รายการอ้างอิง

- [1] Slamova, M., Ocenasak, V., Dvarak, P. and Juricek, Z. <u>Response of AA8006 and AA8111</u> <u>Strip Cast Cold Rolled alloys to high temperature Annealing.</u> Proc.ICAA6, Vol.2, 1998, pp. 1287-1292.
- [2] Sanders JR, R.E., Baumann, S.F. and Stumpf, H.C. Wrought Non-Heat –treatable Alumi num alloys. Aluminum alloy – comtemporary research and applications, Volume 31, 1989, pp.83-85.
- [3] Merchant, H.D., Kattamis, T.Z. and Morris, J.G. <u>Continuous Casting of Aluminum alloys</u>. Continuous Casting of Non-Ferrous Metals and Alloys, September 28-29th, 1988, pp.83-85.
- [4] Furrer, P. Aluminum Alloys-Physical and Mechanical Properties. EMAS, 1986, p1303.
- [5] Slamova, M., Ocenasek, V., Cieslar, M., Chalupa, B. and Merle, P. <u>Difference in</u> <u>Structure Evolution of Twin-Roll Cast AA8006 and AA8011 alloys during Annealing</u>. Material Science Forum, Vols. 331-337, 2000, p831.
- [6] Slamova, M., Ocenasek, V. and Juricek, Z. <u>Impact of As-Cast Structure and Properties</u> <u>of Twin-Roll Cast AA8006 Alloy.</u> Material Science Forum, Vols. 331-337, 2000,pp. 161-166.
- [7] Hatch, J.E., Work Hardening, Recovery, Recrystallization and Grain growth. Aluminum properties and Physical Metallurgy, 1984, pp.105-116.
- [8] Humphrey, F.J. and Hatherly, M. <u>Recrystallization of Two-Phase alloys</u>. Recrystallization and Related Annealing Phenomena, 1995, pp.235-276.
- [9] Zaidi, M.A. and Wert, J.A. <u>Thermomechanical Processing of Aluminum alloys</u>. Aluminum alloy comtemporary research and applications, 1989, pp.156-162.
- [10] Slamova, M., Ocenasek, V., Duorak, P. and Juricek, Z. <u>Phase Transformation Study of two Aluminum Strip-Cast Alloys.</u> Proc.ICAA6, Vol.2, 1998, pp. 897-902.
- [11] Karlik, M., Siegl, J., Slamova, M. and Birol, Y. <u>Study of the Damage of AA8006 Twin-Roll</u> <u>Cast Thin Sheets during Forming of Heat Exchanger Fins.</u> Material Science Forum, Vols. 331-337, 2000, p619.

- [12] <u>Standard test Methods for Tension testing of Metallic Materials, E8-96.</u> Annual Book of ASTM Standards, Vol 03.01, 1996.
- [13] Standard test Method for Ball Punch Deformation of Metallic Sheet Material, E643-84.
 Annual Book of ASTM Standards, Vol 03.01, 1996.
- [14] Slamova, M. Effect of strain level on recrystallization response of AA8006 and AA8011
 <u>Thin strip</u>. Metal 2001.(To be published).
- [15] Humphrey, F.J. <u>A new analysis of recovery, recrystallization and grain growth.</u> Material seciences and technology, Vols 15, 1999, p.37.

ภาคผนวก

ภาคผนวก ก การกระจายตัวของอนุภาคของชิ้นงานภายหลังการอบอ่อน

การกระจายตัวของชิ้นงานที่ผ่านการหล่อแบบทวินโรล ที่อุณหภูมิ 550 และ580องศาเซลเซียสในเวลา ที่แตกต่างกันได้ถูกแสดงใน รูปที่ ก.1ดังนี้

รูปที่ ก.1 การเปลี่ยนแปลงโครงสร้างจุลภาคเมื่ออุณหภูมิการอบโฮโมจิไนเซชันและเวลาเปลี่ยนแปลงไป ช**ิ้นงานประเภทไม่ผ่านการอบโฮโมจิไนเซชัน**

ชิ้นงานประเภท อบโฮโมจิไนเซชันที่ 550องศาเซลเซียส

เวลา 6 ช.ม.

เวลา 8 ช.ม.

ชิ้นงานประเภท อบโฮโมจิไนเซชันที่ 550องศาเซลเซียส(ต่อ)

เวลา 10 ช.ม.

STREC 20RV X2,500 15mm

ZOKN

STREC

เว<mark>ดา 13 ช.ม</mark>.

