
Chapterl
Fundamental Properties of Superconductors

1.1 Introduction
Superconductivity was first observed in mercury by the Dutch physicist Heike 

Kamerlingh Onnes of Leiden University in 1911 [1]. When he cooled it to the temperature 
of liquid helium - 4 K -  its resistance suddenly disappeared. He called this 
extraordinary phenomenon superconductivity , and the temperature at which it appears 
the critical temperature , Tc . Thus perfect conductivity  is the first characteristic property 
of superconductivity. The second property to be discovered was perfect diamagnetism  1 

found in 1933 by Meissner and Ochsenfeld[2], They found not only that a magnetic field 
is excluded from a superconductor (see Fig.1-1), as might appear to be explained by 
perfect conductivity, but also that a field is expelled from an originally normal sample as 
it is cooled through Tc, We will review some basic observed electrodynamic phenomena 
and their early phenomenological descriptions.

Figure 1-1 : Schematic diagram of exclusion of magnetic flux from the interior of 
a massive superconductor. X  is the penetration depth, typically about 500 °A. [3]

1.2 The Meissner effect
At any temperature T below Tc 1 the superconducting behavior can be 

quenched and normal conductivity be restored by the application of an external
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m agnetic field. This field, Hc, is called the critical or threshold magnetic field, and, as

shown เก Figure 1 -2, that at tem perature  near T = 0 it varies ap p rox im a te ly  as

H c{ T ) * H c {o) 1  ̂ T  ^
2 "

J ' c j

--------1

( 1. 1)

where Hc(0) = Hr atT=0K.

Figurel -2: Phase diagram of the critical magnetic field v.s. temperature, the 
separation between the normal and the superconducting states is represented by the 
curve.[4]

If a perfect conductor were placed in an external magnetic field, it was found 
that no magnetic flux could penetrate the specimen. Induced surface currents would 
maintain the internal flux, and would persist indefinitely. By the same token, if a normal 
conductor were เท an external field before it became perfectly conducting, the internal 
flux would be locked in by induced persistent currents even if the external field were 
removed. Because of this, the transition of a merely perfectly conducting specimen from 
the normal to the superconducting state would not be reversible, and the final state of 
the specimen would depend on the path of the transition.

As an example, Figures 1-3 and 1-4 show the flux configuration for a perfectly 
conducting sphere taken from point A in Figure 1-2 to point c  by the different paths ABC  
and ADC, respectively. The final field distribution at c, as well as that at ร depends on
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whether one proceeds via B or via D, and the irreversibility of the transition is evident. 
Careful measurements of the field distribution around a spherical specimen by Meissner 
and Ochsenfeld [2] 1 however, indicated that regardless of the path of transition the 
situation at point c  is always that shown in Figure 1 -3c: the magnetic flux is expelled 
from the interior of the superconductor and the magnetic induction B vanishes. This is 
called the Meissner effect, and it shows that the superconducting transition is reversible.
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Figures 1-3,1-4: The reversibility of the superconducting transition.[4]

1.3 Persistent currents and flux quantization
A different case of magnetic behavior is connected to the flux trapping in a 

superconductor ring. Suppose a normal metallic ring is placed in a magnetic field 
perpendicular on its plane. When the temperature is lowered, the metal becomes 
superconducting and the flux is expelled. If the external field is removed, no flux passes 
through the superconducting metal and the trapped flux must remain constant. This flux 
is maintained by the circulating supercurrent in the ring itself. The flux trapped in 
sufficiently thick rings is quantized in units of <t>0 = tic / le .

The quantization of flux was verified experimentally in 1961 by Doll and 
Nàbauer [8] and by Deaver and Fairbank [9], These experiments have shown that the 
quantum of flux is given by

(f)0 = tic H e  ~ 2 X 10~7 gauss - cm2
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1.4 Specific heat
The superconducting materials also have distinctive thermal properties. เท the 

superconducting state, the specific heat Cs initially exceeds the specific heat of the 

normal state Cn and as T —> 0

CS(T ) varies as exp (--^ -), -2)

here A  is an energy gap separating an excited state from the ground state.
This T dependence indicates the existence of a gap in the energy spectrum 

separating the excited states from the ground states by the energy A.

