภาพที่ กวามเกรียดเกิดขึ้นในลักษณะเพียง 1 มิติ เช่นเดียวกับการทดสอบการอัดตัวกายน้ำแบบ 1 มิติ

ดังนั้น
$$\mathcal{E}_{vi} = m_{vi} \Delta \bar{\sigma}_{vi}$$

โดยค่า $m_{_{v}}$ ซึ่งได้จากการทดสอบการอัดตัวคายน้ำแบบ 1 มิติดังแสดงในรูปที่ 2.43 ซึ่งจะหาให้ สอดกล้องกับระดับของหน่วยแรงที่เกิดขึ้นจริง นั่นกือจาก $\bar{\sigma}_v = \bar{\sigma}_{vo}$ ไปยัง $\bar{\sigma}_v = \bar{\sigma}_{vf}$ โดย $\bar{\sigma}_{vf} = \bar{\sigma}_{vo} + \Delta \bar{\sigma}_v$ และ $\Delta \bar{\sigma}_v = \Delta \sigma_v$

รูปที่ 2.43 ความสัมพันธ์ระหว่าง Stress กับ Strain จากการทคสอบการอัคตัวกายน้ำ

สมการที่ใช้สำหรับการประเมินค่าการทรุดตัวของ Terzaghi and Peck (1948)

$$\rho_{cf} = \sum_{i=1}^{i=m} m_{vi} \Delta \bar{\sigma}_{vi} H_i \qquad \dots \dots (2.53)$$

Bjerrum (1972) เสนอการปรับปรุงการใช้การคาคคะเน ho_{cf} โดยใช้ค่า Recompression Ratio, RR ค่า Compression Ratio, CR และค่า $ar{\sigma}_{vm}$

- ในกรณีที่ดินอยู่ในสภาพอัดแน่นปกติ (Normally Consolidate Clay , OCR = 1.0)

$$\mathcal{E}_{vi} = CR_i \log \frac{\bar{\sigma}_{vo_i} + \Delta \bar{\sigma}_{vi}}{\bar{\sigma}_{vo_i}}$$

$$\rho_{cf} = \sum_{i=1}^{i=n} CR_i \log \frac{\bar{\sigma}_{vo_i} + \Delta \bar{\sigma}_{vi}}{\bar{\sigma}_{vo_i}} H_i \qquad \dots (2.54)$$

- ในกรณีที่ดินอยู่ในสภาพอัดแน่นเกินตัว (Over Consolidate Clay) ก่อนที่มีหน่วยแรง มากระทำ และ $\bar{\sigma}_{vf} = \bar{\sigma}_{vo} + \Delta \bar{\sigma}_v > \bar{\sigma}_{vm}$

$$\mathcal{E}_{vi} = RR_i \log \frac{\overline{\sigma_{vm_i}}}{\overline{\sigma_{vo_i}}} + CR_i \log \frac{\overline{\sigma_{vf_i}}}{vm_i}$$

$$\rho_{cf} = \sum_{i=1}^{i=n} \left(RR_i \log \frac{\overline{\sigma_{vm_i}}}{\overline{\sigma_{vo_i}}} + CR_i \log \frac{\overline{\sigma_{vf_i}}}{\overline{\sigma_{vm_i}}} \right) H_i \qquad \dots (2.55)$$

และ

ແລະ

- ในกรณีที่ดินอยู่ในสภาพอัดแน่นเกินตัว (Over Consolidate Clay) ก่อนที่มีหน่วยแรง มากระทำ และ $\bar{\sigma}_{v} = \bar{\sigma}_{vo} + \Delta \bar{\sigma}_v \leq \bar{\sigma}_{vm}$

2.6.2.2 การประมาณการทรุดตัวโดยวิธีของ ASAOKA (1978)

