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One challenge in applying deep learning to medical imaging is the lack of 

labeled data. Although large amounts of clinical data are available, acquiring 

labeled image data is difficult, especially for bone scintigraphy (i.e., 2D bone 

imaging) images. Bone scintigraphy images are generally noisy, and ground-truth 

or gold standard information from surgical or pathological reports may not be 

available. We propose a novel neural network model that can segment abnormal 

hotspots and classify bone cancer metastases in the chest area in a semi-supervised 

manner. Our proposed model, called MaligNet, is an instance segmentation model 

that incorporates ladder networks to harness both labeled and unlabeled data. 

Unlike deep learning segmentation models that classify each instance 

independently, MaligNet utilizes global information via an additional connection 

from the core network. To evaluate the performance of our model, we created a 

dataset for bone lesion instance segmentation using labeled and unlabeled example 

data from 544 and 9,280 patients, respectively. Our proposed model achieved mean 

precision, mean sensitivity, and mean F1-score of 0.852, 0.856, and 0.848, 

respectively, and outperformed the baseline mask region-based convolutional 

neural network (Mask R-CNN) by 3.92%. Further analysis showed that 

incorporating global information also helps the model classify specific instances 

that require information from other regions. On the metastasis classification task, 

our model achieves a sensitivity of 0.657 and a specificity of 0.857, demonstrating 

its great potential for automated diagnosis using bone scintigraphy in clinical 

practice. 
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1. Introduction 

 

1.1 Motivation 

At present, 1.7 million patients are diagnosed with cancer each year (Siegel, Miller et 

al. 2019), and cancer is commonly detected in multiple organs. Once cancer has 

spread to the bones, it can rarely be cured (Institute 2018). Therefore, bone cancer 

detection plays a key role in treatment decision making (Ibrahim, Mercatali et al. 

2013). Bone scintigraphy is a nuclear medicine procedure that uses radioactivity for 

bone cancer imaging. Because the spread of cancer often manifests in the bones, 

clinicians usually request bone scintigraphy results before any type of treatment can 

be prescribed. The bone scintigraphy results are used in primary decision making as 

supporting information during screening and for identifying the positions of any 

abnormal regions, called lesions (Geng, Jia et al. 2015, Magee, Zachazewski et al. 

2015). 

 

However, abnormalities found in bone scans include not only cancer but also other 

bone abnormalities that can be considered benign. A malignant lesion is characterized 

as a cluster of dangerous tumor cells that can lead to bone cancer metastases 

(Confavreux, Pialat et al. 2019). To judge whether a lesion is malignant, the nuclear 

medicine physician must factor in several criteria, such as the pixel intensity 

reflecting the level of radioactive uptake, the lesion location, the number of lesions, 

etc. In cases where lesion categorization is difficult due to ambiguous characteristics, 

the physician might have to increase their time spent for diagnosis to up to an hour per 

patient to interpret the results. Using machine learning to support this task can help 

improve efficiency, resulting in better treatment for patients. 

 

The difficulties in applying machine learning to medical imaging applications lie in 

manual labeling. In this case, labeling bone scintigraphy data requires nuclear 

medicine physicians. Consequently, the labeling task can be very expensive and time-

consuming. It is very likely that only a small portion of the data will be labeled. 

Furthermore, when the physician is uncertain about the type of lesion, the nuclear 

medicine physician may label more than one class per lesion (multilabel data), which 

makes the data labeling more complex. Current instance segmentation methods 

designed for supervised learning use a large amount of labeled data for training and 

cannot use unlabeled data and poor results can be obtained when the labeled dataset is 

small. 

 

Deep learning has become the predominant model for tasks related to medical images. 

Convolutional neural networks (CNNs) are usually used in such models due to their 

ability to handle spatial inputs well (Rajpurkar, Irvin et al. 2017). Our work focuses 

on the use of unlabeled data in addition to the labeled data to improve the model 

accuracy, a method often called semi-supervised learning. Specifically, our model 

uses the feature pyramid network (FPN) architecture (Lin, Dollár et al. 2017) as a 

basis and incorporates the autoencoder structure used in the ladder network (Rasmus, 

Berglund et al. 2015) to make use of unlabeled data. 
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Lesion instance segmentation is a type of segmentation task that is responsible for 

dividing pixels into parts depending on the characteristics of lesions. A segmentation 

task can be separated into two types: semantic segmentation, which aims to group the 

pixels in a semantically meaningful way through a pixel-wise classification, and 

instance segmentation, which is the task that not only segments pixels into groups but 

also identifies the groups in instances. Generally, region-based approaches (Girshick, 

Donahue et al. 2014) for object detection are applied in instance segmentation in the 

first stage. Each region is categorized and segmented into a binary mask (He, 

Gkioxari et al. 2017). 

 

Normally, classifying the type of objects in the instance segmentation task relies first 

on the object detection process to identify the regions of interest (ROIs). Each object 

is classified independently, which might be appropriate in certain tasks. However, for 

bone scintigraphy, this method cannot be used because categorizing the type of lesion 

must rely on other lesions in the images. For example, if most lesions are considered 

malignant, then lesions that are not yet classified are likely to also be malignant. We 

use global features from the core network to support this line of reasoning. The model 

utilizes global features by using the overall composition to help determine the type of 

lesion (Ibrahim, Mercatali et al. 2013). 

 

1.2. Objective 

This thesis studies the method to utilize the unlabeled data for increasing the 

efficiency of the model in a semi-supervised manner for lesion instance segmentation 

task. The main hypothesis of the thesis is:  

 

 The semi-supervised learning method can be applied with instance 

segmentation to make the model can learn the properties and representation of the 

lesion better from labeled and unlabeled data. Moreover, knowing the specific 

properties of the data will give us utilize a particular feature from the data. 
 

In this thesis, there are two main objectives: 

  

 1. Ladder network may be an appropriate semi-supervised approach to apply 

with the feature pyramid network that makes our model can learn labeled and 

unlabeled data simultaneously. 

 

 2. Using the global feature may help the model to categorize the type of lesion 

by taking into account of the overall structure of the image.   

 

To address both aspects, we do the experiments, analyze, and visualize the results to 

show the effect of applying each technique.  
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1.3. Scope 

The study provides an alternative approach in the semi-supervised approach for lesion 

instance segmentation on the chest area in bone scintigraphy. We will focus on 

utilizing the unlabeled data to make the model more efficient. However, we also give 

the details in the chest detection process to understand the overview of the model 

workflow.   
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2. Related work 

 

There has been a trend of using deep neural networks for medical image analysis. 

ChexNet (Rajpurkar, Irvin et al. 2017) uses DenseNet (Huang, Liu et al. 2017), a 

variant of CNNs, for detecting pneumonia from chest X-rays. RIANet (Tong, Li et al. 

2019) is an encoder-decoder that can efficiently reuse parameters to encode richer 

representative features for cardiac MRI segmentation. Three-dimensional roto-

translation group convolutions have been applied to detect pulmonary nodules in CT 

scan images rather than standard translational convolutions to reduce false-positive 

errors (Winkels and Cohen 2019). A combination of three CNNs is used to 

automatically localize anatomical ROIs of CT scan images (de Vos, Wolterink et al. 

2016). 

 

For landmark detection to locate points of interest, a CNN (Yang, Zhang et al. 2015) 

was used for the localization of geometric landmarks on the femur surface in 3D MRI. 

SpatialConfiguration-Net (Payer, Štern et al. 2016) is used to localize multiple 

landmarks in the hand image using regression heatmaps. 

 

Semantic segmentation is widely applied in the medical image field to group pixels 

into semantically meaningful segments. For example, the pixels in the same tissue or 

lesion should be grouped in the same segment. Micro-Net (Raza, Cheung et al. 2019) 

and DCNet (Küstner, Müller et al. 2018) use CNNs to perform semantic segmentation 

on microscopy images and multi-contrast MRI, respectively. However, semantic 

segmentation has difficulties in separating different instances in the same class, which 

affects the counting and classification of objects. 

 

To solve the problem of separating instances of the same class, an instance 

segmentation task was introduced both to identify objects and their regions and to 

segment pixels within such regions. However, there is some overhead in the object 

detection phase, which takes time in the training process and requires more memory. 

 

Compared to instance segmentation, which is rare in medical image analysis (Xu, Li 

et al. 2017), the related task of image segmentation is more common. Spine-GAN 

(Han, Wei et al. 2018) performed semantic segmentation on the spinal region from 

MRIs. Fully convolutional networks (FCNs) were used for male pelvic organ 

segmentation on CT scans by (Wang, He et al. 2019). (Ambellan, Tack et al. 2019) 

used CNNs with a priori knowledge of anatomical shape for knee bone and cartilage 

segmentation. (Graham, Chen et al. 2019) performed gland segmentation using a 

modified CNN that reintroduces the original image at multiple points within the 

network to help reduce the loss of information caused by max-pooling. (Heinrich, 

Oktay et al. 2019) applied a 3D CNN with 3D CT multi-organ medical images. 

(Kamnitsas, Ledig et al. 2017) proposed a dual-pathway CNN for brain lesion 

segmentation. (Bustamante, Gupta et al. 2018) performed four-dimensional 

segmentation from cardiac 4D flow MRI. 
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All of the aforementioned works used supervised labels. ChexNet used more than 

100,000 chest X-ray images with labels obtained from medical records. This is a high-

level classification task where the labels can be relatively easy to acquire. However, 

for complex tasks such as segmentation, the number of training data samples can be 

as low as a couple of hundred due to the difficulty of data acquisition and labeling. 

One way to reduce the effort of data annotation is to use coarse annotation schemes. 

For example, (Kervadec, Dolz et al. 2019) proposed a constrained-CNN loss for 

image segmentation on the left ventricle (MRI), vertebral body (MR-T2), and prostate 

(MR-T2) using segmentation labels that did not cover the entire region. 

 

Another popular approach is to use unlabeled training data to improve the model, a 

method often called semi-supervised learning. (Cheplygina, de Bruijne et al. 2019) 

provided a comprehensive overview of semi-supervised methods applied to medical 

image analysis. Self-training uses a model that is previously trained on labeled data to 

estimate labels for unlabeled data. (Azmi, Norozi et al. 2011) proposed a self-training 

approach for breast lesion segmentation using MRI. This simple approach is 

surprisingly effective when the starting model is sufficiently robust. 

 

Another strategy, called graph-based methods in (Cheplygina, de Bruijne et al. 2019), 

employs unlabeled data to better learn about the distribution of the data. Our work 

falls under this category but is based on the deep learning framework. By modifying 

the loss function to include an unsupervised loss, the training process is simplified 

because we treat labeled and unlabeled data almost identically. 

