9 102

PREPARATION OF POLYETHYLENE FILM CONTAINING POROUS STRUCTURE

Mr. Jintawat Sa-nguanruksa

A Thesis Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2001 ISBN 974-13-0732-2

- 3 S.A. 2546

I19766002

Thesis Title:	Preparation of Polyethylene Film Containing
	Porous Structure
By:	Jintawat Sa-nguanruksa
Program:	Polymer Science
Thesis Advisors:	Prof. Sei-ichi Tokura
	Dr. Ratana Rujiravanit
	Dr. Pitt Supaphol

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

K. Bunya m'nT. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

(Prof. Sei-ichi Tokura)

Ratina Rujirwanit

(Dr. Ratana Rujiravanit)

P Sepande

(Dr. Pitt Supaphol)

Anuathinial

(Assoc. Prof. Anuvat Sirivat)

บทคัดย่อ

จินตวัฒน์ สงวนรักษา: การเตรียมฟิล์มโพลีเอธิลีนที่มีโครงสร้างเป็นรูพรุน (Preparation of Polyethylene Film Containing Porous Structure) อ. ที่ปรึกษา: ศ. ดร. ไซอิชิ โทกุระ (Prof. Sei-ichi Tokura) ดร. รัตนา รุจิรวนิช และ ดร. พิชญ์ ศุภผล 135 หน้า ISBN 974-13-0732-2

้งานวิจัยนี้เป็นการศึกษาวิธีการเตรียมฟิล์ม โพลีเอธิลีนที่มีโครงสร้างเป็นรูพรุนจากโพลีเอธิ ้ลื่นความหนาแน่นต่ำ และแป้งมันสำปะหลัง โดยการนำโพลีเอธิลีนความหนาแน่นต่ำมาผสมกับ แป้งมันสำปะหลัง ในอัตราส่วนแป้ง 0, 2, 4, 6, 8, 10, และ 12 % โดยน้ำหนัก หลังจากนั้นนำไปขึ้น รูปเป็นแผ่นฟิล์มที่มีความหนา 50, 80, และ 100 ไมโครเมตร แล้วนำไปเข้ากระบวนการไฮโครไล สิสด้วยกรดหรือเอนไซม์เพื่อให้เกิดโครงสร้างที่เป็นรูพรุน ในกระบวนการไฮโดรไลสิสด้วยกรด แผ่นฟิล์มจะถูกนำไปแช่ในสารละลายกรคไฮโครคลอริก, กรคซัลฟิวริก, และกรคไนตริก ที่สภาวะ ต่างๆ ส่วนการไฮโครไลสิสค้วยเอนไซม์จะใช้แอลฟาอไมเลสในการย่อยสลายแป้งออกจากแผ่น ฟิล์มเพื่อให้เกิดรูพรุน จากผลการวิจัยพบว่าในกระบวนการไฮโดรไลสิสด้วยกรด กรดในตริก ้สามารถสถายแป้งออกจากแผ่นฟิล์มได้ดีที่สุด โดยสามารถสถายได้ถึงประมาณ 85% ที่ความเข้ม ข้น 5 นอร์มอลลิที และอุณหภูมิ 65 องศาเซลเซียส ในขณะที่กระบวนการไฮโครไลสิสด้วย เอนไซม์สามารถสถายแป้งได้เพียง 35 % การวัดปริมาณแป้งที่ถูกสถายออกจากแผ่นฟิล์มมีความ สอดคล้องกับภาพถ่ายจุลทรรศอิเล็กตรอน ซึ่งพบว่าฟิล์มที่สลายแป้งออกด้วยกรดในตริกจะมีรู พรุนมากกว่าฟิล์มที่สลายแป้งออกด้วยกรดอื่นๆ เมื่อความเข้มข้นของกรดเพิ่มขึ้น ปริมาณแป้งที่ สลายออกจากฟิล์ม และความพรุนของฟิล์มก็จะเพิ่มขึ้น กระบวนการไฮโครไลสิสด้วยกรค ้สามารถสถายแป้งได้ดีที่อุณหภูมิที่อยู่ในช่วงอุณหภูมิการเกิดเจลของแป้งมันสำปะหลัง และพบว่า เมื่อเพิ่มปริมาณแป้งในแผ่นฟิล์มจาก 2-12 % โดยน้ำหนัก โครงสร้างของแผ่นฟิล์มก็จะเปลี่ยนจาก โครงสร้างทึบไม่มีรูพรุนเป็นโครงสร้างที่มีรูพรุน และการไฮโครไลสิสจะสลายแป้งออกจากฟิล์ม บางได้มากกว่าฟิล์มหนา เมื่อทคสอบคุณสมบัติเชิงกลพบว่า ฟิล์มก่อนไฮโครไลสิสมีคุณสมบัติ เชิงกลสูงกว่าฟิล์มหลังไฮโครไลสิสเนื่องจากแป้งได้ถูกสลายออกไป นอกจากนี้ฟิล์มโพลีเอธิลีนที่ มีรูพรุนที่เตรียมได้ยังมีคุณสมบัติในการแยกก๊าซที่ดี และสามารถประยุกต์ใช้ในกระบวนการแยก ก๊าซได้