เวลา 15 **ช.ม**.

เวลา 18 **ช.**ม.

100m Fì Lòi X500 15mm

ชิ้นงานประเภท อบโฮโมจิไนเซชันที่ 550องศาเซลเซียส(ต่อ)

ເວລາ 20 .ນ.

เวลา 22 ช.ม.

ชิ้นงานประเภท อบโฮโมจิในเซชันที่ 580องศาเซลเซียส

เวลา 6 ช.ม.

เวลา 8 **ช.**ม.

ชิ้นงานประเภท อบโฮโมจิไนเซชันที่ 580องศาเซลเซียส(ต่อ)

เวลา 10 **ช.ม**.

เวลา 13 ช.ม.

เวลา 15 ช.ม.

AKL

เวลา 18 **ช.**ม.

ชิ้นงานประเภท อบโฮโมจิในเซชันที่ 580องศาเซลเซียส(ต่อ)

เวลา 20 ช.ม.

STREC 20KU X2,500 15mm

ເວລາ 22 .ນ.

ภาคผนวก ข ข้อมูลแสดงส่วนผสมในโครงสร้างจุลภาค โดย เทคนิค EDS (ENERGY-DISERSIVE SPECTROSCOPY

ตารางที่ ข-1 แสดงส่วนผสม(% element) สำหรับอะลูมิเนียมแผ่นที่ผ่านการอบ โฮ โมจิไนเซชัน 550องศาเซลเซียส ที่เวลาแตกต่างกัน

			:	second	Hphase	•						Ma	trix			20 22								
Time(hr)	6	8	10	13	15	18	20	22	6	8	10	13	15	18	20	22								
%Mh	0.53	1.14	1.99	2.70	0.22	0.74	2.68	1.15	0.12	0.16	0.62	0.23	-	0.19	-	0.12								
%Fe	6.42	3.55	7.45	9.04	1.70	8.80	7.59	16.67	0.25	0.64	1.20	0.54	-	0.24	-	0.10								
%4	93.06	95.31	90.56	88.26	98.08	90.46	89.73	82.18	99.63	99.20	98.18	99.23	-	99.57	-	99.79								

ตารางที่ ข-1 แสคงส่วนผสม(% element) สำหรับอะลูมิเนียมแผ่นที่ผ่านการอบ โฮ โมจิไนเซชัน 580องศาเซลเซียส ที่เวลาแตกต่างกัน

				sec	ond-pt	nase							Ma	trix			0 22							
Time(hr)	6	8	10	13	15	18	20	2	2	6	8	10	13	15	18	20	22							
%Mn	0.66	3.00	0.63	2.01	0.71	1.31	0.48	1.95	1.11	-	0.37	-	0.31	-	0.15	-	0.08							
%Fe	9.96	10.66	9.04	7.01	6.64	17.08	5.58	6.43	16.24	-	0.61	-	0.43	-	0.13	-	0.10							
%A	89.38	86.34	90.33	90.99	92.64	81.61	93.95	91.62	82.64	-	99.01	-	99.26	-	99.73	-	99.82							

ภาคผนวก ค ลักษณะโครงสร้างจุลภาคภายหลังการรีดของอะลูมิเนียมแผ่นAA8006 รูปที่ ค-1 ลักษณะเกรนเมื่อเพิ่มอัตราการรีดเย็น(กำลังขยาย 50x และ 100x)

71

รูปที่ ค-2 ลักษณะการกระจายตัวของอนุภากเมื่อเพิ่มอัตราการรีคเย็น(กำลังขยาย 1000x)

ภาคผนวก ง การกระจายตัวของอนุภาคสำหรับอะลูมิเนียมแผ่น AA8006 ภายหลังการอบอ่อน

รูปแสดงการกระจายตัวของอนุภาคภายหลังการอบอ่อน ณ กระบวนการเชิงกลและความร้อนที่ แตกต่าง กันได้ถูกแสดงตามลำดับอัตราการรีดเย็นจากน้อยไปมากดังนี้

รูปที่ง-1 การกระจายของอนุภาคสำหรับชิ้นงานอะลูมิเนียมที่อัตราการรีค 61% รูปที่ง-2 การกระจายของอนุภาคสำหรับชิ้นงานอะลูมิเนียมที่อัตราการรีค 71% รูปที่ง-3 การกระจายของอนุภาคสำหรับชิ้นงานอะลูมิเนียมที่อัตราการรีค 83% รูปที่ง-4 การกระจายของอนุภาคสำหรับชิ้นงานอะลูมิเนียมที่อัตราการรีค 92% รูปที่ง-5 การกระจายของอนุภาคสำหรับชิ้นงานอะลูมิเนียมที่อัตราการรีค 97%