 

For the task of bone scintigraphy, which is the domain application for our work, 

(Dang 2016, Belcher 2017) used CNNs to classify hotspot regions for prostate cancer 

metastases. This work used approximately 2,000 images due to the difficulty in 

labeling. (Geng, Jia et al. 2015) used a sparse autoencoder to automatically learn good 

features for metastasis classification and then used multiple instance learning (MIL) 

for a patch-level classifier to perform segmentation. EM-MILBoost was later 

proposed by (Geng, Ma et al. 2016), which further applied expectation-maximization 

(EM) to MIL to achieve additional improvements in performance. 

 

(Kang, Choi et al.) performed unsupervised lesion detection on bone scintigraphy 

images using unsupervised learning on normal images in an autoencoder-like manner 

instead of using semi-supervised learning. Our method uses the supervised and 

unsupervised data to jointly train our model, which should perform better than a 

completely unsupervised model in terms of detection capability. Moreover, (Kang, 

Choi et al.) can only detect lesions but cannot perform classification or segmentation 

due to the limitation of unsupervised data. 

 

Our work also differs from previous bone scintigraphy-related works in that our task 

is instance segmentation, which means that we classify the lesion type and perform 

segmentation of each lesion. While both semantic segmentation and instance 

segmentation can identify the location of lesions, when two lesions are overlapping or 

adjacent to each other, instance segmentation can detect the two lesions as two 

separate entities. Moreover, previous works classified lesions only as metastatic or 
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nonmetastatic, whereas our work can classify each lesion into finer classes, i.e., 

malignant, degenerative change, post-trauma, and inflection/inflammation. This 

classification is closer to the current clinical practice for bone scintigraphy. In some 

cases, instance segmentation can help the model better differentiate malignant from 

nonmalignant lesions. For example, if the model understands that lesions on different 

ribs that form in an orderly manner into a straight line should be classified as post-

trauma, then it will be easier for instance segmentation models than for semantic 

segmentation models to consider this correlation. 
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3. Background 

 

 

Figure  1: An overview of our model workflow. The whole-body bone scintigram (left 

image) was passed into the Single Shot MultiBox Detector (SSD) to detect the chest 

area (middle image) and sent to the MaligNet model for lesion instance segmentation 

(right image). 
 

3.1. The overview of the model workflow 

Our overall system consists of two parts: the chest localization model, which localizes 

the chest area, and the instance segmentation model, which segments and classifies 

each lesion, as shown in Figure 1. In this paper, we focus on MaligNet, a model for 

lesion instance segmentation on the chest area in bone scintigraphy that has various 

internal components. We provide some background for each component and works 

related to them. In the field of machine learning systems, there are many approaches 

to build a model from learning the data patterns. Machine learning systems can be 

classified according to the amount and type of supervision whether or not they are 

trained with human supervision. 

 

3.2. Supervised learning 

Supervised learning is the most popular approach that people always use in various 

tasks. This learning method required the solution (always called labels or ground 

truth) to teach the model. When you feed the data into your model, the model will 

learn to solve the tasks based on the labels of each data. For this reason, the labels 

must be clean and correct, to make the model understand the correlation between data 

and labels. The examples of the most important supervised learning algorithms are: 

 

• Linear Regression 

• Logistic Regression 

• Decision Trees and Random Forests 

• k-Nearest Neighbors 

• Support Vector Machines (SVMs) 

• Neural networks 
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3.3. Unsupervised learning 

For unsupervised learning, this learning system does not require the labels of data 

(often called unlabeled data). Unsupervised learning tries to learn without a teacher. 

This approach can provide useful clues for how to group examples in representation 

space. The examples of unsupervised learning algorithms that are: 

 

• Clustering  

o K-Means 

o DBSCAN 

o Hierarchical Cluster Analysis (HCA) 

• Anomaly detection and novelty detection 

o One-class SVM 

o Isolation Forest 

• Visualization and dimensionality reduction 

o Principle Component Analysis (PCA) 

o Kernel PCA 

o Locally-Linear Embedding (LLE) 

o t-distributed Stochastic Neighbor Embedding (t-SNE) 

• Association rule learning 

o Apriori 

o Eclat 

 

3.4. Semi-supervised learning 

Supervised learning requires the ground truth for the model to learn correlations 

between data and labels. Unsupervised learning learns the representation of the group 

of data. Both algorithms can deal with only labeled or unlabeled training data. The 

semi-supervised learning can use with partially labeled training data, usually a lot of 

unlabeled data and a small amount of labeled data. Semi-supervised learning is 

usually integrations of supervised and unsupervised algorithms. For example: 

 

• Restricted Boltzmann machines (RBMs) 

• Deep belief network (DBNs) 

• Self-training 

 

3.4.1. Self-training approach 

Self-training was used in this thesis to compare with our model. Therefore, we will 

give some details about the self-training. Self-training produce labels from labeled to 

the unlabeled data and then using the larger, newly labeled set for training. Self-

training will only be effective when we have enough labeled data to give the model 

high confidence predictions are correct. 
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3.5. Activation functions 

Activation functions or Transfer functions are designed to convert an input signal of a 

node in a neural network to an output signal. Activation function giving the neuron 

know the bounds of the value whether the neuron should activate or not. Moreover, 

these functions aim at the mapping between the inputs and response variables. The 

activation function can be divided into two types which are: 

 

3.5.1. Linear activation function 

A linear activation function is a straight line function where activation is proportional 

to the input following this equation. 

 

𝐹(𝒙)  =  𝒙     ( 1) 

 

The linear function is designed for a non-complex model because it has a polynomial 

of one degree. For this reason, a linear activation function is limited in its complexity 

and no ability to learn the complex neuron. The output of this function can be any 

value without boundary.  

 

3.5.2. Non-linear activation function   

The non-linear activation functions are the most used activation function. These 

functions make the model to generalize or to deal with complexity between the 

output. In this thesis, we will focus on popular non-linear activation functions that are 

Sigmoid, Tanh, ReLU, and Softmax activation functions. 

 

3.5.2.1. Sigmoid or Logistic activation function 

In the case of choosing sigmoid function as an activation function, the output value 

after passed the sigmoid function is between zero to one. Thus, it is used to predict 

probability as an output. Due to this, the probability exists only between the range of 

0 and 1. The sigmoid function has the equation as follows 

 

𝜎(𝒙)  =  
1

1 + 𝑒−𝒙
    ( 2) 

 

3.5.2.2. Tanh activation function 

Tanh or hyperbolic tangent activation function is similar to sigmoid function but tanh 

function is more wide-ranging from -1 to 1. The advantage is that this function is 

supported by negative input and it can also produce a negative output. The tanh 

function has the equation as follows 

 

Tanh(x) = 𝑡𝑎𝑛ℎ 𝒙    ( 3) 

 

Notice that the sigmoid and tanh activation function is used in a feed-forward neural 

network.  
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3.5.2.3. ReLU activation function 

ReLU or Rectified Linear Unit is the most used activation function. ReLU is a half-

rectified activation function that look like a linear function but it is a non-linear 

function. The output value of this function will be zero if the input value is negative. 

For the positive input value, the output will be obtained from a linear function. The 

range of ReLU is from 0 to infinite which has the equation as follows 

 
𝑅𝑒𝐿𝑈(𝒙) =  𝑚𝑎𝑥(0, 𝒙)     ( 4) 

 

3.5.2.4. Softmax activation function 

Softmax function always used in a classification task. Softmax converts the input 

logits into probabilities that sum to one. The output of this function is a vector that 

represents the probability distributions of a list of potential outcomes. The softmax 

function has the equation as follows 

 

𝑺(𝒚𝒊)  =  
𝒆𝒚𝒊

∑ 𝒆𝒛𝒌𝑲
𝒌=𝟏

     ( 5) 

 

3.6. Cost function 

The cost function, or lost function, or objective function, or criterion is the function 

that we want to minimize or maximize to measure the performance of the machine 

learning model. Cost function estimates the error between the prediction result and  

the actual values. The value of cost function is present in the form of a single real 

number. There are many types of cost function in machine learning but I will inform 

you of some details about the cost function used in this thesis.    

 

3.6.1. Mean square error (MSE) 

Mean square error or MSE is a cost function to measure the average of the squares of 

the errors. MSE is the average squared difference between the prediction output and 

the ground truth which define as: 

 

𝑀𝑆𝐸 =  
1

𝑁
∑  ( 𝑦𝑖  −  𝑦̃𝑖 )

2𝑁
𝑛=1    ( 6) 

 

3.6.2. L1 norm 

The L1 norm or Manhattan Distance is the sum of the magnitudes of the vector's 

space. It always used to measure the distance between vectors. The distance is 

calculated from the sum absolute difference components vectors. 

 
‖𝒙‖1 =  |𝒙1|  + |𝒙2| + . . . +|𝒙𝑛|   ( 7) 
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3.6.3. L2 norm 

The L2 norm or Euclidean Distance is similar to L1 but it was calculated as the square 

root of the sum of the squared vector values. The equation of the L2 norm is as 

follow: 

 

‖𝒙‖2 =  √|𝒙1|2 + |𝒙2|2 + . . . + |𝒙𝑛|2   ( 8) 

 

Notice that, both L1 and L2 norms are used in machine learning to avoid the model 

overfit and make the model more generalization to the data. 

 

3.6.4. Smoothed L1 

Smooth L1 is a combination of L1 and L2 norms. The output values were calculated 

by the L1 norm in case of the absolute value of arguments is higher than α. On the 

other hand, the L2 norm is used, if the absolute value of arguments is lower than α. 

The advantages of combining between both norms are L1 norm has steady gradients 

for a large value of 𝑥 and the L2 norm has fewer oscillations during updates when 𝑥 is 

small. The equation of Smoothed L1 norm is as follow: 

 

𝑠(𝑥)  =  {
𝑥 −  0.5   𝑖𝑓 |𝑥| > 𝛼;

0.5𝑥2   𝑖𝑓 |𝑥| ≤  𝛼;
    ( 9) 

 

3.6.5. Cross-entropy 

Cross-Entropy or Log loss is a cost function that always found in a classification task. 

This cost function measures the performance of a classification model that the output 

is a probability of range between 0 and 1. Cross-entropy cost increases the predicted 

probability diverges from the actual values. 

 

3.6.5.1. Categorical cross-entropy 

Categorical Cross-Entropy or Softmax loss is a combination of softmax and the cross-

entropy activation function. In a multi-class classification task, the labels are one-hot 

that means only the positive class is used to calculate the cost. So the equation of 

categorical cross-entropy is as follow: 

 

𝐶𝐸 =  − ∑ 𝑡𝑖 𝑙𝑜𝑔(𝑓(𝑠)𝑖)
𝐶
𝑖=1     ( 10) 

 

After combining with Softmax activation function the equation will be as: 

  

𝐶𝐸 =  − ∑ 𝑡𝑖 𝑙𝑜𝑔(
𝑒𝑠𝑖

∑ 𝑒
𝑠𝑗𝐶

𝑗

)𝐶
𝑖=1     ( 11) 
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3.6.5.2. Binary cross-entropy 

Binary Cross-Entropy is also called Sigmoid Cross Entropy. This cost function is a 

combination of the sigmoid and the cross-entropy like categorical cross-entropy. 