Asaoka (1978) ได้เสนอวิธีการประมาณการทรุดตัวในช่วงการอัดตัวกายน้ำ (consolidate)โดยวิธีการใช้กราฟ ซึ่งมีพื้นฐานมาจากการคำนวณการทรุดตัว 1 มิติ โดยที่พิจารณากรณีที่ หน่วยแรงกระทำคงที่ การประมาณการทรุดตัวโดยวิธีของ Asaoka (1978) เป็นวิธีการใช้วิธีกราฟซึ่งมีข้อ มูลการทรุดตัวที่วัคในสนาม กรณีศึกษาของ Asaoka ได้ทำการศึกษาการทรุดตัวที่โครงการ Kobe Port โดยได้ทำการวัดผลการทรุดตัวที่เกิดขึ้นจริง ซึ่งได้ผลการทรุดตัวดังรูปที่ 2.44 แสดงกวามสัมพันธ์ระหว่าง การทรุดตัวกับเวลา

รูปที่ 2.44 กราฟความสัมพันธ์ระหว่าง การทรุดตัว กับ เวลา [Asaoka.,1978]

สำหรับวิธีการประมาณการทรุดตัวของ Asaoka จะใช้วิธีการสร้างกราฟกวามสัมพันธ์ของการ ทรุดตัวที่เกิดขึ้นจริง โดยประกอบด้วยข้อมูลที่ได้จากสนามโดยกำหนดให้มีข้อมูลการทรุดตัว k ค่า (ρ_1 , $\rho_2 \rho_3$,....., ρ_{k+1}) โดยที่ข้อมูลที่วัดได้นี้ต้องมีหน่วยแรงกระทำกงที่ จากนั้นนำข้อมูลมาพล็อต กวามสัมพันธ์ระหว่างก่า ρ_{κ} กับก่า $\rho_{\kappa-1}$ (k = 1, 2, 3,, k) ดังแสดงในรูปที่ 2.45 ซึ่งจะได้กราฟ ดังแสดงในรูปที่ 2.46 ซึ่งได้แสดงกวามสัมพันธ์ระหว่าง ρ_{κ} กับ $\rho_{\kappa-1}$

รูปที่ 2.45 กราฟความสัมพันธ์ระหว่าง $ho_{_K}$ กับ $ho_{_{K-1}}$ [Asaoka.,1978]

รูปที่ 2.46 กราฟความสัมพันธ์ระหว่าง ho_{κ} กับ $ho_{\kappa-\iota}$ [Asaoka.,1978] จากรูปที่ 2.45 Asaoka ได้เสนอความสัมพันธ์ระหว่าง ho_{κ} กับ $ho_{\kappa-\iota}$ ดังนี้

$$\rho_{K} = \beta_{0} + \beta_{1} \rho_{K-1} \qquad \dots (2.57)$$

เมื่อ $eta_{_0}$ = ค่าการทรุดตัวที่เส้นกราฟตัดกับแกน $ho_{_k}$ $eta_{_1}$ = ค่าความลาดชันของเส้นตรงที่ลากผ่านจุดข้อมูลที่พล๊อต

ค่าการทรุดตัวเนื่องจากการอัดตัวคายน้ำสุดท้าย ($ho_{d'}$) สามารถหาได้จากการเขียนเส้นที่ทำมุม 45° ดังแสดงในรูปที่ 2.45 ซึ่งจะได้จุดตัดกับเส้นกราฟก่าการทรุดตัวที่เวลาต่างๆ ซึ่งจุดตัดดังกล่าวจะเป็นก่า การทรุดตัวเนื่องจากการอัดตัวกายน้ำสุดท้าย ($ho_{d'}$) เพราะ ณ จุดสิ้นสุดการทรุดดัวแบบอัดตัวกายน้ำนั้น

$$\rho_k = \rho_{k-1} = \rho_{cf}$$

หรือ
$$\rho_{cf} = \frac{\beta_0}{1 - \beta_1}$$
(2.58)