รูปทึ่ง-1 การกระจายของอนุภาคสำหรับชิ้นงานอะลูมิเนียมที่อัตราการรีด 61%(กำลังขยาย 1000x)

รูปที่ง-2 การกระจายของอนุภาคสำหรับชิ้นงานอะลูมิเนียมที่อัตราการรีค 71%(กำลังขยาย 1000x)

รูปที่ง-3 การกระจายของอนุภาคสำหรับชิ้นงานอะลูมิเนียมที่อัตราการรีค 83%(กำลังขยาย 1000x)

รูปที่ง-4 การกระจายของอนุภาคสำหรับชิ้นงานอะลูมิเนียมที่อัตราการรีค 92%(กำลังขยาย 1000x)

รูปที่ง-5 การกระจายของอนุภาคสำหรับชิ้นงานอะลูมิเนียมที่อัตราการรีค 97% (กำลังขยาย 1000x)

ภาคผนวก จ รายละเอียดการทดสอบ BALL PUNCH DEFORMATION

การทคสอบ Ball Punch deformation ตามมาตราฐาน ASTM E 643-84 ใช้ในการทคสอบ โลหะ แผ่นบางโคยให้ก่าความสามารถในการแปรรูป เป็นระยะที่หัวบอลกค โลหะจนขาคมักมีหน่วยเป็น ม.ม. ซึ่งสำหรับ โลหะแผ่นบางจะสามารถใช้ก่าจากการทคสอบนี้บ่งความสามารถในการยึคตัว Deep Drowing และ Ironing ใค้ รายละเอียคของเครื่องและชิ้นงานทคสอบเป็นคังรูปที่ จ-1

รูปที่ จ-1แสคงรายละเอียคเครื่องมือและขนาคชิ้นงานในการทคสอบ Ball Punch deformation

	H au	Dim	ensions
	ney	in.	mm
1	Thickness of test piece	full thickness	full thickness
3	Width of test piece (minimum)	3.5	90
3	Bore diameter of top die	see 6.3	see 6.3
4	Bore diameter of bottom die	1 ± 0.004	254±0.1
(5)	External diameter of top die (approximate)	3.5	90
6	External diameter of bottom die (approximate)	3.5 /	90
0	Corner radius of interior of top die	0.032 ± 0.002	0.81 ± 0.05
8	Corner radius of exterior of top die	0.032	0.8
9	Corner radius of extenor of bottom die	0.032	0.8
10	Depth of bore of top die	0.197 ± 0.010	5 ± 0.2
11	Thickness of top die (minimum)	0.78	20
12	Thickness of bottom die (minimum)	0.78	20
13	Diameter of sphencal end of penetrator ^A	0.875 ± 0.002	22.22 ± 0 04
14	Depth of cup	depth of cup	depth of cup

* "Oisen" Ball, 22.22 mm (7/e in.); "Enchsen" Ball, 20 mm

ภาคผนวก ฉ

ค่า PARTICLE-COUNT NUMBERของชิ้นงานทดลองก่อนและหลังการอบอ่อน

ตารางที่ ฉ-1 ค่าParticle-count number(/ 25 ตารางไมครอน)ของชิ้นงานอะลูมิเนียมแผ่นAA8006

		Particle co	unt(/ 25 sq	uarmicron)
Reduction T(homo)C	61%	71%	83%	92%	97%
a/c	6.8	6.4	9.6	10.8	13.8
550	6	10.2	10.8	11.6	11.9
580	10.6	10.6	12	12	13

ก่อนการอบอ่อน

ตารางที่ ฉ-2 ก่าParticle-count number(/ 25 ตารางไมกรอน)ของชิ้นงานอะลูมิเนียมแผ่นAA8006 หลังการอบอ่อนที่อัตราการรีคเย็น 61 และ97%

		par	ticle-count (/25squarmic	ron)	
Reduction	<u>,, m, -</u>	61%	<u></u>		97%	
T(homo)C T(anneal)C	as-cast	550	580	as-cast	550	580
270	17.8	13.6	11.4	10	7	9.6
300	14	12.4	15.6	13.6	12.4	10.2
380	19.2	15.4	10	13.6	10.4	10.2