Binary Cross-Entropy always in a binary classification task and a multi-label 

classification task. The cost computed for every output vector component is 

independent which not affect the other values. Binary cross-entropy was defined as: 

 

𝐶𝐸 =  − ∑ 𝑡𝑖 log(𝑓(𝑠𝑖))

𝐶=2

𝑖=1

 

( 12) 

𝐶𝐸 =  −𝑡1 log( 𝑓( 𝑠1 ) )  −  (1 −  𝑡1) log( 1 −  𝑓( 𝑠1 ) ) 

 

 

3.7. Regularization 

Regularization is used in the machine learning model to give the model avoid to be 

overfitting or more generalized. Generally, regularization is adapted from the norm or 

distance function which is L1 and L2 norm to apply with the weight of the model. The 

aim of regularization is to discourage the complexity of the model. It also combines 

within the cost function term. 

 

3.8. Metrics 

Our experiments were divided into two parts: lesion instance segmentation and bone 

cancer metastases prediction. In the bone cancer metastases prediction task, we 

evaluate in a different metric include precision, recall, f1-score, accuracy, and 

specificity to be an indicator of the effectiveness of models. The details of each type 

of measurement are described separately in each section. 

 

Table  1: The confusion matrix between cluster labels true positive (TP), false positive 

(FP), true negative (TN), and false-negative (FN). 
 

Actual classes Predicted classes 

Positive Negative 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

 

 

Accuracy is the most intuitive performance measure and it is simply a ratio of 

correctly predicted observation to the total observations which was defined as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
( 𝑇𝑁 + 𝑇𝑃)

( 𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃)
   ( 13) 
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Precision is the ratio of positive observations correctly predicted to the positive total 

predicted observations : 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

( 𝑇𝑃 + 𝐹𝑃)
    ( 14) 

 

Recall or Sensitivity is the ratio of positive observations correctly predicted to the all 

actual class - yes in observations: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

( 𝑇𝑃 + 𝐹𝑁)
          ( 15) 

 

Specificity is the proportion of images that tested negative and are negative of all the 

images that actually are negative : 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

( 𝑇𝑁 + 𝐹𝑃)
    ( 16) 

 

F1-score is the weighted average of Precision and Recall. consequently, this score 

takes into consideration both false positives and false negatives : 

 

𝐹1 =  2 ∙  
( 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

( 𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
    ( 17) 

 

Our experiments were divided into two parts: lesion instance segmentation and bone 

cancer metastases prediction. Instead of using the mean average precision (mAP), 

which is a relative score metric that is used to evaluate object detection in natural 

images such as Pascal VOC (Everingham, Van Gool et al. 2010), COCO (Lin, Maire 

et al. 2014) and Open Images, we use the mean precision, the mean sensitivity, and 

the mean f1 to measure the performance of our model in lesion instance segmentation. 

In the context of instance segmentation, we must not only correctly identify the object 

but also correctly locate its position. Thus, to calculate the mean precision and the 

mean sensitivity, the Jaccard index (Intersection over Union) is also used to measure 

the overlapping region between the ground truth and the predicted area. The Jaccard 

index is defined as follows: 

 

𝐽(𝐴1, 𝐴2)  =  
|𝐴1∩𝐴2|

|𝐴1∪𝐴2|
     ( 18) 

 

where 𝐴1 is the area of the ground truth and 𝐴2 is the area of the prediction. 

 

A prediction is considered correct if the Jaccard index is above a predetermined 

threshold. We chose a threshold of 0.5 since this is sufficient for locating the lesion. 

For multiclass detection tasks such as ours, we can calculate mean precision and mean 

sensitivity by taking the weighted average of the precision and sensitivity values, 

respectively. 
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MaligNet is designed for lesion instance segmentation. Therefore, we cannot directly 

evaluate the performance of the model in the metastasis classification task. To do so, 

we convert the instance segmentation predictions to a binary prediction. If the model 

predicts malignancy for at least one lesion in the chest area, the image will be 

classified as metastasis. However, we will only consider the case where at least one 

malignant prediction matches the ground truth as a true positive sample. 

 

 

Figure  2: Example predictions for the bone cancer metastasis prediction task. If 

there is at least one malignant lesion predicted, the image will be classified as 

metastasis. 

 

In other words, a metastasis prediction that is caused by a false alarm in the instance 

segmentation task will not be counted as a correct classification. Examples of 

interpretation in bone cancer metastasis prediction are shown in Figure 2. 

 

In cases in which the model does not find any malignant lesions in the image or finds 

another lesion type, such as degenerative change, inflection/inflammation, or post-

traumatic, we assume that the model predicts non-metastasis status or a negative 

sample. We also evaluated our model of bone cancer metastasis prediction in terms of 

various metrics, namely accuracy, precision, recall (sensitivity), specificity, and f1-

score. The details of each type of measurement are described separately in each 

section. 

 

3.9. Convolutional neural network (CNN) 

Convolutional neural networks (CNNs) is one kind of a neural network, which is 

designed for extracting the data in a grid-cells including time-series data. Convolution 

is a special kind linear operation that uses convolution in place of general matrix 

multiplication in at least of their layers.     

 

3.10. Object detection task 

In this thesis, the main task of our work is an instance segmentation task, which is 

applied to the object detection task. Object detection task is a task, which aims to 

detect the instance of semantic objects in the images. In the object detection task, 

there are two types of procedures for detecting the object in the images which are one-

stage object detection and two-stage object detection. 
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3.10.1. One-Stage object detection 

In one-stage object detection, the number of predictions on the grid will be fixed. That 

means the model directly predict the object bounding and classes simultaneously. In 

other words, there is no intermediate task. For this reason, a one-stage detector is 

more simple and faster than a two-stage detector. However, one-stage detection often 

has lower average precision than two-stage detection. The examples of popular one-

stage detectors are YOLO (You Only Look Once) (Redmon, Divvala et al. 2016), 

SSD (Single Shot MultiBox Detector) (Liu, Anguelov et al. 2016), and RetinaNet 

(Lin, Goyal et al. 2017). 

 

3.10.2. Two-Stages object detection 

The region proposal network is proposed in two-stages detection. The proposal 

network aims to find the object proposal in the first stage and fine-tune the proposal 

and output prediction in the second stage. The two-stages is often slower than one 

stage because it takes time in finding proposal but often more accuracy than a one-

stage detector. 
 

3.10.2.1. R-CNN 

R-CNN (Girshick, Donahue et al. 2014, Ren, He et al. 2015) is the first of object 

detection using that use CNNs in region base family. It uses a selective search 

algorithm to generate 2,000 region proposals on the image. After that, the model 

classifies each proposal using CNNs for feature extraction and fed into Support 

Vector Machine(SVM) to classify the presence of the object. The problem of R-CNN 

is it takes time in the training process due to 2,000 region proposal would have to 

classify per images. Moreover, the selective search algorithm can not learn to generate 

the proposal from the image since it is a fixed algorithm. 

 

3.10.2.2. Fast R-CNN 

For solving the problem with training time due to a huge region proposal. The Fast R-

CNN (Girshick 2015) was proposed to solve the training time problem in R-CNN. 

Instead of feed each proposal into CNNs, they fed the input image to the CNNs, using 

a feature map to identify the region of the object, and also wrapping them in a fixed 

size by ROI pooling. Finally, each ROI feature was passed into the softmax layer to 

classify the class of that object. For this reason, Fast R-CNN is faster than R-CNN 

significantly. However, it also uses a selective search algorithm which makes the 

model still slow in finding the region proposal. 

 

3.10.2.3. Faster R-CNN  

To solve the problem of R-CNN and Fast R-CNN about using selective search for 

finding region proposal, that makes the model slow and time-consuming. Faster R-

CNN (Ren, He et al. 2015) uses a neural network to learn the region proposals called 

Region Proposal Network. Region proposal network (RPN) is a kind of fully 

convolutional neural network. The RPN is a module that generates such region 

proposals. The RPN is designed for detecting objects on the convolutional feature 

maps from the backbone. It predicts region proposals of various scales and aspect 
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ratios using multiple anchor boxes. Specifically, for each location and scaling factor 

on a regular grid, the RPN outputs object region boundaries and their associated 

objectless scores which specify how likely each region proposal will contain an object 

of interest. Due to RPN takes a few overheads to learn to generate the proposals 

instead of generating 2,000 proposals that make the detector faster than both of the 

above algorithms. 

 

3.10.2.3.1 Region proposal network ( RPN) 

 

Figure  3: The illustration of the region proposal network (RPN) in which the input is 

a feature map. The RPN produces 2k anchor scores and 4k bounding box coordinates 

per pixel in the feature map, where k is the number of anchor boxes. 

 

The region proposal network (RPN) is a type of fully convolutional network that is 

used in Faster R-CNN (Ren, He et al. 2015). This model is in the region-based family, 

which includes R-CNN (Girshick, Donahue et al. 2014), Fast R-CNN (Girshick 2015) 

and Mask R-CNN (He, Gkioxari et al. 2017). Region-based object detectors first 

identify potential regions for objects and then classify each region into object classes. 

The RPN is a module that generates such region proposals. It is designed for detecting 

objects on the convolutional feature maps from the core network. The module predicts 

region proposals of various scales and aspect ratios using multiple anchor boxes. 

 

Specifically, for each location and scaling factor on a regular grid, the RPN outputs 

object region boundaries and their associated objectless scores, which specify how 

likely each proposed region is to contain an object of interest, as shown in Figure 3. 

The cost function for classifying each region proposal 𝑅𝑐 is a categorical cross-

entropy loss which was defined as: 

 

𝑅𝑐 =  −
1

𝑁
∑ ∑ 𝑙𝑜𝑔 𝑃 (𝑦̃  =  𝑦𝑛,𝑎 | 𝑥𝑛,𝑎)𝐴

𝑎=1
𝑁
𝑛=1                              (19) 
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where N is the minibatch size, and A is the number of anchors per image. 

For the region bounding box, the smoothed-L1 loss was used as the cost function for 

the bounding box prediction, as shown below: 

 

𝑑𝑛,𝑎 =  ‖𝑏𝑛,𝑎
∗  −  𝑏𝑛,𝑎‖

1
                                                 (20) 

 

𝑠(𝑥)  =  {
𝑥 −  0.5      𝑖𝑓 |𝑥| > 1

0.5𝑥2     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
                                       (21) 

 

𝑅𝑏  =  −
1

𝑁
∑ ∑ 𝑠(𝑑𝑛,𝑎)𝐴

𝑎=1
𝑁
𝑛=1                                       (22) 

 

where ‖ ‖ denotes the L1 norm; 𝑏𝑛,𝑎
∗ and 𝑏𝑛,𝑎 are vectors containing the 

coordinates of the predicted bounding box and labeled bounding box, respectively; 

s(x) is the smoothed L1 loss; and 𝑅𝑏 is the sum of region proposal bounding box loss 

in all anchors. 