1.5 Isotope effect
เท 1950, Frohlich [5] observed that the critical temperature of a superconductor 

varies with isotopic mass. เท mercury, Tc varies from 4.185 K to 4.146 K as the average 
atomic mass M varies from 199.5 to 203..4 atomic mass units. The experimental results 
within each series of isotopes are fitted by a relation of the form

Th is  quantity  show s that q=2e, tha t is, the superconducting  charge  carrie rs are

pairs o f e lectrons.

MaTc = constant. (1.3)

Observed values of a  are given in Table1-1.
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E . T : i i r . ï w ? i : > K < .ะ., ^ ■ ร:,:,....

a
ะะ :- ;ไ r .m

Z n 0.45 ± 0.05 ■ Ru .. 0.00 ± 0.05
Cd 0.32 ± 0.07 Os 0.15 ± 0.05
ร ท 0.47 ± 0.02 M o 0.33Hg 0:50 ± 0.03 N b j S n o.os ±  0.02
Pb 0.49 ± 0.02 Z r 0.00 ±  0.05

ะ : : ะ ร . ; - . : • ร น ' . : .  -.̂ çs
Table l-1 : Experimental values of a  in MaTc = constant, where M is the isotopic

mass.[6]
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The isotope effect demonstrates the importance of the ionic lattice in 
superconductivtity.

1.6 The London equations for a superconductor
The two basic electrodynamic properties, which give superconductivity unique 

interest, were well described in 1935 by F. and H. London [7] with two equations 
governing the microscopic electric and magnetic fields:

Ë  = t n t i j  47
c 2 d t

(1.4)

where J  — n e v  is current density, ท =  number density of electrons 1 and

V x j + H  =  0 3 (1.5)

where A2L =  ---------— . (1.6)
4 7mez

The parameter ?uL has the dimension of length, and for an electron density 
corresponding to one electron per atom it has a value of the order of 1 o’6 cm.

Replacing the field by a vector potential V X A  — H  and choosing a gauge 
such that V  . A  -  0, Eq. (1.5) reduces to

- J + A  =  0 .  (1.7)

The application of Maxwell’s equations now leads to

V 2H  = H IA \  . (1.8)
A solution of this equation for any geometry shows that H decays exponentially 

upon penetrating into a superconducting specimen. Eq. (1.8) has a solution

H (x ) = //(o)exp(- x l A 1) , (1.9)

which shows that for X ะ»?น11 H(x) ~  0, เท accordance with the Meissner effect.
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The London equations (1.4) and (1.5) do not, in fact, yield the complete 
exclusion of a magnetic field from the interior of a superconductor. Instead, they predict 
the penetration of a field such that it decays to 1/e of its surface value in a distance À,L, 
which is called the London penetration length.

1.7 Microscopic Theory of Superconductivity
The theory that can explain many properties of a superconductor was modeled 

successfully in 1957 by the efforts of John Bardeen, Leon Cooper, and Robert Schrieffer 
[10] in what is commonly called the BCS theory. A key conceptual element in this 
theory is the pairing of electrons close to the Fermi level into Cooper pairs through 
interaction with the crystal lattice. This pairing results from a slight attraction between 
the electrons is related to lattice vibrations; the coupling to the lattice is called a phonon 
interaction. Pairs of electrons can behave very differently from single electrons which 
are fermions and must obey the Pauli exclusion principle. The pairs of electrons act 
more like bosons which can condense into the same energy level. The electron pairs 
have a slightly lower energy and leave an energy gap above them on the order of 0.001 
eV which inhibits the kind of collision interactions which lead to ordinary resistivity. For 
temperatures such that the thermal energy is less than the band gap, the material 
exhibits zero resistivity.

1.7.1 The electron-phonon interaction
เท 1950, Frôhlich [5] pointed out that an electron moving through a crystal 

lattice has a self energy by being accompanied with virtual phonons. This contributes to 
the electron an amount of self-energy which, as was pointed out by Frôhlich and by 
Bardeen [11] is proportional to the square of the average phonon energy. It was only 
seven years later that Bardeen, Cooper, and Schrieffer succeeded in showing that the 
basic interaction responsible for superconductivity appears to be an interchange of 
virtual phonons between a pair of electrons. A second electron some distance away is 
affected when it is reached by the propagating fluctuation in the lattice charge
distribution.
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เก Figure 1-5, an electron of wave vector k  emits a virtual phonon q which is 
absorbed by an electron k '  . This scatters k  intok  -  q andk '  into Jc' +  q . The 
nature of the resulting electron -  electron interaction depends on the relative 
magnitudes of the electronic energy change and the phonon energy hcoq . If this latter 
exceeds the former, the interaction is attractive-the charge fluctuation of the lattice is 
then such as to surround one of the electrons by a positive screening charge greater 
than the electronic one, so that the second electron is attracted by a net positive 
charge.