นอกจากนี้ Asaoka และ Magman and Mieussens (1980) ได้เสนอวิธีการหาค่า Coefficient of Consolidation, C ได้จาก

$$C_{v} = -\frac{5}{12} H_{d}^{2} \frac{ln \beta_{1}}{\Delta t} \qquad \dots (2.59)$$

มื่อ H_{d} = ความหนาของชั้นดินที่น้ำซึมผ่าน (Drain Path)
 Δt = ช่วงระยะเวลา

2.7 การวิเคราะห์เสถียรภาพ (Stability Analysis)

2.7.1 การวิเกราะห์เสถียรภาพด้านกำลังรับแรงแบกทาน (Bearing Capacity Analysis)

การวิเคราะห์ออกแบบฐานรากมีความจำเป็นอย่างยิ่งที่จะต้องทำการวิเคราะห์เสถียรภาพ ด้านกำลังรับแรงแบกทาน ทั้งนี้เพราะต้องตรวจสอบความสามารถของดินที่รองรับสิ่งก่อสร้างต่างๆ เพื่อ ให้สิ่งก่อสร้างนั้นสามารถที่จะทำการก่อสร้างและใช้งานได้ตามวัตถุประสงค์ที่ด้องการ ลักษณะพฤติ กรรมการวิบัติของฐานรากที่วางอยู่บนชั้นดินต่างชนิดกันหรือชั้นดินที่มีคุณสมบัติทางวิศวกรรมต่างกัน ย่อมมีลักษณะการวิบัติที่แตกต่างกันไป การวิบัติของฐานรากเนื่องจากกำลังรับแรงแบกทานไม่เพียงพอ สามารถแยกออกได้ 3 รูปแบบ ดังแสดงในรูปที่ 2.47 โดยมีดังต่อไปนี้กือ

- การวิบัติแบบ General Shear Failure การวิบัติในลักษณะนี้เกิดขึ้นในกรณีที่ฐานรากวางอยู่ บนชั้นดินที่มีสภาพแน่น เช่น ทรายแน่น (Dense sand) หรือ ดินเหนียวแข็ง (Stiff Clay) ลักษณะการวิบัติแสดงดังรูปที่ 2.47ก. ซึ่งฐานรากที่วางบนชั้นดินดังกล่าวความสัมพันธ์ ระหว่างกำลังรับแรงแบกทานกับการทรุดตัวในช่วงแรกมีความชันของกราฟต่ำและเมื่อรับ น้ำหนักถึงจุดสูงสุด(q_แ)จะเกิดการวิบัติทันทีโดยจะมีการเกลื่อนตัวสูงมากในขณะที่กำลัง รับแรงแบกทานก็จะลดลง
- 2. การวิบัติแบบ Local Shear Failure การวิบัติในลักษณะนี้เกิดขึ้นในกรณีที่ฐานรากวางอยู่บน ชั้นดินที่มีสภาพแน่นปานกลาง เช่น ทรายแน่นปานกลาง (Medium sand) หรือ ดินเหนียว แข็งปานกลาง (Medium Clay) ลักษณะการวิบัติแสดงดังรูปที่ 2.47ข. ซึ่งฐานรากที่วางบน ชั้นดินดังกล่าวความสัมพันธ์ระหว่างกำลังรับแรงแบกทานกับการทรุดตัวในช่วงแรกมีความ ชันของกราฟจะสูงกว่าการวิบัติแบบแรกและจะไม่ปรากฏจุดสูงสุดที่ชัดเจน และการเคลื่อน ตัวของดินด้านข้างฐานราก(Heave)จะมีปริมาณที่ต่ำกว่า
- การวิบัติแบบ Punching Shear Failure การวิบัติในลักษณะนี้เกิดขึ้นในกรณีที่ฐานรากวางอยู่ บนชั้นดินที่มีสภาพหลวมหรือดินอ่อน เช่น ทรายหลวม (Loose sand) หรือ ดินเหนียวอ่อน (Soft Clay) ลักษณะการวิบัติแสดงดังรูปที่ 2.47ค. ซึ่งฐานรากที่วางบนชั้นดินดังกล่าวความ