 

3.11. Segmentation task 

Image segmentation is the process of segmenting the image into multiple regions of 

pixels. That makes the image more simple and changes the representation into more 

meaningful to understand. 

 

3.11.1. Semantic segmentation 

Semantic segmentation is the high-level task to understand the image. The goal of 

semantic segmentation is to assign pixels to their classes without separate the 

individual instances in the image. In this task, the pixels in all regions would have 

been assigned to a class that treats thing classes as stuff. 

 

3.11.2. Instance segmentation 

Instance segmentation was used in our thesis. It takes two steps in the segmentation 

process. First, it takes object detection to detect the instance in the image. After that, 

each instance would have to identify which pixels belong to that instance. To give the 

details about instance segmentation, we will give the example of instance 

segmentation model that we used as the baseline in the experiment of this thesis 

 

3.11.2.1. Mask R-CNN 

Mask R-CNN (He, Gkioxari et al. 2017) is an instance segmentation model that uses 

the Faster R-CNN in the first step for feature extraction, extending with a mask 

frontend for segmentation. Mask R-CNN is designed to solve the problem of a multi-

scale object by using a feature pyramid network (FPN) (Lin, Dollár et al. 2017) to 

generate multiple-scale feature maps. 
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3.11.2.1.1. Feature Pyramid Network (FPN) 

 

 

Figure  4: The illustration of the feature pyramid network (FPN). The FPN consists of 

the bottom-up pathway and top-down pathway. The bottom-up pathway is the feed-

forward neural network of the core. The top-down pathway is the ConvNet which 

upsamples spatial coarser high-level features combining with low-level features 

through lateral connections. 

 

The feature pyramid network (Lin, Dollár et al. 2017) is chosen as the core 

component in MaligNet for instance segmentation, as shown in Figure 4. We chose 

FPN because it was designed to detect objects of different scales, which is the case for 

lesions in a chest image. FPN consists of two main parts: bottom-up and top-down 

pathways. The bottom-up pathway is the feedforward neural network. The top-down 

pathway, which is connected by a bottom-up pathway through lateral connections, is 

designed for building semantic feature maps at all scales by double upscaling to 

enhance the feature maps from the bottom-up pathway. Combining high-resolution 

but semantically weak features with low-resolution but semantically strong features 

via a lateral connection and top-down pathway impart rich semantics at all levels of 

the FPN. 

 

Another difference thing between Mask R-CNN and Faster R-CNN is the Mask 

frontend. Mask frontend is a convolutional neural network designed for object 

segmentation. The segmented proposals were separated into foreground and 

background. 
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3.12. Autoencoder 

Autoencoder is an unsupervised neural network that aims to learn to compress the 

information of data. The compressed features keep important information about the 

data. Furthermore, it learns to reconstruct the reduced encoded representation that is 

close to the original input. 

 

3.12.1. Denoising autoencoder 

Denoising autoencoder (DAE) (Vincent, Larochelle et al. 2008) is an autoencoder that 

is mostly used in denoising the data. Furthermore, DAE can solve the problem of 

overfitting in autoencoder in case of more nodes in the hidden layers than the input 

layers. Denoising autoencoder aims to corrupt or add the noise to the data randomly 

about 50%. To minimize the cost function, DAE would have learned the important 

features of the data that can reconstruct the corrupted features as close as the original 

input.  

 

3.12.2. Ladder network 

 

 

Figure  5: The structure of the Ladder network which is a convolutional neural 

network consists of two parts of neural networks: encoder and decoder. The encoder 

includes a clean encoder (𝑥 → 𝑧(𝑖) → 𝑦) and a noisy encoder  (𝑥 → 𝑧̃(𝑖) → 𝑦̃). Both 

clean and noisy encoder will share the same mapping function f. The decoder 

( 𝑧̃(𝑚) → 𝑧̂(𝑚) → 𝑥̂) will perform reconstructs the information from noisy encoder 

compare with the clean encoder in lateral connections with function g, which is 

denoising function. Considering in verticle connections, the cost is caused by 
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supervised learning (𝐶𝐿𝑎𝑑𝑑𝑒𝑟,𝑐) as shown in equation (26). For lateral connections, 

𝐶𝐿𝑎𝑑𝑑𝑒𝑟,𝑑 is costs from unsupervised learning of all layers as shown in equation (27). 

 

A ladder network is a semi-supervised learning method (Rasmus, Berglund et al. 

2015) that can utilize labeled and unlabeled data simultaneously. The ladder network 

is similar in concept to the denoising autoencoder (DAE). DAE is a type of an 
autoencoder that receives a corrupted data as input and is trained to remove the noise 

that is introduced to the input to uncover the uncorrupted input data at the output layer 

(Goodfellow, Bengio et al. 2016). Ladder network takes this a step further by 

introducing noise at every layer, not just the input. Figure 5 illustrates a simple Ladder 

network. The network consists of three parts: the corrupted encoder (the leftmost 

stack), the denoising decoder (the middle stack), and the original network (the 

rightmost stack). Let's first consider the original network. Let z(m) be the output of 

the m-th layer of the clean encoder. The function f (m+1)(‧) represents the (𝑚+1)-th 

layer which in our case is a convolutional layer. The relationship between each layer 

can be given as: 

 

            𝒛(𝑚+1) = 𝑓(𝑚+1)(𝒛(𝑚))          ( 23) 

 

Note that 𝒛(0) refers to the network input, 𝒙. The network will yield the final 

prediction, 𝒚. 

 

The corrupted network uses the same weights and layers as the original network. 

However, we corrupt the inputs preceding each layer by adding Gaussian noise. 

 

𝒛̃(𝑚+1) = 𝑓(𝑚+1)( 𝒛̃(𝑚) + 𝒩)             ( 24) 

 

Where 𝒩 refers to Gaussian noise with zero mean and variance 𝜎2 variance.  𝒛̃(𝑚) is 

the output of layer the 𝑚-th layer in the corrupted network. 

 

Finally, the denoising decoder wants to recover the original output at each layer by 

using only the information from the corrupted network. Let 𝑔(𝑚) be the inverse 

mapping function for the 𝑚-th layer which in this case is a transposed convolutional 

layer which outputs 𝒛̂(𝑚) and takes 𝒛̃(𝑚) and 𝒛̂(𝑚+1) as inputs. 

 

𝒛̂(𝑚) =  𝑔(𝑚)(𝒛̃(𝑚), 𝒛̂(𝑚+1))    ( 25) 

 

The supervised cost, 𝐶𝐿𝑎𝑑𝑑𝑒𝑟,𝑐, is the average negative log probability of the noisy 

output 𝑦̃ matching the ground truth target 𝑡 given input 𝒙. 

 

𝐶𝐿𝑎𝑑𝑑𝑒𝑟,𝑐  =  −
1

𝑁
∑ 𝑙𝑜𝑔 𝑃(𝑦̃  =  𝑡𝑛|𝒙𝑛)𝑁

𝑛=1    ( 26) 

 

Where 𝑁 is the mini-batch size, 𝑛 is the index of the training data. 
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The goal of the denoising decoder is to make 𝒛̂(1) matches with 𝒛(𝑚). This is 

accomplished by adding an unsupervised cost function, 𝐶𝐿𝑎𝑑𝑑𝑒𝑟,𝑑, which tries to 

minimize the mean square error as shown below: 

 

𝐶𝐿𝑎𝑑𝑑𝑒𝑟,𝑑  =  ∑ 𝐶(𝑚)
𝐿𝑎𝑑𝑑𝑒𝑟,𝑑

𝑀

𝑚=0

 

( 27) 

                                      =  ∑
1

𝑁𝑤𝑙
∑‖𝑧𝑛

(𝑚) −  𝑧̂𝑛
(𝑚)‖

2
𝑁

𝑛=1

𝑀

𝑚=0

 

 

 

Where 𝑤𝑙 is the layer's width (for the dense layer), 𝐿 the number of layers in the 

ladder network. 

 

The Ladder network uses this unsupervised loss to learn important information about 

the data. The two losses (𝐶𝐿𝑎𝑑𝑑𝑒𝑟,𝑐 𝑎𝑛𝑑 𝐶𝐿𝑎𝑑𝑑𝑒𝑟,𝑑) can be combined and trained 

jointly. 
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4. Proposed method 

 

 

Figure  6: An overview of MaligNet. Figure 6a (in blue) contains the core network of 

MaligNet, a ResNet-50, extracts the features at different scales to feed to the ladder 

feature pyramid network (LFPN). Figure 6b (in red) is the LFPN, a feature pyramid 

network combined with a ladder network to facilitate semi-supervised learning. 

Figure 6c (in green) is the region proposal network (RPN) that selects regions of 

interest for object classification and regression. Figure 6d (in pink) contains the 

frontend part, which consists of a classifier frontend (Figure 7) and a mask frontend 

(Figure 8). The classifier frontend performs lesion classification and refines the 

bounding box. The mask frontend outputs the segmentation masks. Unlike Mask R-

CNN, the classifier frontend also receives global features from the core network. 

 
Our proposed model is a neural network for lesion instance segmentation called 

MaligNet. Although lesions can occur anywhere throughout the body, they are often 

found in the chest area. This area is often the hardest to diagnose due to the 

complexity and overlap of ribs in the chest area, which consists of small bones. 

Therefore, we focused only on finding the lesions in the chest area. Figure 1 shows an 

overview of our system. We start by locating the chest area using the Single Shot 

MultiBox Detector (SSD) (Liu, Anguelov et al. 2016) in both anterior and posterior 

views of the whole body in the bone scintigram. Then, the chest area is used in the 

lesion instance segmentation process. 
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4.1. Chest detection 

The chest detector is the first part of our pipeline used to detect the chest area. 

Because it is relatively straightforward to detect the chest area, we use a standard SSD 

to detect both the anterior and posterior chest areas. We choose the SSD because it is 

a one-stage detection model that has high speed in training and inference. Moreover, 

it maintains good accuracy compared to other object detection models and is easy to 

adapt and apply to our task. We use VGG-16 (Simonyan and Zisserman 2014) as the 

backbone in the SSD. VGG-16 was pretrained with ImageNet (Deng, Dong et al. 

2009) and fine-tuned using our data. The hyperparameters of retraining SSD are 

shown in Table 9. 