Figure 1-5: An electron of wave vector k  emits a virtual phonon q which is 
absorbed by an electron k'. [4]

The fundamental postulate of the BCS theory is that superconductivity occurs 
when such an attractive interaction between two electrons by means of phonon 
exchange dominates the usual repulsive screened Coulomb interaction.

1.7.2 The Cooper pairs
เท 1956, Cooper [12] developed an important concept that if there is a net 

attraction, however weak, between a pair of electrons just above the Fermi surface, 
these electrons can form a bound state. The electrons for which this can occur as a 
result of the phonon interaction lie in a thin shell of width «  hcoD 1 where" kcoD is of 
order of the average phonon energy of the metal. The pair of electrons have been 
chosen in such a way that from any set of values (kr k2) transitions into ail other pairs 
are possible. As momenta are conserved, this means that

/โ j  +  k  2 — k-[ +  /โ2 == K ( 1.10)
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That is 1 that all bound pairs have the same total momentum K  .[13]
The possible values of and k 2 which satisfy Eq.(1.10) lie in a narrow shell 

straddling the Fermi surface kF, one can-construct the diagram shown in Figure 1-6, 
drawing concentric circles of radii kp-5 and kF+0 from two points separated by K. All 
possible values of k, and k2 satisfying Eq.(1.10) are restricted to the two shaded regions. 
This shows that the volume of phase space available for Cooper pairs has a very sharp 
maximum for K = 0. Thus the largest number of possible transitions yield the most 
appreciable lowering of energy is obtained by pairing all possible states such that their 
total momentum vanishes. It is also possible to show that exchange terms tend to 
reduce the interaction energy for pairs of parallel spin, to restrict the pairs to those of 
opposite spin. One can, therefore, summarize the basic hypothesis of the BCS theory as 
follows: At 0 °K the superconducting ground state is a highly correlated one in which in 
momentum space the normal electron states in a thin shell near the Fermi surface are 
to the fullest extent possible occupied by pairs o f opposite spin and momentum.

by K [4]

1.7.3 The ground state energy
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BCS proceeded to calculate the superconducting ground state energy as 
being due uniquely to the correlation between Cooper pairs of electrons of opposite spin 
and momentum by phonon and screened Coulomb interactions.

The interaction leading to the transition of a pair of electrons from the 
state ( k  ' ใ ' , - k  >l) to [ k ’  ใ ' , - k '  'l') is characterized by a matrix element,

-vkk. =  2 {F  T,-Æ T) , ( 1. 11)

where H m[ is the truncated Hamiltonian from which all terms common to the normal and 
superconducting phases have been removed. \/kk, is the difference between one term 
describing the interaction between the two electrons by means of a phonon, and a 
second one giving their screened Coulomb interaction. The basic similarity of the 
superconducting characteristics of widely different metals implies that the responsible 
interaction cannot crucially depend on details characteristic of individual substances. 
BCS therefore made the further simplifying assumption that \/kk. is isotropic and constant 
for all electrons เท a narrow shell, straddling the Fermi surface, of thickness less than the 
average energy of the lattice, and that \/kk, vanishes elsewhere. Measuring electron 
energy from the Fermi surface, and calling ธk the energy of an electron เท state k  , one 
can state this formally by the equations:

V k k ' =  V fo rK I ’ K ' l  - h ( D q

and V k k ' = 0 elsewhere.

The basic BCS criterion for superconductivity is equivalent to the condition
y<0.

This simplification of the interaction parameter 1/ necessarily leads to what can 
be called a law of corresponding states for all superconductors, that is, virtually identical 
predictions for the magnitudes of all characteristic quantities in terms of reduced co­
ordinates. Any empirical deviation from such complete similarity is, therefore, no 
invalidation of the basic premise of the BCS theory, but merely an indication of the 
oversimplification inherent เท Eq.(1.12).