สัมพันธ์ระหว่างกำลังรับแรงแบกทานกับการทรุดตัวในช่วงแรกมีความชั้นของกราฟจะสูง กว่าการวิบัติแบบแรกและจะไม่ปรากฏจุดสูงสุดที่ชัดเจน และการเคลื่อนตัวของคินด้านข้าง ฐานราก(Heave)จะไม่ปรากฏ

รูปที่ 2.47 รูปแบบการวิบัติของวิบัติ ของฐานรากเนื่องจากกำลังรับแรงแบกทาน

(Bearing Capacity Failure) [Vesic, 1973]

2.7.1.1 ทฤษฎีกำลังรับแรงแบกทานของ Terzaghi (1943)

Terzaghi (1943) ได้ทำการศึกษากำลังรับแรงแบกทานของฐานรากตื้นโดยมี ลักษณะดังรูปที่ 2.48 โดยมีสมมุตฐานดังต่อไปนี้ คือ

มวลดินมีสมบัติเป็น Rigid Plastic Material

$$2. \quad \frac{D_f}{B} < 1.0$$

- 3. พื้นผิวฐานรากมีสภาพขรุงระหรือผิวหยาบ (Rough Base)
- 4. ฐานรากมีลักษณะเป็นฐานรากชนิดต่อเนื่องหรือ Plain Strain
- 5. ไม่พิจารณากำลังของมวลดินที่อยู่เหนือฐานราก
- 6. ลักษณะการวิบัติสามารถแยกออกเป็น 3 ส่วนคือ
 - ส่วน Radial Zone
 - ส่วน Triangular Zone
 - ส่วน Two Triangular Rankine Passive

รูปที่ 2.48 ลักษณะ Bearing Capacity Failure ของ Terzaghi (1943)

จากการศึกษาของ Terzaghi โดยอาศัยหลักการสมคุลย์ พบว่ากำลังรับแรงแบกทานสูงสุด (q_{ult}) มีค่าเท่ากับ

$$q_{ult} = cN_c + qN_q + 0.5\gamma BN_{\gamma} \qquad \dots (2.60)$$

เมื่อ

c คือ กำลังรับแรงเฉือนของดินฐานราก

q ถือ น้ำหนักของมวลดินเหนือฐานรากเท่ากับ $\gamma_{\mathcal{D}_f}$

γ คือ หน่วยน้ำหนักของมวลดิน

B คือ ความกว้างของฐานราก

 N_c , N_q , N_γ คือ Bearing Capacity Factor ขึ้นอยู่กับค่ามุมเสียดทานภายใน (ϕ) ดังแสดงในรูปที่ 2.49

รูปที่ 2.49 Bearing Capacity Factor [Meyerhof, 1955]

ในการออกแบบฐานรากของสิ่งก่อสร้างจำเป็นที่จะต้องวิเคราะห์ความสามารถด้านกำลังรับแรง แบกทานที่มวลคินจะรองรับได้ โดยการตรวจสอบค้านเสถียรภาพของกำลังรับแรงแบกทานพิจารณาจาก

$$F.S. = \frac{q_{ult}}{q_{allow}} \qquad \dots (2.61)$$

q_{ult} คือ กำลังรับแรงแบกทานสูงสุด
 q_{allow} คือ กำลังรับแรงแบกทานที่ยอมให้
 F.S. คือ ค่าความปลอดภัย โดยทั่วไปมีค่าเท่ากับ 2.5 – 3.0

2.7.2 การวิเคราะห์เสถียรภาพของเชิงถาด (Slope Stability Analysis)