 

4.2. Lesion instance segmentation  

MaligNet is a CNN model based on FPN with modifications. More specifically, we 

add the ladder feature pyramid network to the top-down pathway to allow for semi-

supervised training. We also add an additional layer that extracts the global features 

from the core network to the classifier frontend. As shown in Figure 6, MaligNet 

consists of four parts. Similar to the FPN, the first part is an image classification core 

model that is used to extract features. We have tried several standard architectures for 

the choice of the core model (see Table 10) and ultimately settled on ResNet-50 (He, 

Zhang et al. 2016). ResNets have the nice property of using a stride of two for every 

scale reduction. This makes incorporating ResNet-50 into the FPN straightforward 

when we have to upscale the feature maps in the top-down pathway. Moreover, 

ResNet-50 is a relatively small network based on modern standards and is thus 

appropriate for our limited labeled data. 

 

The second part is the ladder feature pyramid network (LFPN), which corresponds to 

the top-down pathway of the FPN but with additional denoising decoder components 

inspired by the ladder network (Rasmus, Berglund et al. 2015). This allows MaligNet 

to utilize the training data from both labeled and unlabeled data simultaneously. The 

features from the top-down pathway are used by the third part, which detects and 

localizes the lesions using the RPN. The frontend part is designed for lesion instance 

segmentation as the final part of our model and has two output results. The classifier 

frontend adjusts the bounding box and categorizes each lesion into different classes. 

The mask frontend is used for lesion segmentation. However, unlike the traditional 

FPN, which focuses on local information in each region, the classifier frontend also 

exploits the global information taken from the topmost level of the core network. 
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4.2.1. Ladder feature pyramid network (LFPN) 

 

 

Figure  7: Illustration of the ladder feature pyramid network (LFPN), the feature 

pyramid network combined with the ladder network to enhance the features by 

unsupervised learning. In the figure, we have four lines of convolutional neural 

networks (red blocks) in the feature pyramid network, and each line represents an 

encoder. We add a decoder to invert the mapping on each layer of the encoder 

(purple blocks); thus, we have a total of four ladder networks, represented as L2, L3, 

L4, and L5. The upsampling layer (shown as the x2 symbol) in the LFPN is a bicubic 

algorithm for scaling-up the feature map. 

 

 

To allow semi-supervised learning, we incorporated ladder-network-like structures 

into each level of the FPN. The new structure is referred to as the LFPN. As shown in 

Figure 7, each lateral connection will be similar to an encoder part in the ladder 

network. The lateral connections that do not add noise into the features are considered 

a clean encoder 𝐳(𝑚)
(𝑙,𝑛) which is defined as:  

 

𝒛(𝑚+1)
(𝑙,𝑛) = {

𝑔(𝑓(𝑚+1)
𝑙
(𝒛(𝑚)

(𝑙,𝑛)), 𝒛(𝑚+1)
(𝑙+1,𝑛))   𝑖𝑓  𝑚 =  0

𝑓(𝑚+1)
𝑙
(𝒛(𝑚)

(𝑙,𝑛))   𝑖𝑓  𝑚 =  1
              ( 28) 

 

 

The main difference here from the regular ladder network is the additional connection 

from the upsampling layer (denoted as x2 in Figure 7). 
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For the noisy encoder, the features in the LFPN are as follows:  𝐳̃(𝑚)
(𝑙,𝑛).  

 

 

𝒛̃(𝑚+1)
(𝑙,𝑛) = {

𝑔(𝑓(𝑚+1)
𝑙
(𝒛̃(𝑚)

(𝑙,𝑛)), 𝒛̃(𝑚+1)
(𝑙+1,𝑛)) + 𝒉(𝑚+1)

(𝑙,𝑛)   𝑖𝑓  𝑚 =  0

𝑓(𝑚+1)
𝑙
(𝒛̃(𝑚)

(𝑙,𝑛))  + 𝒉(𝑚+1)
(𝑙,𝑛)   𝑖𝑓  𝑚 =  1

      ( 29) 

 

 

where f is the convolution function and k is the feature combination function. Note 

that 𝐳(0)
(𝑙,𝑛)refers to 𝐱(0)

(𝑙,𝑛), and 𝒛̃(0)
(𝑙,𝑛) refers to 𝐱(0)

(𝑙,𝑛) +  𝒉(𝑚+1)
(𝑙,𝑛). 

 

Here, the noise for all layers is sampled from a Gaussian distribution with zero mean 

at a fixed variance level, which is a hyperparameter that is tuned (see Table 10). Even 

though bone scintigraphy has a Poisson noise distribution (Tsui, Beck et al. 1981) in 

the raw image, the aim of adding noise in the LFPN is to augment the feature space, 

not the raw image. The weight distribution in the network is Gaussian. Thus, the noise 

injection in the LFPN is chosen to be Gaussian instead of Poisson. We also tried to 

inject Poisson noise in the LFPN, but the resulting model performed worse than the 

baseline FPN model. 

 

To denoise the noisy features, a transposed convolution layer is used in the denoising 

decoder because it is an inverse function of the convolutional layer that (Rasmus, 

Berglund et al. 2015) (Zeng, Yu et al. 2017) used in CNN-Ladder. The reconstruction 

𝒛̂(𝑚)
(𝑙,𝑛) is the output of its upper layer 𝒛̂(𝑚+1)

(𝑙,𝑛) and the noisy lateral layer 𝒛̃(𝑚)
(𝑙,𝑛) 

by the Conv2DTranspose layer and batch normalization. We added a denoising 

decoder (the purple blocks in Figure 7) to each lateral connection of the FPN such that 

we can incorporate the unsupervised loss. For each lateral connection (M2 to M5 in 

the figure), there are three targets to perform denoising, which correspond to the 

outputs from different layers on that level. Thus, the unsupervised loss from equation 

(27) becomes the following: 

 

𝐶𝐿𝐹𝑃𝑁,𝑑  =  ∑ ∑ 𝐶(𝑚)
𝐿𝐹𝑃𝑁,𝑑

𝑀=2

𝑚=0

𝐿=5

𝑙=2

 

         ( 30) 

                                      =  
1

𝑁𝐿𝑀
∑ ∑ ∑‖𝑧𝑙,𝑛

(𝑚) −  𝑧̂𝑙,𝑛
(𝑚)‖

2
𝑁

𝑛=1

𝑀=2

𝑚=0

𝐿=5

𝑙=2

 

 

 

where N is the minibatch size, L is the number of levels in the LFPN, and M is the 

number of layers in each lateral connection. 

 

During the training process, the RPN takes the noisy output rather than the clean 

output. Because noise is added to the features, the model will capture the important 

information from the features as augmented information. This makes the model more 

generalizable and avoids overfitting. 
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Finally, we would like to comment on the choice of location for adding the ladder 

network structure to the model. We add the ladder network to the FPN rather than the 

backbone because the noise introduced in the ladder network can accumulate, as there 

are more noising layers. Adding the ladder network to the backbone, which has many 

layers, greatly reduces the model performance. However, adding the noise to the FPN 

only adds three noise terms per lateral connection. 

 

4.2.2. Classifier frontend 

 

 

Figure  8: Illustration of the classifier frontend. Global features are applied with 

lesion features by concatenation. The classifier frontend separates into two branches 

for lesion type classification and bounding box prediction. Each lesion prediction of 

both sub-frontends has C+1 outputs. 

 

The classifier frontend consists of two sets of convolutional and batch normalization 

layers with rectified linear unit (ReLU) activation. For classification, we used a dense 

layer with softmax normalization to obtain the probabilities for each lesion type. The 

dense layer has C+1 neurons, where C is the number of lesion types with one 

additional class for non-lesions.  

 

The bounding box prediction is designed to refine the proposal region, which is 

treated as a regression task using 4*(C+1) outputs from a dense layer that predicts the 

position x and y coordinates, log(height), and log(width) for each class. Bounding box 

regression can be difficult for tasks that have objects that vary greatly in size. 

Therefore, the height and width of the bounding box are converted to the log scale, 

which usually can be easier to regress. This preprocessing method is considered a 

standard practice in object detection tasks (Girshick, Donahue et al. 2014).  

We use the categorical cross-entropy loss as the classification cost as follows: 

 

𝐶𝑐  =  −
1

𝑁
∑ ∑ 𝑙𝑜𝑔 𝑃(𝒚̃  =  𝑡𝑛,𝑗 | 𝒙𝑛,𝑗)𝐽

𝑗=1
𝑁
𝑛=1    ( 31) 

 

Where 𝐽 is the maximum number of region proposals in the image. 
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We used the smoothed L1 loss as the cost function for the bounding box prediction as 

shown below: 

 

𝐶𝑏  =  −
1

𝑁
∑ ∑ 𝑠(𝑑𝑛,𝑗)𝐽

𝑗=1
𝑁
𝑛=1              ( 32) 

 

where 𝑑𝑛,𝑗 is L1 norm, which is the same as equation 20; 𝑠(𝑥) is the smoothed L1 

loss, as shown in equation 21; and 𝐶𝑏 is the sum of bounding box lost in all lesions. 

 

4.2.3. Applying global features for lesion classification  

Typically, object detection for natural images is performed by detecting each object 

independently regardless of the other objects in the same image. However, physicians 

usually take other lesions and other cues in addition to the lesion itself into account 

when deciding the lesion types. For example, if a lesion appears by itself without 

other lesions nearby, it is difficult to say that the lesion is malignant. However, if 

there are multiple lesions in the same region, they are usually malignant. Thus, we 

incorporate global features that summarize the information of the image to support the 

prediction of each individual lesion. 

 

The construction of the classifier frontend is shown in Figure 8. The output from the 

core network (C5) is embedded into a lower-dimensional space using a convolutional 

layer and then tiled replicated (tile layer in TensorFlow) J times such that it can be 

concatenated with the features from each region proposal. The concatenated features 

are passed to the classifier frontend to classify the lesion type and adjust the bounding 

boxes. 

 

4.2.4. Mask frontend 

 

Figure  9: The illustration of the mask frontend for mask prediction in instance 

segmentation task. 

 

Lesion segmentation is performed by the mask frontend. The mask frontend, given a 

proposed lesion region from the RPN, outputs C+1 foreground-background 

segmentation masks for each class. The mask that corresponds to the lesion 

classification is used as the segmentation output. Our architecture, shown in Figure 9, 

consists of sets of convolutional and batch normalization layers with ReLU activation. 

The output after passing sigmoid activation has a mask size of 14x14 pixels, C+1 

sets.  
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We use the binary cross-entropy loss as the cost function: 

 

𝐶𝑚 = −
1

𝑁
∑ ∑ 𝑡𝑛,𝑗 log 𝑠𝑛,𝑗 + (1 − 𝑡𝑛,𝑗) log(1 − 𝑠𝑛,𝑗)𝐽

𝑗=1
𝑁
𝑛=1             (33) 

 

where 𝑠𝑛,𝑗 is the score for the foreground class after the sigmoid function and 𝒚𝑛,𝑗 is 

the ground-truth mask. 