Let h k be the probability that states k and -k are occupied by a pair of 
electrons, and (1 -/าk) the corresponding probability that the states are empty. U/(0), the
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ground state energy of the superconducting state at 0°K as compared to the energy of 
the normal metal, is then given by

พ ( 0 )  = ^ k h k - Y . v M - h r ) h k , ( y - h k )}(1.13)
k  k k ’

The summation is overall those k-values for which V kW ̂  0, so that using Eq. 
(1.12) one can simplify พ(อ) to

พ(0) = (1.14)
■ k k k ’

The first term gives the difference of kinetic energy between the 
superconducting and normal phases at 0°K.The factors 2 arises because for every 
electron in state k of energy 8k there is with an isotropic Fermi surface another electron 
of the same energy in -k. This first term can be either positive or negative, and gives the 
correlation energy for all possible transitions from a pair state (k 1 -k) to another (k’,-k’). 
For such a transition to be possible, k must initially be occupied and k’ empty. The 
simultaneous probability of this is given by เาk(1-hk,). The final state must have k empty 
and k’ occupied, and this has probability hk,(1-hk). The square root of the product of 
these probabilities multiplied by the matrix element for the transition and summed over 
all possible values of k and k' gives the total correlation energy.

l/l/(0) must be negative for the superconducting phase to exist, and to see 
whether this is possible Eq.( 1.14) can be minimized with respect to เาk.. this leads to

f e ( i - r i t )]1/2 
1 -  2๒ (1.15)

By defining

A(o) = K S M i - V ) ] 1' 2,

Equation (1.15) simplifies to

K  =
f

V E k J
where

E k  = £k + A2(o)

(1.16)

(1.17)

1/2 (1.18)
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Substituting Eq.(1.17) back into Eq.(1.16) one obtains a non-linear relation for A (0 ) :

(1.19)

This can be treated most readily by changing the summation to an integration and 
transforming the variable of integration from k to ร.

Assuming symmetry of states on either side of the Fermi surface (8=0), and 
introducing the constant density of single electron states of one spin in the normal state 
N(0) at ธ = 0: Eq.(1.19) becomes

m  - ïpâr
The limit of integration is the phonon energy above which, according to Eq. 

(1.12), V = 0. The solution of Eq.(1.20) is

A(o) = /^ /s in h [ l/iV (o )F ] . (1.21)
Putting this back into Eq,(1.18) and Eq.(1.16) and finally into Eq.(1.14), one 

finds that the ground state energy of the superconducting state is given by

พ ( 0 )  = -  ,1.22, v '  exp[2/A (o)F]-l
The numerator of this quantity follows from dimensional reasoning from any 

theory which postulates an interaction between electrons and phonons and allows this 
interaction to be cut off at some averages phonon energy f t c0  ~ @ where © is
Debye cutoff-temperature beyond which the interaction becomes repulsive. A term like 
this had been contained in the earlier attempts of Frohlich and of Bardeen, and, as 
mentioned before, is much too large. The success of the BCS theory lies in the 
appearance of the exponential denominator which reduces พ((ว) by many orders of 
magnitude. Although a precise calculation of the average interaction parameter V for a 
specific metal continues to be among the most important questions still to De solved,
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various estimates [12-14] indicate that the values of N(0)v ~ 0.3, derived form a 
knowledge of H0, are reasonable. Thus the denominator has a value of about e .

1.7.4 The energy gap at 0 K
From Eq.(1.14) one can see that the contribution of a single pair state (£,-£') 

to this total condensation energy is

พ  11 =  2 e k h t - 2 V Z { ( l - h k . ) h k , } ' n . (1.23)

The first term represents the kinetic energy of both electrons in the pair stated, 
and the second term is the total interaction energy due to ali possible transitions into or 
out of the state.

At 0 K the lowest excited state of the superconductor must correspond to 
breaking up a single pair by transferring an electron from a state k  to another, leaving 
an unpaired electron เท - k  • The condensation energy is then reduced by พ 1'. The first 
term of this can be made arbitrarily small, and is analogous to the excitation energy in a 
normal metal, for which there is a quasi-continuous energy spectrum above the ground 
state. The second term of พ 1', however, is finite for all values of 1 which is why in the 
superconducting phase the lowest excited state is separated from the ground state by 
an energy gap.