เมื่อ

การวิเคราะห์หรือตรวจสอบเสถียรภาพด้านเชิงลาดมีความจำเป็นเช่นเดียวกันกับการตรวจ สอบเสถียรภาพด้านกำลังรับแรงแบกทานของมวดิน เพื่อวิเคราะห์ลักษณะการวิบัติที่มีโอกาสเกิดขึ้นได้ และเพื่อหาวิธีป้องกันการวิบัติดังกล่าว โดยทั่วไปลักษณะการวิบัติด้านเชิงลาดสามารถแยกออกได้เป็น 2 แบบ ดังแสดงในรูปที่ 2.50 ทั้ง 2 แบบอธิบายได้ดังต่อไปนี้ คือ

- การวิบัติแบบ Side Slope Failure การวิบัติในรูปแบบนี้เกิดขึ้นในลักษณะที่เชิงลาด เกิดการวิบัติ การวิบัติรูปแบบนี้ยังแยกออกได้เป็น 2 ลักษณะคือ Face Failure และ Toe Failure ทั้ง 2 ลักษณะแนวการวิบัติจะตัดผ่านเชิงลาดและขอบของเชิงลาด ดัง แสดงในรูปที่ 2.50ก.
- การวิบัติแบบ Foundation Failure การวิบัติในรูปแบบนี้เกิดขึ้นในลักษณะที่แนวการ วิบัติตัดผ่านฐานของเชิงลาด ดังแสดงในรูปที่ 2.50ง.

Face Failure

Toe Failure

ข. Foundation Failure

รูปที่ 2.50 รูปแบบลักษณะการวิบัติของเชิงลาด (Mode of Failure)

หลักการวิเคราะห์เสถียรภาพความลาดชันมีหลักการและวิธีการวิเคราะห์อยู่หลายวิธี ซึ่งแต่ละ หลักการหรือวิธีการวิเคราะห์จะแตกต่างกันในเรื่องของการตั้งสมมุติฐานทางทฤษฎี การวิเคราะห์เสถียร ภาพความลาดชันเป็นการตรวจสอบเสถียรภาพเชิงลาดดของมวลดินไม่ว่าจะเป็นงานถมหรืองานขุด ทั้งนี้ เนื่องจากมวลดินจะเกิดการเคลื่อนตัวจากจุดที่สูงกว่าไปยังจุดที่ต่ำกว่า ดังนั้นการวิเคราะห์เสถียรภาพเชิง ลาดของมวลดิน คือการหาส่วนปลอดภัย (Factor of Safety, FS.) ต่อการพังทลาย

ส่วนปลอดภัย (FS.) = โมเมนต์ของแรงต้านทาน โมเมนต์ของแรงกระทำ

ลักษณะแนวการวิบัติของมวลดินเป็นส่วนหนึ่งที่จะทำให้การวิเคราะห์มีความยากหรือง่ายที่แตกต่างกัน ในที่นี้จะใช้ทฤษฎีระนาบการวิบัติเป็นส่วนโค้งของวงกลม (Method of Slice) ดังแสดงในรูปที่ 2.51 และ ระบบของแรงกระทำทั้งหมดต่อมวลดินในแต่ละชิ้น (Slice) ที่ทำการแบ่งแสดงดังในรูปที่ 2.52 จากรูปที่ 2.52 แรงเฉือนต้านการวิบัติแต่ละชิ้นของมวลดินมีก่าเท่ากับ

$$T_i = \frac{1}{FS} [\bar{c}_i \Delta l_i + \bar{N}_i \tan \bar{\phi}] \qquad \dots (2.62)$$

เมื่อพิจารณาระบบสมดุลย์ของโมเมนต์รอบจุดศูนย์กลางแนววิบัติทั้งระบบ (∑*M_o* = 0) ในรูปที่ 2.51 จะได้สมการพื้นฐานในการวิเคราะห์ดังนี้

$$R \sum_{i=1}^{i=n} W \sin \theta_{i} = R \sum_{i=1}^{i=n} T_{i} \qquad \dots (2.63)$$

$$FS. = \frac{\sum_{i=1}^{i=n} [\bar{c}_{i} \Delta I_{i} + \bar{N}_{i} \tan \phi]}{\sum_{i=1}^{i=n} W \sin \theta_{i}} \qquad \dots (2.64)$$

$$R = 5 \widetilde{r} \widetilde{n} \widetilde{n} \overline{v} v v \widetilde{n} \widetilde{r} \widetilde{n}$$