 

4.2.5. Unified loss 

We have many components in our model, such as the LFPN (Figure 7), the RPN 

(Figure 3), the classifier and bounding box frontend (Figure 8), and the mask frontend 

(Figure 9). Each component has a different objective function from supervised and 

unsupervised loss. For this reason, the loss calculation must be weighted to avoid loss 

values of each term that are too different. The weight multiplier 𝜆𝑘 is the 

hyperparameter of each loss. 

 

The combination of supervised loss 𝐶𝑠 is the summation of the weight multiplier with 

their loss k, which is shown in the following equation: 

 
𝐶𝑠  =  𝜆𝑟𝑐𝑅𝑐 + 𝜆𝑟𝑏𝑅𝑏 + 𝜆𝑐𝑐𝐶𝑐 + 𝜆𝑐𝑏𝐶𝑏 + 𝜆𝑐𝑚𝐶𝑚  ( 33) 

 

where 𝑅𝑐 and 𝑅𝑏 are the costs of the class and bounding box in the RPN and 𝐶𝑐, 𝐶𝑏, 

and 𝐶𝑚 are the costs of the lesion class, lesion bounding box, and lesion mask in the 

classifier frontend and mask frontend; each 𝜆𝑘 is a weight multiplier of each loss k. 

 

For unsupervised data, the cost function as shown below: 

 

𝐶𝑢𝑠 = 𝜆𝑢𝑠𝐶𝐿𝐹𝑃𝑁,𝑑                                                   (34) 

 

where 𝜆𝑢𝑠 is the weight of the unsupervised loss term and 𝐶𝐿𝐹𝑃𝑁,𝑑 is the cost function 

in the LFPN, which is shown in equation 30. 

 

We add an L2 regularization term to avoid overfitting and to make it more 

generalized. Therefore, the total cost is the sum of all cost functions with the L2 

regularization term. 

𝐶𝑡𝑜𝑡𝑎𝑙  =  𝜆𝑢𝑠𝐶𝐿𝐹𝑃𝑁,𝑑 + 𝐶𝑠 +  𝜆𝐿2 ∑ 𝜔𝑘
2 𝐾

𝑘=0              ( 35) 

 

where 𝜆𝑢𝑠 is the weight of the unsupervised loss term, 𝜆𝐿2 is the weight of 

regularization, and K is the number of trainable layers. 

 

Thus, our model is able to learn both supervised and unsupervised learning jointly, a 

form of semi-supervised learning. 
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4.3. Implementation details 

We chose the original ResNet-50 as our core network due to the limited amount of 

labeled data. Moreover, ResNet-50 makes it easy to upsample in an FPN. Because the 

output images from the chest detection stage have different sizes, we scale and resize 

both the image and mask to match the GPU memory. During training, each minibatch 

contains both supervised and unsupervised data. We also tested a different setup that 

alternates between mini-batches of supervised and unsupervised data, and the same 

results were obtained. We used two sets of NVIDIA GeForce 1080 Ti for each batch 

size, equal to eight per GPU. The hyperparameters are detailed in Appendix B and C. 
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5. Experimental setup 

 

In this section, we provide information about the dataset, data collection, and data 

labeling including the description of the lesion types. There are two main tasks in our 

pipeline: lesion instance segmentation and bone cancer metastasis prediction.  

 

5.1 Dataset 

 

Table  2: The amount of labeled and unlabeled data in training of lesion instance 

segmentation separated into training, validation, and testing data 

 

 

Table  3: The total number of lesions per type. 

 

 

 

 

 

 

 

 

 

We included a total of 9,824 patients. The details of the patients’ genders and ages are 

shown in Appendix A. The injection dose of 20 mCi/70 kg varied according to the 

patient’s weight, and the uptake time was approximately 5 hours. The images are in 

DICOM format with 16-bit depth. For chest detection, we used 680 images of the 

whole body for training, 200 for validation, and 240 for testing. For lesion instance 

segmentation, the dataset contained 19,648 chest images separated into 1,088 labeled 

images and 18,560 unlabeled images. 

 

The dataset was separated into training, validation, and testing data as detailed in 

Table 2. The physician mainly focuses on four types of lesions: malignant (or 

cancerous), inflection/inflammation, degenerative change (bone deterioration), and 

posttrauma (broken regions caused by accidents). The details about the number of 

each type of lesion are shown in Table 3. 
 

 

 Number of data Training data Validation data Testing data 

Labeled data 1,088 741 231 116 

Unlabeled data 18,560 14,786 3,774 0 

Total data 19,648 15,527 4,005 116 

Lesion types Number of lesions 

Malignant 3,500 

Inflection/Inflammation 290 

Degenerative change 805 

Post-trauma 415 

Total lesions 5,010 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 31 

5.2 Data collection and data labeling 

 

Figure  10: The user interface of the bone labeling tool. 

 

For the convenience of labeling, we created a labeling tool to reduce the effort of the 

physician. The program was developed using python language. In the application, the 

user can import an image into the program by clicking the load button. In case of user 

want to resume the previous job, the physician can click the resume button as shown 

in Figure 10.  

 

 

 

 

Figure  11: The main user interface of the bone labeling tool. 
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After clicking the “Load” button the system. The system will display images to 

prepare for data labeling from users as shown in Figure 11. For the main functions 

that the user can use include: 

 

- “Mode” button: to change the labeling mode which are segment mode, zoom mode, 

and manual mode. 

- “Save” button: To save the data after finished labeling. 

- “Erase” button: To erase the region of labeling in the image. 

- “Cancel” button: To cancel the selected region in the image. 

- “Prev” button: To change the previous image. 

- “Next” button: To change the next image. 

- “Load” button: To import the image. 

- “Quit” button: To exit the program. 

- “D” button (in the keyboard): To specify whether there is no lesion in the image. 

- “R” button (in the keyboard): To select the region for editing. 

- “C” button (in the keyboard): To change the type of lesion.  

 

 

 

 

Figure  12: The user interface of creating and saving the type of lesion in the bone 

labeling tool. 
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Figure 12, represents an example of creating the ground-truth by using the zoom 

mode to select the area of interest. Recorded with the selection of the type of lesion in 

that area. The type of lesion can be divided into 5 main types which are 

- Malignant tumor 

- Benign tumor 

- Degenerative change 

- Inflection/Inflammation 

- Post-traumatic cystic bone lesions 

 

and can be divided into two confident levels which are: 

- Definitely 

- Probably 

 

The data collection was approved by the Institutional Review Board (IRB) of the 

Faculty of Medicine, Chulalongkorn University. The labeling was performed by five 

nuclear medicine physicians with 31, 28, 21, 11, and 8 years, respectively, of 

diagnostic experience. Note that all labeled data were labeled by nuclear medicine 

physicians without the use of medical records. Thus, the type of lesion might not 

reflect the true lesion type. Thus, supervised learning was applied with a test that was 

not the gold standard and may not reflect the true metastasis value of the hotspots. 
 

In the training process, we augment the data with an affine transformation. Normally, 

bone scintigraphy requires adjusting the light and contrast such that the physician can 

observe the hotspot before labeling. For this reason, we also augment the data by 

increasing and decreasing the light, contrast, and brightness for consistency with the 

physician's process. 
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6. Experimental results 

 

In this section, we report the experimental results with a comparison of the 

performances of each model. Our experiments were divided into three subtasks: chest 

detection, lesion instance segmentation, and bone cancer metastasis prediction. We 

also conducted ablation studies that evaluated the impact of semi-supervised training 

in comparison with other semi-supervised methods. 

 

6.1 Results of chest detection 

 

 
 

Figure  13: A histogram of the Jaccard index in chest detection for bone scintigraphy. 

The horizontal axis represents the Jaccard index of the chest area compare between 

the ground truth and prediction of the bounding box. The vertical axis represents the 

frequency of each Jaccard index in each bin of the histogram. 

 

Anterior (frontside) and posterior (backside) images are available for each patient. 

Because detecting the chest area in the whole image from bone scintigraphy is a 

simple task, the model provides accurate results with min, mean, and max Jaccard 

indexes of 0.804, 0.933, and 0.987, respectively. From Figure 13, the histogram 

shows that SSD provides excellent chest detection results with a Jaccard index of at 

least on every testing data. Examples of chest detection results are shown in Figure 

14. 
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Figure  14: Some examples from the chest detection model. The first bone scintigram 

(the leftmost side) is an anterior view (front view), and the second bone scintigram is 

a posterior view (back view) of a pediatric patient. The third skeleton is an anterior 

view, and the last skeleton (the rightmost side) is a posterior view of an adult patient. 

Ground-truth boxes are indicated in green, while the outputs of the SSD model are 

indicated in red. The Jaccard indices are 0.895, 0.943, 0.987, and 0.914 from left to 

right. 

 

 

6.2. Results of the lesion instance segmentation task 

In this section, we provide the results of lesion instance segmentation. The chest 

images from bone scintigraphy, which are the output results from chest detection, 

were used as the data in this task. Data cleaning and augmentation are applied before 

performing the experiments. We evaluated our model in lesion instance segmentation 

on four lesion types and compared the results with the baseline model (Mask R-

CNN). Examples of the results are shown in Figure 15 (hand-picked examples) and 

Figure 16 (random examples). We also studied the impact of how each technique of 

the model affects the overall performance. We conducted the experiments with the 

techniques separately and combined, as shown in Table 4. Moreover, we applied self-

training with the baseline and our model to compare the effect of each technique. 
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Table  4: Comparison between each model and technique for the lesion instance 

segmentation task. The global features in this table are the output features from layer 

C6 in Figure 6. 

 

Approach 𝑀𝑒𝑎𝑛  
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 

Mean 

sensitivity 

Mean 

f1-score 

Resnet50 + FPN (Mask R-CNN) 0.827 0.811 0.816 

Resnet50 + FPN w/ global features 0.829 0.826 0.824 

Resnet50 + LFPN w/o global features 0.838 0.839 0.835 

Resnet50 + LFPN w global features 

(MaligNet) 

0.852 0.856 0.848 

Resnet50 + FPN + self-training 0.849 0.843 0.840 

Resnet50 + LFPN w/ global features + 

self-training 

0.867 0.844 0.851 

 

We evaluated our model in lesion instance segmentation on four lesion types and 

compared the results with the baseline model (Mask R-CNN). Examples of the results 

are shown in Figure 15 and Figure 16. We also studied the impact of how each 

technique of the model affects the overall performance. We conducted the 

experiments with the techniques separately and combined, as shown in Table 4. 

 

Table  5: Comparison between MaligNet and baseline for lesion localization in the 

lesion segmentation task. 

 

Model Precision Sensitivity F1-score 

Mask R-CNN 0.691 0.736 0.713 

MaligNet 0.678 0.781 0.726 

  

 

Table  6: Comparison between MaligNet and baseline for lesion classification in the 

lesion segmentation task. 