ABSTRACT

4272004063: POLYMER SCIENCE PROGRAM

Jintawat Sa-nguanruksa: Preparation of Polyethylene Film Containing Porous Structure.

Thesis Advisors: Prof. Sei-ichi Tokura, Dr. Ratana Rujiravanit, and Dr. Pitt Supaphol, 135 pp. ISBN 974-13-0732-2

Keywords: Polyethylene film/Porous structure/LDPE/starch films

A new method of preparing porous polyethylene film was investigated. Low density polyethylene (LDPE) and tapioca starch were mixed together to produce 2, 4, 6, 8, 10, and 12 wt% starch blends. Each blend was melt extruded to obtain LDPE/starch films having thicknesses of 50, 80, and 100 µm. The porous structure of the films was formed by removing starch particles from the films using acidic hydrolysis and enzymatic hydrolysis. For acidic hydrolysis, the films were immersed in solutions of HCl, H₂SO₄, and HNO₃ under various conditions while a solution of α -amylase was employed for enzymatic hydrolysis. For acidic hydrolysis, starch particles were best removed using 5 N HNO₃ at 65°C which gave a reduction in starch level of approximately 85%, whereas for enzymatic hydrolysis the reduction was much lower at about 35%. The amounts of starch removal correlated well with scanning electron micrographs where more pores were observed in HNO₃ hydrolyzed film. The concentration of HNO₃ solution and hydrolysis temperature both played important roles in starch removal. The reduction in starch level increased with increasing acid concentration. At temperatures below the gelatinization temperature range of tapioca starch, starch removal was much lower than that within the gelatinization temperature range. It was found that as the starch content increased from 2 wt% to 12 wt% the microstructure of the films changed from dense to porous structure. An increase in the film thickness resulted in a decrease in starch removal. Mechanical properties of porous films obtained from both nitric acid hydrolysis and enzymatic hydrolysis were lower than those of untreated LDPE/starch film. The gas permeabilities (P) of the film containing 12 wt% starch before hydrolysis were 45.75, 51.61, 65.13, 19.97, and 43.84 barrers for nitrogen, carbon dioxide, ethylene, propane, and propylene gases, respectively, and 484.40, 506.84, 601.50, 162.88, and 176.52 barrers after nitric acid hydrolysis. The selectivity or separation parameters of porous, HNO₃ hydrolyzed film were $P(N_2)/P(C_3H_8) = 2.97$, $P(N_2)/P(C_3H_6) = 2.74$, $P(CO_2)/P(C_3H_8) =$ 3.11, $P(CO_2)/P(C_3H_6) = 2.87$, $P(C_2H_4)/P(C_3H_8) = 3.69$, and $P(C_2H_4)/P$ $(C_3H_6) = 3.41$. The dramatic increase in gas permeabilities coupled with good selectivity indicates that the porous films have good potential for use in industrial gas separation.