เมื่อ

ดังนั้น

R = รัศมีของแนววิบัติ
 W = น้ำหนักของมวลดิน
 T = แรงเฉือนต้านทานการวิบัติ

รูปที่ 2.51 ลักษณะการวิบัติของเชิงลาค แบบส่วนโค้งของวงกลม

รูปที่ 2.52 ระบบของแรงกระทำต่อมวลคินทั้งหมดในแต่ละส่วน [Lambe,1979]

การวิเคราะห์เสถียรภาพของคันทางหรืองานเชิงลาด วิธีที่ใช้ในการวิเคราะห์มีอยู่หลายวิธีด้วยกัน ซึ่งในแต่ละวิธีก็มีพื้นฐานเช่นเดียวกัน แต่ในที่นี้จะกล่าวเพียง 2 วิธี ดังต่อไปนี้

2.7.2.1 วิธี Fellenius (1927) หรือ วิธี Swedish, Ordinary Method of Slice

วิธี Fellenius (1927) หรือ วิธี Swedish, Ordinary Method of Slice เป็นวิธีที่มี

สมมุติฐานคังต่อไปนี้

- 1. แนววิบัติของมวลดิน (Slip Failure) จะมีลักษณะเป็นโค้งวงกลม (Arc)
- ผลของแรงกระทำด้านข้างของแต่ละชิ้นมวลดิน (Slice) มีค่าเท่ากับศูนย์ แนวแรงกระทำ แต่ละชิ้นของมวลดินขนานกับระนาบของฐานแต่ละชิ้น (Slice) ของมวลดิน

ระบบของแรงกระทำต่อมวลดินแต่ละส่วน (Slice) มีลักษณะดังแสดงในรูปที่ 2.53

รูปที่ 2.53 ระบบแรงกระทำต่อมวลคินในแต่ละส่วน (Slice)

จากระบบสมดุลย์ของแรงกระทำที่แสดงในรูปที่ 2.53 ในแนวแกน n ($\Sigma F_n=0$) จะได้

$$\overline{N}_{i} + U_{i} = W_{i} \cos \theta_{i}$$

$$\overline{N}_{i} = W_{i} \cos \theta_{i} - u_{i} \Delta l_{i}$$
....(2.65)

แทนค่าสมการ 2.65 ในสมการระบบสมคุลย์ สมการที่ 2.62 และสมการที่ 2.64 จะได้

$$F.S. = \frac{\sum_{i=1}^{i=n} \Delta l_i + \sum_{i=1}^{i=n} (W_i \cos \theta_i - u_i \Delta l_i) \tan \overline{\phi_i}}{\sum_{i=1}^{i=n} W_i \sin \theta_i} \dots (2.66)$$

2.7.2.2 ਹੈਜ਼ Simplified Bishop Method of Slice (1955)

วิธี Simplified Bishop Method of Slice เป็นวิธีที่ได้พัฒนาโดย Janbu et al.