 

 

 

 

Lesion types Model Accuracy Precision Sensitivity Specificity F1-score 

Malignant MaligNet 0.886 0.912 0.941 0.710 0.926 

Mask R-CNN 0.839 0.864 0.937 0.519 0.899 

Inflecton/ 

Inflammation 

MaligNet 0.950 0.432 0.667 0.962 0.525 

Mask R-CNN 0.953 0.447 0.739 0.962 0.557 

Degenerative change MaligNet 0.905 0.662 0.584 0.954 0.621 

Mask R-CNN 0.891 0.667 0.342 0.974 0.452 

Post-trauma MaligNet 0.952 0.737 0.378 0.991 0.500 

Mask R-CNN 0.936 0.476 0.278 0.980 0.351 
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Figure  15: Hand-picked examples of the comparison results: the leftmost image is 

the original bone scintigram, the second image is the ground-truth image, the third 

image is the result of Mask R-CNN, and the rightmost image is the result of MaligNet 

(ours). Each row refers to a different subject. Each column refers to different image 

sources. 
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Figure  16: Random examples of the comparison result: the leftmost image is the 

original bone scintigram, the second image is the ground-truth image, the third image 

is the result of Mask R-CNN, and the rightmost image is the result of MaligNet (ours). 

Each row refers to a different subject. Each column refers to different image sources. 
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Figure  17: The normalized confusion matrix of the lesion classification task using 

MaligNet without self-training. The rows represent the true labels (ground truth), and 

the columns represent the predicted label. 

 

 

Figure  18: The normalized confusion matrix of the lesion classification task using 

Mask R-CNN. The rows represent the true labels (ground truth), and the columns 

represent the predicted label. 
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Using global features allows the model to use high-level features and semantically 

strong features to make prediction decisions, which increases the accuracy of lesion 

classification. Moreover, applying the ladder network in the FPN makes the model 

capable of learning the representation of the images in unsupervised learning, thus 

improving the model in every comparable configuration. Utilizing LFPN for semi-

supervised training over the standard Mask R-CNN, MaligNet can take advantage of 

the unlabeled data (14,786 images), increasing the performance of the model 

significantly and reaching an f1-score of 0.835. Furthermore, combining global 

features allows the f1-score of MaligNet to be improved even further to 0.848. We 

also show the results of lesion classification using MaligNet compared with the 

baseline model, as shown in the confusion matrix in Figure 17 and Figure 18. 

Furthermore, we compare the results of both models in lesion localization and lesion 

classification on each lesion class as shown in Table 5 and Table 6 respectively. 

 

The results show that MaligNet tends to predict malignancy extremely well. Other 

classes are rarer in the training data, making it less accurate. Moreover, post-trauma is 

similar to malignancy, and it can be difficult to distinguish this class from malignant 

lesions, resulting in lower accuracy. 

 

 

6.3. Results of the bone cancer metastasis prediction task. 

 

Table  7: The results of MaligNet on bone cancer metastases prediction. 

 

Model Backbone Accuracy Precision Recall 

(Sensitivity) 

Specificity F1-score 

Mask 

R-CNN 

Resnet50 0.707 0.941 0.608 0.919 0.739 

MaligNet Resnet50 0.741 0.863 0.657 0.857 0.746 

 

Bone cancer metastasis prediction from lesion instance segmentation is more difficult 

than direct classification. Rather than distinguishing between metastases and non-

metastases, the model must locate the position of a malignant lesion. The results in 

Table 7 show that MaligNet has higher accuracy, sensitivity, and f1-score than the 

baseline model. Although our model has lower precision and specificity, for our 

application, sensitivity is preferred over other metrics. 

 

Our model slightly takes longer inference time (0.76 ms for Mask R-CNN vs 0.87 ms 

for Malignet). Even though the f1-score only increases slightly, the sensitivity, which 

is the main metric for screening, improves by an absolute 5% without requiring more 

labeled data. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 41 

Note that we can also apply model optimization and compression techniques, such as 

network pruning (Han, Pool et al. 2015), weight quantization (Hubara, Courbariaux et 

al. 2017), binarized neural networks (Courbariaux, Hubara et al. 2016), and deep 

compression (Han, Mao et al. 2015), to reduce the inference time; however, model 

accuracy is the main concern of this work. 

 

6.4. The impact of data 

6.4.1 Effect of the amount of labeled data 

In this experiment, we varied the amount of labeled training data while keeping the 

amount of unlabeled data fixed and measuring the f1-score. The results are shown in 

Figure 19. Using unsupervised data, MaligNet w/o global features improve every time 

the amount of training data is increased, thus improving the performance over the 

Mask R-CNN baseline model by an average of 1.51%. Adding global features 

improves the performance even further, reaching a relative f1-score average 

improvement of 2.40%. At the same f1-score level, our proposed method reduces the 

amount of labeled data required by an average of 20.11%. The result can be used as 

an anecdotal reference when deciding the trade-off between spending more time to 

label the data and making use of semi-supervised methods. 

 

Figure  19: The effect of the amount of labeled data in lesion instance segmentation 

measured by the f1-score. We perform the experiments while increasing the amount of 

labeled data at various ratios. MaligNet can also use unlabeled data, whereas Mask 

R-CNN is fully supervised. 
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6.4.2 Effect of the amount of unlabeled data 

We also studied the effect of varying the amount of unlabeled data. As shown in 

Figure 20, the performance increases as we include more unlabeled training data. 

However, at higher amounts, the gain from adding more data decreases. This is 

expected because the unlabeled data are used to learn better representations. The 

model captures enough variation from the unsupervised data, and adding more 

unsupervised data should have little to no effect. 

 

Figure  20: The effect of the amount of unlabeled data in lesion instance segmentation 

measured by the f1-score. We conduct the experiment by increasing the amount of 

unlabeled data while keeping the amount of labeled data fixed. Because Mask R-CNN 

cannot use unlabeled data, the performance remains constant. 
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6.5. Comparison with the self-training method 

 

Table  8: The results of the self-training approach with a different confidence 

threshold. 

 

 

One popular semi-supervised approach is self-training. Self-training produces virtual 

labels for unlabeled data by treating the model predictions as the ground-truth label. 

The original labeled data are then combined with the unlabeled data (with labels 

produced by the model) to train a better model. 

 

A confidence threshold value can be used to filter unlabeled data that the model is not 

certain about. We can treat the softmax output probability from the model as the 

confidence level and only use data that are above a certain confidence level. We set 

the minimum confidence threshold for Mask R-CNN postprocessing (which removes 

clutter and merges overlapping regions) to 0.7 which results in confidence values 

ranging only from 0.7 to 1.0. We tried different confidence levels with 0.05 

increments and report only values that show a local maximum in Table 11. 

 

We filtered out the data in two ways: lesion level and image level. For the lesion 

level, we filter lesions that are lower than the threshold value. For the image level, we 

filter out any images that have at least one lesion with a score lower than the 

threshold. This filters out approximately 30% of the images. The results are shown in 

Table 8. The best results are from a threshold value of 0.85 and image-level filtering. 

This improves the Mask R-CNN baseline results from 0.816 to 0.840. 

 

 

 

 

 

Confidence 

threshold 

Filter out No. of 

images 

No. of 

lesions 
𝑀𝑒𝑎𝑛  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

Mean 

sensitivity 

Mean f1-

score 

All - 18,560 52,756 0.815 0.826 0.818 

 

>0.8 

Lesions 

level 

18.560 47,140 0.834 0.819 0.822 

Images 

level 

15,423 33,572 0.837 0.836 0.831 

 

>0.85 

Lesions 

level 

18,560 42,998 0.827 0.837 0.828 

Images 

level 

12,761 21,964 0.849 0.843 0.840 

 

>0.90 

Lesions 

level 

18,560 38,018 0.829 0.825 0.823 

Images 

level 

10,443 13,871 0.836 0.833 0.830 
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6.6 Results of model visualization 

In this section, we conduct the mask results of the experiment to explain how do 

model classifies each lesion type. Grad-CAM (Selvaraju, Cogswell et al. 2017) is one 

of the techniques to explain the model results that use the gradients of the target 

concept to make visual explanations in the classifier model. Since Malignet is the 

instance segmentation model so that we can’t directly apply Grad-CAM to visualize 

our model. 

  

For our case, we visualize the results through the mask frontend. Our mask frontend is 

the binary classification in all classes which can visualize the difference between each 

class compare with the ground-truth. To do this, we can’t explain which part of the 

image that the model looks to classify. But, we will show whether how the model 

chooses to mask in the same lesion of different classes. The pattern of mask 

prediction of each class is the representation to visualize whether why each class 

answers differently and what is the difference in the lesion mask. 

  

We show the results of the mask prediction and the difference between each mask 

class in Figure 21-36. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 45 

 
 

 

 
 

Figure  21: The visualization of mask prediction of each class. The most left side is 

the mask prediction of malignant. The difference between the ground truth class and 

other classes are shown in the bottom. 
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Figure  22: The visualization of mask prediction of each class. The most left side is 

the mask prediction of malignant. The difference between the ground truth class and 

other classes are shown in the bottom. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 47 

 

 

 

Figure  23: The visualization of mask prediction of each class. The most left side is 

the mask prediction of malignant. The difference between the ground truth class and 

other classes are shown in the bottom. 
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Figure  24: The visualization of mask prediction of each class. The most left side is 

the mask prediction of malignant. The difference between the ground truth class and 

other classes are shown in the bottom. 
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Figure  25: The visualization of mask prediction of each class. The most left side is 

the mask prediction of inflection/inflammation. The difference between the ground 

truth class and other classes are shown in the bottom. 
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Figure  26: The visualization of mask prediction of each class. The most left side is 

the mask prediction of inflection/inflammation. The difference between the ground 

truth class and other classes are shown in the bottom. 
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Figure  27: The visualization of mask prediction of each class. The most left side is 

the mask prediction of inflection/inflammation. The difference between the ground 

truth class and other classes are shown in the bottom. 
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Figure  28: The visualization of mask prediction of each class. The most left side is 

the mask prediction of inflection/inflammation. The difference between the ground 

truth class and other classes are shown in the bottom. 
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Figure  29: The visualization of mask prediction of each class. The most left side is 

the mask prediction of degenerative change. The difference between the ground truth 

class and other classes are shown in the bottom. 
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Figure  30: The visualization of mask prediction of each class. The most left side is 

the mask prediction of degenerative change. The difference between the ground truth 

class and other classes are shown in the bottom. 
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Figure  31: The visualization of mask prediction of each class. The most left side is 

the mask prediction of degenerative change. The difference between the ground truth 

class and other classes are shown in the bottom. 
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Figure  32: The visualization of mask prediction of each class. The most left side is 

the mask prediction of degenerative change. The difference between the ground truth 

class and other classes are shown in the bottom. 
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Figure  33: The visualization of mask prediction of each class. The most left side is 

the mask prediction of post-trauma. The difference between the ground truth class 

and other classes are shown in the bottom. 
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Figure  34: The visualization of mask prediction of each class. The most left side is 

the mask prediction of post-trauma. The difference between the ground truth class 

and other classes are shown in the bottom. 
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Figure  35: The visualization of mask prediction of each class. The most left side is 

the mask prediction of post-trauma. The difference between the ground truth class 

and other classes are shown in the bottom. 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 60 

 

 

 

Figure  36: The visualization of mask prediction of each class. The most left side is 

the mask prediction of post-trauma. The difference between the ground truth class 

and other classes are shown in the bottom. 
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Form the following results, the Intensity, curvature, and shape of the lesion mask are 

affected by the different types of mask predictions. But, the mask prediction of each 

class tends to be very different at the edges of the lesion, especially in the curved area. 