11

ACKNOWLEDGEMENTS

First of all I would like to thank the three of my advisors, Dr. Ratana Rujiravanit, Dr. Pitt Supaphol, and Prof. Sei-ichi Tokura for their advice and supports. I would also like to thank the suppliers of materials used in the experimental work: Cementhai Co., Ltd. for LDPE, Siam Modified Starch Co., Ltd. for tapioca starch, and East Asiatic Co., Ltd. for α -amylase.

I really appreciate the help, and support of Mr. John W. Ellis. He trained me to use the experiments, checked my English grammar for my manuscript, and gave me some good advice. I am really thankful for this. I would like to thank Mr. Polrat Mansripatanakul for training and helping me in the processing lab. Working on this thesis also made me see the kindness of strangers. Ms. Passawadee Vijitjunya was one of those generous people. Without her, the experimental work would not have completely finished. She trained me how to use the membrane testing unit, allowed me to use all the facilities in her lab while I was doing the permeability measurements, and gave me some advice, suggestions, and information.

I would like to thank three students, Rungravee, Worakanya, and Dujdao, who worked together with me in the processing lab. They all helped me in the film processing. Last but not least, I would like to thank Watcharee, Kamonrat, and Usa for helping me prepare the samples when I was working on the 5th floor.

TABLE OF CONTENTS

Title Page	i
Acceptance Page	ii
Abstract (in English)	iii
Abstract (in Thai)	v
Acknowledgements	vi
Table of Contents	vii
List of Tables	x
List of Figures	xv

PAGE

CHAPTER

Ι	INT	ROD	UCTION	1
	1.1	Film a	nd Membrane	2
	1.2	Types	of Membrane	3
		1.2.1	Nonporous Dense Membranes	3
		1.2.2	Isotropic Microporous Membranes	3
		1.2.3	Electrically Charged Membranes	3
		1.2.4	Asymmetric Membranes	4
		1.2.5	Ceramic, Metal, and Liquid Membranes	5
	1.3	Prepar	ration of Porous Membranes	5
		1.3.1	Irradiation	5
		1.3.2	Expanded Film	6
		1.3.3	Template Leaching	7
		1.3.4	Phase Separation	7
	1.4	Tapio	ca Starch	8
	1.5	Objec	tives	10

CHAPTER		PAGE
II	LITERATURE SURVEY	11
III	EXPERIMENTAL	15
	3.1 Materials	15
	3.2 Experimental Procedure	16
	3.2.1 Preparation of LDPE/starch Blends	16
	3.2.2 Film Preparation	17
	3.2.3 Porous Structure Formation by Acidic	
	Hydrolysis	19
	3.2.4 Porous Structure Formation by Enzymat	ic
	Hydrolysis	21
	3.2.5 Mechanical Properties of Porous Films	21
	3.2.6 Gas Permeability Measurements	22
IV	RESULTS AND DISCUSSION	24
	4.1 Formation of Porous Structure	24
	4.1.1 Acidic Hydrolysis	24
	4.1.2 Enzymatic Hydrolysis	33
	4.2 Mechanical Properties	36
	4.2.1 Tensile Properties	37
	4.2.2 Gloss	38
	4.2.3 Tear Resistance	40
	4.3 Gas Permeability and Selectivity	42

V CONCLUSIONS

47

135

REFERENCES	48
APPENDICES	51
Appendix A Data for acidic hydrolysis	51
Appendix B Data for enzymatic hydrolysis	67
Appendix C Data for mechanical properties	69
Appendix D Data for gas permeability	105