(1956) โดยมีสมมุติฐานดังต่อไปนี้

- 1. แนววิบัติของมวลดิน (Slip Failure) จะมีลักษณะเป็นโค้งวงกลม (Arc)
- แรงกระทำด้านข้าง E_iของแต่ละชิ้นมวลดิน (Slice) กระทำในแนวตั้งฉากของแต่ละชิ้น ของมวลดิน แต่เพื่อให้ง่ายต่อการวิเคราะห์จึงไม่นำมาพิจารณา
- แรงเฉือนด้านข้างในแต่ละชิ้นของมวลดินมีค่าเท่ากับศูนย์

ระบบของแรงกระทำต่อมวลดินแต่ละส่วน (Slice) มีลักษณะดังแสดงในรูปที่ 2.54

รูปที่ 2.54 ระบบแรงกระทำต่อมวลดินในแต่ละชิ้น (Slice)

จากระบบสมคุลย์ของแรงกระทำ ($\sum F_n = 0$) ที่แสดงในรูปที่ 2.54 จะได้

$$W_i = \overline{N}_i \cos\theta_i + U_i \cos\theta_i + T_i \sin\theta_i \qquad \dots \dots (2.67)$$

ເນື່ອ

$$T_{i} = \frac{1}{FS_{i}} \left(\bar{c} \Delta l_{i} + \bar{N}_{i} \tan \bar{\phi} \right) \qquad \dots (2.68)$$

แทนค่าสมการ 2.68 ถงในสมการ 2.67 จะได้

$$W_{i} = \overline{N}_{i} \cos \theta_{i} + U_{i} \cos \theta_{i} + \left[\frac{1}{FS}\left(\overline{c}\Delta l_{i} + \overline{N}_{i} \tan \overline{\phi}\right)\right] \sin \theta_{i}$$

$$\overline{N}_{i} = \frac{W_{i} - U_{i} \cos \theta_{i} - (\overline{c}\Delta x_{i} \tan \theta_{i}) / FS.}{\cos \theta_{i} [1 + (\tan \phi' \tan \theta_{i}) / FS.]} \qquad \dots (2.69)$$

แทนค่าจากสมการ 2.69 ในสมการที่ 2.64 จะได้

$$\sum_{i=n}^{i=n} \sum_{\substack{i=1\\ i=1}} (i - u_i \Delta x_i) \tan \overline{\phi}] [1/M_i(\theta)] \qquad \dots (2.70)$$

$$F.S. = \frac{i=1}{\sum_{i=1}^{i=n} \sum_{\substack{i=1\\ i=1}} (i - i - i) - i + \frac{1}{\sum_{i=1}^{i=n} \sum_{i=1}^{i=n} (i - i) - i + \frac{1}{\sum_{i=1}^{i=n} (i - i) - i - i + \frac{1}{\sum_{i=1}^{i=n} (i$$

2.7.2.3 การวิเกราะห์เสถียรภาพของกันดินกรณีที่มีการเสริมแรง

(Slope Stability by Soil Reinforcement)

ใช้หลักการสมดุลย์เช่นเดียวกับการวิเคราะห์โดยวิธี Fellenius (1927) หรือ วิธี Swedish, Ordinary Method of Slice เพียงแต่เพิ่มแรงดึงอันเนื่องมาจากการเสริมแรงด้วยแผ่นใยสังเคราะห์ Koemer, R.M. (1994) ได้กล่าวถึงกลไกการเพิ่มก่าอัตราส่วนความปลอดภัยเมื่อมีการใช้วัสดุแผ่นใยสังเคราะห์เสริม แรงโดยที่ลักษณะของแรงกระทำแสดงดังรูปที่ 2.55

รูปที่ 2.55 ลักษณะของแรงกระทำเมื่อมีการเสริมแรงด้วยแผ่นใยสังเคราะห์ [Koemer, R.M., 1994]

เมื่อพิจารณาความสมคุลย์ของโมเมนต์ที่กระทำรอบจุดหมุน O จะได้สมการของค่าอัตราส่วน ความปลอดภัยดังนี้

$$FS. = \frac{(M_R + M_G)}{M_D}$$
....(2.72)

หรือ FS_R = FS._o +
$$\frac{M_G}{M_D}$$
(2.73)
เมื่อ FS._R = ค่าอัตราส่วนความปลอดภัยของเชิงลาคที่มีการเสริมแรง
FS_o = ค่าอัตราส่วนความปลอดภัยของเชิงลาคที่ไม่มีการเสริมแรง
M_G = โมเมนต์ด้านการวิบัติเนื่องจากการเสริมแรง