Comparing Eq.(1.23) with Eq.(1.16) one sees that this energy gap has the 
value of 28(0), which according to Eq.(1.21) equals

2f(o) = lhcoD / sinh[l/ A7(o)K] . (1.24)

As V N ( 0 ) V &  3-4, this can be approximated by

2<c(o) = 4 h e o D e x p [ l / N ( o ) V ]  . (1.25)

1.7.5 The superconductor at finite temperatures
As the temperatures of the superconductor is raised above 0 K, an increasing 

number of electrons find themselves thermally excited into single quasi-particle states.
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These excitations behave like those of a normal metal; they are readily scattered and 
can gain or lose further energy เท arbitrarily small quantities. เท what follows they are 
simply called normal electrons. At the same time there continues to exist the 
configuration of all electrons still correlated into Cooper pairs, and displaying 
superconducting properties, being very difficult to scatter or to excite. One is thus led 
again to a two-fluid point of view.

As at 0 K, one can write down an analytic expression for the ground state 
energy พ (T ) containing a kinetic energy term and an interaction term. เท both, the 
presence of the normal electrons must be accounted for, which is done by introducing a 
suitable probability factor fk.

Letting fk =  a probability of occupation of k  or o f-  k  by a single normal 
electron, then 1

1-2f k = probability that neither k  nor — k  is occupied by a normal electron.
This leads to a kinetic energy term

[W(T )]k .e. = Æ \sk\\f k+{1 - 2f k)h11}, (1.26)

where the summation is over the same range as at 0 K, and h k retains the same 
definition, though no longer the same value. The second term เท the brackets clearly 
gives the probability that the pair state ( k , - k )  not be occupied by normal electrons but 
by a correlated pair. The correlation energy'at a finite temperature is

[w{T)lo„ = - n i M i - A ) A ( i - ^ ) } 1 , 2 x

11. ) .  (1.27)

The last two terms ensure that the correlated pair states not be occupied by 
normal electrons. It is obvious that the presence of these terms decreases the pairing 
energy.

The thermal properties of the superconductors can now be found quite readily 
by writing down the free energy of the system and requiring this to be at a minimum. The 
free energy is
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G = พ(T)-TS = [W{T)]KÆ.+{w{T)]con.-TS , (1.28)

where T  is the temperature and ร the entropy. This last term is due entirely to the normal 
electrons; the electrons which are still paired are in a state of highest possible order and 
do not contribute at all. Thus the entropy is given by the usual expression for particles 
obeying Fermi-Dirac statistics:

TS = -2 k BTๅ ' { / k\nf t + { l - f t ) l n ( l - f t )} . ( 1 . 2 9 )

Substituting Eq.(1.26), Eq.(1.27) and Eq.(1.29) into Eq.(1.28), and minimizing 
this free energy with respect to h k, one now obtains

r, 1,,vp/2 - 2 f  11.)
y h Æ z h l  = v t ______ I _ __________  . (1.30)

1 ~ 2£ k

This time one defines

A ( T )  ^  v t [ h k , { i - h k. ) } ' n ( \ - 2 f k . )  , (1.31)

and one obtains

h  =  - 1 -

where E k  is now defined as E f r  = + A2(t ) 1 1 1

(1.32)

One see that, as at 0 K, 2 s  ( T )  represents the contribution of a single pair state 
to the total correlation energy, and that to break up one such pair at any finite 
temperature removes from the superconducting energy at least this amount. เท other 
words, the superconducting state continues to contain an energy gap 2 ร  ( T )  separating 
the lowest energy configuration at any given temperature from that with one less 
correlated pair.

To evaluate the magnitude of the energy gap one must first find an expression 
for f k  1 which one obtains by minimizing the free energy with respect to f k , This yields

f k  =  [ e x p f e / v o + l ] -1 (1.33)
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Eq.(1.33), Eq.(1.25), and Eq.(1.31 ) yield for £  ( T )  a non-linear relation which, by 
changing as before from a summation over k  to an integration over ร ,  becomes

1 hcoD
โ d s ร 1 + £ ( t )

1 /2  '

N ( o ) V l  [ร■2 + A 2 ( r )
1 /2  tann<

A
2 k B T ------  f (1.34)

The critical temperature Tc is reached when all pair states are broken up so that

_1__
Af(o)K 2พ ิ'

(1.35)

because A ( T C)  =0, hence.

As long as k BTc «  f i a D the solution of this equation can be written as 

k B T c =  1 .1 4 h a > 0  e x p [ -  1 /7 V ( o )f ] . (1.36)
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