CURRICULUM VITAE

LIST OF TABLES

TABL	TABLE 1.1 Composition of common commercial starches		
1.1			
	(Shogren, 1998, ch. 2)	8	
1.2	Irreversible swelling temperature range of starch from		
	different sources (Kirk-Othmer, 1997)	8	
3.1	Physical properties of LDPE with the trade name LD1905F	15	
3.2	Compositions of LDPE/starch blends	16	
3.3	Extrusion conditions for preparation of LDPE/starch blends	17	
3.4	Extrusion conditions for preparation of LDPE/starch films	18	
3.5	Chill roll speeds for the preparation of 0-12 wt% starch films	18	
4.1	Gas permeabilities of 50 μ m thick films with initial starch		
	content of 12 wt%	46	
4.2	Selectivity of 50 μ m thick films with initial starch		
	content of 12 wt%	46	
A1.1	Data for hydrolyzed starch of 50 μ m thick film containing		
	12 wt% starch hydrolyzed in 5 N HCl at 65°C	51	
A1.2	2 Data for hydrolyzed starch of 50 μ m thick film containing		
	12 wt% starch hydrolyzed in 5 N H ₂ SO ₄ at 65°C	53	
A1.3	B Data for hydrolyzed starch of 50 μ m thick film containing		
	12 wt% starch hydrolyzed in 5 N HNO3 at 65°C	55	
A1.4	I Data for hydrolyzed starch of 50 μ m thick film containing		
	12 wt% starch hydrolyzed in distilled water at 65°C	57	
A2.1	Data for hydrolyzed starch of 50 μ m thick film containing		
	12 wt% starch hydrolyzed in 1 N HNO3 at 65°C	59	

TABLE

A2.2	2 Data for hydrolyzed starch of 50 µm thick film containing	
	12 wt% starch hydrolyzed in 3 N HNO3 at 65°C	60
A2.3	Data for hydrolyzed starch of 50 μ m thick film containing	
	12 wt% starch hydrolyzed in 5 N HNO3 at 65°C	61
A3.1	Data for hydrolyzed starch of 50 μ m thick film containing	
	12 wt% starch hydrolyzed in 5 N HNO3 at 25°C	62
A3.2	Data for hydrolyzed starch of 50 μ m thick film containing	
	12 wt% starch hydrolyzed in 5 N HNO3 at 45°C	63
A4.1	Data for hydrolyzed starch of 50 μ m thick film containing	
	0, 2, 4, 6, 8, 10, and 12 wt% starch hydrolyzed in 5 N HNO3	
	at 65°C	64
A5.1	Data for hydrolyzed starch of 80 μ m thick film containing	
	12 wt% starch hydrolyzed in 5 N HNO ₃ at 65°C	65
A5.2	Data for hydrolyzed starch of 100 μ m thick film containing	
	12 wt% starch hydrolyzed in 5 N HNO3 at 65°C	66
B1	Data for hydrolyzed starch of 50 μ m thick film containing	
	12 wt% starch hydrolyzed in pH 6.5 acetate buffer without	
	enzyme at 80°C	67
B2	Data for hydrolyzed starch of 50 μ m thick film containing	
	12 wt% starch hydrolyzed in α -amylase in pH 6.5 acetate	
	buffer at 85°C	68
C1.1	Data for tensile stress at break in machine direction of	
	untreated LDPE/starch film with thickness of 50 μm	
	containing 12 wt% starch	69

C1.2 Data for tensile stress at break in machine direction of	
HNO ₃ hydrolyzed film with thickness of 50 μ m	
Containing 12 wt% starch	71
C1.3 Data for tensile stress at break in machine direction of	
α -amylase hydrolyzed film with thickness of 50 μm	
containing 12 wt% starch	73
C2.1 Data for elongation at break in machine direction of	
untreated LDPE/starch film with thickness of 50 μm	
containing 12 wt% starch	75
C2.2 Data for elongation at break in machine direction of	
HNO ₃ hydrolyzed film with thickness of 50 μ m	
containing 12 wt% starch	77
C2.3 Data for elongation at break in machine direction of	
α -amylase hydrolyzed film with thickness of 50 μ m	
containing 12 wt% starch	79
C3.1 Data for gloss of untreated LDPE/starch film with thickness	
of 50 μ m containing 12 wt% starch in machine direction	81
C3.2 Data for gloss of HNO ₃ hydrolyzed film with thickness	
of 50 μ m containing 12 wt% starch in machine direction	83
C3.3 Data for gloss of α -amylase hydrolyzed film with thickness	
of 50 μ m containing 12 wt% starch in machine direction	85
C3.4 Data for gloss of untreated LDPE/starch film with thickness	
of 50 μ m containing 12 wt% starch in transverse direction	87
C3.5 Data for gloss of HNO ₃ hydrolyzed film with thickness	
of 50 μ m containing 12 wt% starch in transverse direction	89