ภาคผนวก ช ขนาดเฉลี่ยของอนุภาคในชิ้นงานทดลอง ก่อนและหลังการอบอ่อน

ตารางที่ ช-1 ตารางแสดงขนาดเฉลี่ยและ ส่วนเบี่ยงเบนมาตราฐานของอนุภาคของชิ้นงานอะลูมิเนียม แผ่นAA8006 ก่อนการอบอ่อน

Reduction	61	%	71	%	83	%	92	%	97	%
particle size T(homo)C	average*	sd**								
as-cast	1.60	1.51	1.18	1.17	0.99	0.91	1.19	1.04	0.90	0.73
550	0.88	0.55	1.05	0.78	0.83	0.61	0.88	0.73	1.02	1.03
580	0.97	0.65	0.90	0.65	0.81	0.48	1.18	1.00	1.01	0.60

* unit of average particle size (in horizontal)is micron

** sd is standard deviation

ตารางที่ ช-2 ดารางแสดงขนาดเฉลี่ยและ ส่วนเบี่ยงเบนมาตราฐานของอนุภาคของชิ้นงานอะลูมิเนียม แผ่นAA8006 หลังการอบอ่อนที่อัตราการรีคเย็น 61 และ97%

Reduction			61	%					97	1%		
T(homo)C	as-o	zast	55	50	58	30	as-o	ast	5:	50	58	30
particle size T(anneal)C	average*	sd**										
270	0.70	0.46	0.79	0.48	0.90	0.51	0.86	0.66	0.80	0.47	0.91	0.69
300	0.85	0.72	0.86	0.50	0.86	0.47	0.80	0.80	0.97	0.69	1.00	0.67
380	0.69	0.44	0.80	0.52	0.96	0.88	0.87	0.53	0.96	0.72	0.73	0.39

* unit of average particle size (in horizontal)is micron

** sd is standard deviation

ภาคผนวก ซ ผลการตรวจสอบ XRD สำหรับ เทคนิค DISSOLUTION

AddixrdVAC.RAW - File: Ac.raw - Type: 2Th/Th locked - Start: 5.000 ° - End: 80.000 ° - Step: 0.020 ° - Step time: 1. s - Temp.: 25 °C (Room) - Time Started: 1 s - 2-Theta: 5.000 ° - Theta: 2.500 ° - P

83-2256 (C) - Bayerite - Al(OH)3 - Y: 50.00 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 5.06020 - b 8.67190 - c 9.42540 - alpha 90.000 - beta 90.260 - gamma 90.000 - Primitive - P21/n (14) - 8 26-0028 (N) - Aluminum Manganese - Al3Mn - Y: 50.00 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 12.59 - b 14.80 - c 12.42 - alpha 90.000 - beta 90.000 - gamma 90.000 - Primitive - Pbnm (6
 06-0665 (I) - Aluminum Manganese - MnAl6 - Y: 50.00 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 6.4978 - b 7.5518 - c 8.8703 - alpha 90.000 - beta 90.000 - gamma 90.000 - Base-centred - C
 01-1265 (D) - Iron Aluminum - FeAl3 - Y: 50.00 % - d x by: 1. - WL: 1.5406 -

Image: Bolt 1228 (D) - Aluminum Iron - Fe2AI5 - Y: 50.00 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 9.910 - b 10.811 - c 8.824 - alpha 90.000 - beta 125.0 - gamma 90.000 - 774.407 -

11-0520 (N) - Aluminum Manganese - Al11Mn14 - Y: 50.00 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 3.94 - b 3.94000 - c 3.58 - alpha 90.000 - beta 90.000 - gamma 90.000 - Primitive - P4/mm

รูปที่ ซ-2 ข้อมูลแสคงผลการตรวจสอบ XRD สำหรับผงอะลูมิเนียมจากชิ้นงานประเภทไม่ผ่านการอบ โฮ โมจิไนเซชัน

🖾 d:\xrd\580H.RAW - File: 580h.raw - Type: 2Th/Th locked - Start: 5,000 ° - End: 80,000 ° - Step: 0.020 ° - Step time: 1. s - Temp.: 25 °C (Room) - Time Started: 0 s - 2-Theta: 5,000 ° - Theta: 2,500