ดังนั้นค่าอัตราส่วนความปลอดภัยของเชิงลาดที่มีการเสริมแรงมีค่าเท่ากับ

$$FS_{R} = \frac{\sum_{i=1}^{i=n} N_{i} \tan \phi + c\Delta l_{i} N_{i} R + \sum_{i=1}^{i=m} F_{i} y_{i}}{\sum_{i=1}^{i=n} W_{i} \sin \theta_{i} N_{i} R} \quad (\text{dim} \tilde{\mathbf{y}} \text{U} \text{ Total Stress}) \quad \dots (2.74)$$

$$\text{unv} \quad FS_{R} = \frac{\sum_{i=1}^{i=n} \overline{\phi} + \overline{c}\Delta l_{i} N_{i} R + \sum_{i=1}^{i=m} F_{i} y_{i}}{\sum_{i=1}^{i=n} W_{i} \sin \theta_{i} N_{i} R} \quad (\text{dim} \tilde{\mathbf{y}} \text{U} \text{ Effective Stress}) \quad \dots (2.75)$$

เมื่อ	N _i	=	$W_i \cos \theta_i$
	\overline{N}	=	$N_i - u_i \Delta I_i$
	u _i	_	$h_i \gamma_w = usv \tilde{n}uu$
	h _i	=	ความสูงของระดับน้ำจากแนวการวิบัติในแต่ละส่วนของมวลดิน
	W	=	น้ำหนักของมวลดินในแต่ละส่วน
	θ_{i}	=	มุมระนาบวิบัติที่ทำมุมกับแนวราบที่จุดศูนย์กลางของแต่ละส่วนของ
			มวลดิน
	Δl_i	=	กวามยาวระนาบวิบัติของมวลดินแต่ละส่วน
	Δx_i	=	กวามกว้างของมวลดินในแต่ละส่วนของมวลดิน
	R	=	รัศมีของระนาบวิบัติ
	$\phi, \overline{\phi}$	=	Total and effective angle of shearing resistance
	c,ē	=	ค่ากำลังรับแรงเฉือนแบบไม่ระบายน้ำและแบบระบายน้ำ
	F _i	=	หน่วยแรงดึงที่ยอมให้ของแผ่นใยสังเกราะห์ (Geotextile)
	y _i	=	ระยะจากจุดศูนย์กลางของแนววิบัติถึงตำแหน่งของแผ่นใยสังเคราะห์
	m	=	จำนวนชั้นของแผ่นใยสังเกราะห์

2.7.2.4 การวิเคราะห์เสถียรภาพของคันดินกรณีที่มีการเสริมเสาเข็มต้านการวิบัติ

ลักษณะของการเสริมเสาเข็มด้านการวิบัติหรือเพื่อเพิ่มเสถียรภาพคังที่ได้แสดงในรูปที่ 2.6 หรือคังแสคงในรูปที่ 2.56 เมื่อพิจารณาโมเมนต์รอบจุดสูนย์กลางของแนวการวิบัติจะได้ก่าอัตราส่วน ความปลอดภัยคังนี้

รูปที่ 2.56 ลักษณะการเสริมเสาเข็มสำหรับงานเชิงลาค [NAVFAC DM-7.1, 1982]

$$FS. = \frac{M_R + P_i Z_i}{M_D} \qquad \dots (2.76)$$

แทนก่าจากสมการที่ 2.63 และสมการที่ 2.64 จะได้

$$FS._{p} = \sum_{i=1}^{i=n} \frac{(\overline{c}_{i} \Delta l_{i} + \sum \overline{N}_{i} \cdot \tan \overline{\phi}) \cdot R + P_{i} Z_{i}}{W_{i} \sin \theta} \qquad \dots \dots (2.77)$$

เมื่อ