If the lesion is round, the difference of the mask between malignant and post-trauma 

is small as shown in Figure 34-36, which makes it difficult to classify both types 

when looking at just one lesion. Degenerative change and inflection/inflammation are 

also quite different from the mask at the edges and inside the lesion, as shown in 

Figures 29 and 31. Furthermore, post-trauma and inflection/inflammation have clearly 

different masks at the edges of the lesion as shown in Figure 34-36. 

 

The above interpretation is the interpretation of experimental results, which is 

different from the physician analysis because the interpretation from mask 

visualization is only focused on one lesion. On the contrary, the physician will 

analyze from the whole image, which makes the mask visualization may not reflect 

the true differences. 
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6.7 Results of global features visualization 

In addition to visualizing the model, we have also visualized the global features of 

each image. We applied PHATE (Moon, van Dijk et al. 2017), a dimensionality 

reduction method for visualizing trajectory structures in high-dimensional biological 

data, with the global features of bone scintigraphy. The results were compared with 

the ground-truth of the lesion types that appeared in that image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  37: The results of global features of bone scintigraphy visualization using 

PHATE 
 

From the results in Figure 37, we can separate the global features into three groups 

which are the malignant group (the blue circle group on the right side in the figure), 

non-malignant (the red circle group on the left side), outlier group (the green group 

circle on the middle in figure). 
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Figure  38: The sample of bone scintigraphy in the malignant group (blue circle in 

figure 37). 
 

 

Figure  39: The sample of bone scintigraphy in the non-malignant group (red circle in 

figure 37). 
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Figure  40: The sample of bone scintigraphy in the outlier group (green circle in 

figure 37). 

 

We sampled the bone scintigraphy in each group to analyze the pattern in each group. 

The results show that the images which consist of “only malignant lesions” have 

similar features (blue points in figure 38). For multi-lesion types, the global feature 

tends to be close together such as “no lesion” which shown in Figure 39. Moreover, 

we also analyzed the outlier of the global feature which is shown in Figure 40. The 

images in the outlier group seem to be a dark image that may not give the information 

to classify the lesion types. 
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7. Discussion 

 

7.1. The effect of applying each technique in Malignet 

MaligNet reached an f1-score of up to 0.848 over the baseline of 0.816. Based on the 

results in Table 4, we studied the effectiveness of LFPN and global features. The 

results show that the effectiveness of LFPN makes our model more accurate than 

using global features. However, applying both techniques outperforms using only one 

technique. 

 

7.2. The limitation of using unlabeled data 

The usefulness of unlabeled data is limited. At some point, when the increase in the 

amount of unlabeled data reaches a saturation point, the efficiency of the model does 

not greatly increase. By contrast, increasing the labeled data still improves the f1-

score. However, labeling bone scintigraphy data is a time-consuming task. Thus, 

MaligNet is a good choice for utilizing unlabeled data with significant time and 

resource savings. 

 

7.3. Analysis of the prediction results 

As shown in Figure 15.b and Figure 16.f, applying global features appears to help the 

model in categorizing lesions more accurately. MaligNet uses not only the lesion 

features but also global information to categorize the lesion types. However, caution 

is needed in applying global features to avoid relying too much on global features 

rather than lesion features. As a result, MaligNet tends to predict malignant lesions 

more often than other types. For this reason, MaligNet has higher sensitivity than the 

baseline, as shown in Figures 15.a and 15.d. This occasionally causes a false positive, 

as shown in the examples presented in Figure 16.h. 

 

7.4. Difference between the LFPN and self-training 

Self-training is a useful approach to semi-supervised learning. We also trained 

MaligNet using the self-training method, which improves the model even further. As 

shown in Table 4, the f1-score improves from 0.848 to 0.851 after self-training. Self-

training and the LFPN can be considered different ways to learn from unlabeled data. 

The LFPN, which is similar to an autoencoder, tries to learn better data representation, 

while self-training provides discriminative information that helps the classification 

task. In the case of using only the LFPN, our method has a slightly lower f1-score 

than self-training. However, MaligNet can be trained in one step on both types of data 

simultaneously, which takes less time in training than the self-training. The training 

and inference time without self-training of the Mask R-CNN was 19.6 hours and 0.76 

milliseconds, respectively; on the other hand, Malignet took 23 hours and 0.87 

milliseconds, respectively. Models with self-training required twice the amount of 

time to train. Moreover, when we combined both techniques, our method is more 

accurate. 
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8. Conclusions and Future work 

 

Almost all object detection or instance segmentation models are designed for 

supervised learning, which requires a large amount of labeled data in the training 

process. However, our medical image dataset has a small amount of labeled data, 

which can lead to model overfitting. We focused on using unlabeled data to leverage 

its utility and realize the most effective model possible with a limited amount of 

labeled data. Therefore, we proposed MaligNet, a ladder network extension of Mask 

R-CNN for lesion instance segmentation in bone scintigraphy that uses semi-

supervised learning for training. 

 

MaligNet is a single network that is simple, effective, flexible, and lightweight. 

Normally, semi-supervised models must be trained in multiple steps. However, 

MaligNet is an end-to-end solution that can be trained in one step with both labeled 

and unlabeled data simultaneously, which reduces the training time. Our data are bone 

scintigraphy images, which have a similar pattern, characteristics, and composition 

among the images, unlike general images. For this reason, the LFPN can take 

advantage of the specificity of the data that enables the model to learn the 

representation of the bone scan image from unlabeled data. Furthermore, applying 

global features helps to classify the lesion types based on the overall composition of 

the image, which mimics the diagnostic approach of physicians. 

 

We evaluated the model using the mean precision, mean sensitivity, and mean f1-

score in the lesion instance segmentation task and the accuracy, precision, sensitivity, 

specificity, and f1-score in bone cancer metastasis prediction. MaligNet significantly 

outperforms the baseline model by up to 2.33% without global features and by 3.92% 

with global features. 

 

We plan to compare our results with those of a nuclear medicine physician as a gold 

standard to determine the difference in decision making between a machine and 

physician for performance improvements. In further analyses, we plan to visualize the 

model to determine what the model sees and the reasons for categorizations by the 

model. We also plan to apply our model to other domains, e.g., MRI and CT. Finally, 

we believe that our method provides an alternative approach for handling unlabeled 

data and will be useful for applications in other works. 
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9. Appendix 

 

9.1 APPENDIX A: Details of patient gender and age in the dataset 

The details of the patients’ gender data and age statistics, which are divided into 

supervised training, validation, testing, and unsupervised datasets, are shown in Table 

9. We also display the age range of the patients in a histogram in Figure 41 - 44. 

 

Table  9: Details of the patients’ gender and age statistics for each dataset type. 

 

Dataset type Male 

images 

Female 

images 

Min 

age 

Mean age Max age 

Supervised training data 274 467 2 59.16 96 

Supervised validation data 86 145 5 58.94 96 

Supervised testing data 38 78 2 59.02 90 

Unsupervised data 7,624 10,936 2 57.40 97 

 

 

 

Figure  41: A histogram of patient age at bone scintigraphy in the supervised training 

dataset. 
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Figure  42: A histogram of patient age at bone scintigraphy in the supervised 

validation dataset. 

 

 

 

Figure  43: A histogram of patient age at bone scintigraphy in the supervised testing 

dataset. 

 

 

Figure  44: A histogram of patient age at bone scintigraphy in the unsupervised 

dataset. 
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9.2 APPENDIX B: Hyperparameters of Single Shot MultiBox Detector (SSD) in 

the experiments of chest detection 

In Section 6.1, our SSD has pretrained weights from ImageNet and is retrained with 

our data using the hyperparameters, as shown in Table 10. 
 

Table  10: Final values of the hyperparameters used in the chest detection 

experiment. 

 
Parameters Parameter used 

Image size (width,height) (512,512) 
Core network VGG-16 
Batch size 16 
Optimizer Adam 
Learning rate 0.001 
Weight decay 0.0005 
L2 regularization 0.0005 
IoU threshold 0.45 
Anchor box scaling factors [0.07, 0.15, 0.3, 0.45, 0.6, 0.75, 0.9, 1.05] 
Anchor box steps [8, 16, 32, 64, 128, 256, 512] 
Anchor box offsets [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5] 

 

9.3 APPENDIX C: Hyperparameters of MaligNet n the experiments of instance 

segmentation 

All experiments in Section 6.2 use the same hyperparameters. We trained the network 

from scratch without pre-trained weights. We attempted to optimize the performance 

of the model by searching for the optimal hyperparameters to the greatest extent 

possible. The final hyperparameter values are shown in Table 11. Because all cost 

functions are self-normalized and the costs do not largely vary, we use λ equal to one 

for all experiments. For the batch size hyperparameter, we found that larger batches 

led to more accurate results. Due to GPU resource limitations, 16 is the maximum 

batch size that can be used. 
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Table  11: Final values of hyperparameters used in the lesion instance segmentation 

experiment from the parameter search. 

 

Parameters Parameter search Final parameters 

Image size (width,height) (320,320), (512,512) (320,320) 

𝜆𝑟𝑐, 𝜆𝑟𝑏, 𝜆𝑐𝑐, 𝜆𝑐𝑏 , 𝜆𝑐𝑚 1.0 1.0 

Gaussian noise ratio 0.03, 0.05, 0.3 0.03 

Batch size 2, 8, 16 (maximum batch size) 16 

Optimizer Adam Adam 

Learning rate 0.0001, 0.005, 0.002, 0.001, 

0.01, 0.02 

0.001 

Weight decay 0.0001, 0.001, 0.01, 0.01, 0.02 0.0001 

RPN NMS threshold 0.6, 0.7, 0.9, 0.99 0.7 

Train ROI per image 80, 100, 200, 300 200 

RPN anchor scales (32, 64, 128, 256, 512) (32,64,128,256,512) 

RPN anchor ratio [0.5, 1, 2] [0.5, 1, 2] 

RPN anchor stride 1 1 

RPN anchor per image 256 256 

Max ground truth instances 50, 100, 200, 300 100 

Detection minimum 

confidence 

0.7 0.7 
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