■ 26-0028 (N) - Aluminum Manganese - Al3Mn - Y: 50.00 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 12.59 - b 14.80 - c 12.42 - alpha 90.000 - beta 90.000 - gamma 90.000 - Primitive - Pbnm (6
 ● 11-0520 (N) - Aluminum Manganese - Al11Mn14 - Y: 50.00 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 3.94 - b 3.94000 - c 3.58 - alpha 90.000 - beta 90.000 - gamma 90.000 - Primitive - P4/mm
 ● 06-0665 (I) - Aluminum Manganese - MnAl6 - Y: 50.00 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 6.4978 - b 7.5518 - c 8.8703 - alpha 90.000 - beta 90.000 - gamma 90.000 - Base-centred - C
 ▲ 01-1265 (D) - Iron Aluminum - FeAl3 - Y: 50.00 % - d x by: 1. - WL: 1.5406 -

01-1228 (D) - Aluminum Iron - Fe2Al5 - Y: 50.00 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 9.910 - b 10.811 - c 8.824 - alpha 90.000 - beta 125.0 - gamma 90.000 - 774.407 -

รูปที่ ซ-3 ข้อมูลแสดงผลการตรวจสอบ XRD สำหรับผงอะลูมิเนียมจากชิ้นงานประเภท อบ โฮ โมจิไนเซชันที่ 580 องศวเซลเซียส

ภาคผนวก ณ

ข้อมูลแสดงค่ำYield strength , Ultimate tensile strength และDuctility สำหรับชิ้นงานทดลองภายหลังการอบอ่อน

	Yield strength (MPa)																													
%Reduction				31					7	1						33			-		92							97		
T(homoginize) T(anneal)	As	cast	5	50	5	BQ	As-	cast	5	50	5	80	As	casi	5	50	5	80	As	-cast	550		e	60	As	çast	5	50	51	90
270	78.58	83.15	62.84	70.58	61.023	63.323	102.75	103.21	102.98*	90.88*	81 81	81.133	123.66*	120.02	97.82	93 4	74.09	98.31	201	195.542	108.645	72.573	67.33	44.87	99,93	145.662	96.413	92.38	66.25	78,74
average	80).B6	66	.71	61.	676	102	.978	96.	931	81	.471	120	0.018	95	517	86.	199	19	98.27	90.60	9	5	6.1	122	,798	94	397	72	495
300	83.47	86.67	54.37	60.13	56.86	70.57	89.75	84.82	87.16	78.37	\$0.302	83.153	122.99	122.15	84.398		87.125	66.43	159.875	124.56	76.144	77.35	96.89	95.16	140.234	141.597	127.129	93.223	141.217	98.425
average	85	b.07	57.	252	63.	713	87.	285	82.	764	81	727	12	2.57	84	398	76.	775	13	9.215	76.79	7	91	03	140	.915	110	.176	115	3.82
380	81.17	51.48	52.18	53.99	45.3	50.7	100.36	90.076	46.75	45.62	52.98	55.15	122.037	117.375	46.4	47.86	50.56	47.77	96.353	76.537	38.524	42.282	45.26	45.18	98.913	126.61	49.19	50.678	15.59	13.437
average	66	323	53	081	47.	998	95	.22	46	186	54	.067	119	1.706	47	.13	49.	165	86	3.445	40.40	3	45	,223	100	,264	49.	933	14.	517

ตารางที่ ฌ-1 แสดงค่าความแข็งแรงจุดคราก(Yleid Strength)ของชิ้นงานที่ฝ่านกระบวนการเชิงความร้อนและเชิงกลต่างกัน

ตารางที่ ฒ-2 แสดงค่าความแข็งแรงสูงสุด(Ultimate Tensile Strength)ของชิ้นงานที่ผ่านกระบวนการเชิงความร้อนและเชิงกลต่างกัน

	Ultimate tensile strength (MPa)															
%Reduction			61			71			83			92		1	97	
T(homoginize) T(anneal)	As-	ast	550	580	As-cast	550	580	As-casi	550	580	As-cast	550	580	As-cast	550	580
270	186.22	186.2	119.28 125.37	119.12 111.26	195,46 188.0	5 123.23 125.28	123.46 120.75	185,8* 197.36	117.43 113.29	101.046 120.79	209.3 217.1	115.482 74.207	134.731 129.36	194.365 198.375	96.413 96.503	119.32 118.915
average	186	203	122.325	119.198	191.757	124.255	122.103	191.576	115.36	110.919	213.19	94.845	132.05	199.37	96.458	119.118
300	189.15	182.32	121.16 118.9	115.97 115.65	183.22 183.43	122.91 121.95	111.76 14.06	188.28 188.64	108.883	109.014 93.346	192.53 167.91	107.081 106.642	119.146 125.731	190 186.098	135.21 95.89	138.58 100.874
average	182	736	120.028	115.81	186.321	122.433	112.912	188.458	108.883	101.18	180.23	107.0B1	122.44	188.05	115.548	119.561
380	162.96	163.35	98.31 98.69	95.2 97.1	165.11 167.7	97.96 94.09	95.84 95.35	177.73 176.45	92.08 90.38	97.91 93.22	169.973 181.858	86,662 84,34	80.27 80.44	160 162.1	87.146 87.145	51.787 45.364
average	163	,16	98,5	96.148	166.41	95.778	95.593	177.087	91.219	95.562	175.914	85.501	80,359	161.05	87.146	48.576

ตารางที่ ณ-3 แสดงค่าDuctility ของชิ้นงานที่ผ่านกระบวนการเชิงความร้อนและเชิงกลต่างกัน

								Ductility (mn	1)						
%Reduction		61			71			83			92	····		97	
T(anneal)	As-cast	550	580	As-cast	550	580	As-cast	550	580	As-cast	550	580	As-cast	550	580
270	10.54	10.271	10.235	10.112	10.159	10.165	~	5.387	5.336	10.2	6.92	10.14	7,8	7.48	7.31
300	10.311	10.253	10.29	10.119	10.197	10.127	191	5.37	5.398	10.11	9.26	10.25	6.14	5.7	8
380	10.253	10.248	10.334	10.8	10.156	10.148	5.35	5.407	12.65	10.12	11.16	10.46	8.05	7.92	6.54

ภาคผนวก ญ

ลักษณะเกรนของชิ้นงานอะลูมิเนียม AA8006 ภายหลังการอบอ่อน ที่กระบวนการเชิงความร้อนและเชิงกลแตกต่างกัน

รูปที่ ญ-1 ลักษณะเกรนภายหลังการอบอ่อนของชิ้นงานอะลูมิเนียมที่อัตราการรีคเย็น 61% ณ กระบวนเชิงความร้อนและเชิงกลที่แตกต่างกัน(กำลังขยาย 50x)

รูปที่ ญ-2 ลักษณะเกรนภายหลังการอบอ่อนของชิ้นงานอะลูมิเนียมที่อัตราการรีคเย็น 71% ณ กระบวนเชิงความร้อนและเชิงกลที่แตกต่างกัน(กำลังขยาย 50x)

รูปที่ ญ-3 ลักษณะเกรนภายหลังการอบอ่อนของชิ้นงานอะลูมิเนียมที่อัตราการรีดเย็น 83% ณ กระบวนเชิงความร้อนและเชิงกลที่แตกต่างกัน(กำลังขยาย 50x)

.

รูปที่ ญ-4 ลักษณะเกรนภายหลังการอบอ่อนของชิ้นงานอะลูมิเนียมที่อัตราการรีดเย็น 92% ณ กระบวนเชิงความร้อนและเชิงกลที่แตกต่างกัน(กำลังขยาย 50x)

รูปที่ ญ-5 ลักษณะเกรนภายหลังการอบอ่อนของชิ้นงานอะลูมิเนียมที่อัตราการรีคเย็น 97% ณ กระบวนเชิงความร้อนและเชิงกลที่แตกต่างกัน(กำลังขยาย 100x) ภาคผนวก ฎ

ความสัมพันธ์ระหว่าง DUCTILITY และ ULTIMATE TENSILE STRENGTH

Ultimate tensile strength (MPa)

Ultimate tensile strength (MPa)

Ultimate tensile strength(MPa)

Ultimate tensile strength(MPa)

ประวัติผู้เขียนวิทยานิพนธ์

นางสาวสิริวรรณ สกุลตันเจริญชัย เกิดวันที่ 15 มีนาคม 2522 ภูมิลำเนาเดิม บ้านเลขที่ 42/145 ถ.ติวานนท์ ต.ท่าทราย อ.เมือง จ.นนทบุรี สำเร็จการศึกษาระดับปริญญาตรี หลักสูตรวิศวกรรมศาสตร์ บัณฑิตสาขาวิศวกรรม โลหการ(เกียรตินิยมอันดับ 2) ในปีการศึกษา 2541 จากมหาวิทยาลัย เทค โนโลยีสุรนารี และเข้าศึกษาต่อในหลักสูตรวิศวกรรมศาสตร์มหาบัณฑิต จุฬาลงกรณ์มหาวิทยาลัย เมื่อพ.ศ.2542