C3.6 Data for gloss of α -amylase hydrolyzed film with thickness	
of 50 μ m containing 12 wt% starch in transverse direction	91
C4.1 Data for tear resistance of untreated LDPE/starch film with	
thickness of 50 μ m containing 12 wt% starch in machine	
direction	93
C4.2 Data for tear resistance of HNO ₃ hydrolyzed film with	
thickness of 50 μ m containing 12 wt% starch in machine	
direction	95
C4.3 Data for tear resistance of α -amylase hydrolyzed film with	
thickness of 50 μ m containing 12 wt% starch in machine	
direction	97
C4.4 Data for tear resistance of untreated LDPE/starch film with	
thickness of 50 μ m containing 12 wt% starch in transverse	
direction	99
C4.5 Data for tear resistance of HNO ₃ hydrolyzed film with	
thickness of 50 μ m containing 12 wt% starch in transverse	
direction	101
C4.6 Data for tear resistance of α -amylase hydrolyzed film with	
thickness of 50 μ m containing 12 wt% starch in transverse	
direction	103
D1.1 Data for gas permeability for N ₂	105
D1.2 Data for gas permeability for CO ₂	107
D1.3 Data for gas permeability for C ₂ H ₄	109
D1.4 Data for gas permeability for C3H8	111
D1.5 Data for gas permeability for C ₃ H ₆	113
D2.1 Data for gas permeability for N ₂	115

D2.2 Data for gas permeability for CO_2	117
D2.3 Data for gas permeability for C_2H_4	119
D2.4 Data for gas permeability for C ₃ H ₈	121
D2.5 Data for gas permeability for C_3H_6	123
D3.1 Data for gas permeability for N_2	125
D3.2 Data for gas permeability for CO_2	127
D3.3 Data for gas permeability for C_2H_4	129
D3.4 Data for gas permeability for C ₃ H ₈	131
D3.5 Data for gas permeability for C ₃ H ₆	133

LIST OF FIGURES

FIGURE

Schematic diagrams of membrane types 4 1.1 1.2 Preparation of porous membrane by expanded film 6 3.1 Membrane testing unit, (a) schematic diagram of experimental setup and (b) cross-section of membrane test cell 23 Percentages of starch hydrolysis of 50 µm thick films 4.1 containing 12 wt% starch hydrolyzed in 5 N HCl, 5 N H₂SO₄, 5 N HNO₃, and distilled water at 65°C as a function of time 25 SEM micrographs of 50 µm thick films containing 12 wt% 4.2 Starch hydrolyzed in (a) distilled water, (b) 5 N HCl, (c) 5N H₂SO₄, and (d) 5 N HNO₃ at 65°C 26 4.3 Percentages of starch hydrolysis of 50 µm thick films containing 12 wt% starch hydrolyzed in 1 N, 3 N, and 5 N HNO3 at 65°C as a function of time 28 Percentages of starch hydrolysis of 50 µm thick films 4.4 containing 12 wt% starch hydrolyzed in 5 N HNO3 at 29 25°C, 45°C, and 65°C as a function of time 4.5 Percentages of starch hydrolysis of 50 µm thick films containing 0, 2, 4, 6, 8, 10, and 12 wt% starch hydrolyzed 30 in 5 N HNO3 at 65°C SEM micrographs of 50 µm thick films containing 4.6 (a) 2 wt% starch, (b) 6 wt% starch, and (c) 12 wt% 31 starch hydrolyzed in 5 N HNO₃ at 65°C

PAGE

FIGURE

4.7	Percentages of starch hydrolysis of the films containing	
	12 wt% starch with varying thicknesses of 50 μ m, 80 μ m,	
	and 100 μ m hydrolyzed in 5 N HNO ₃ at 65°C as a	
	function of time	33
4.8	Percentages of weight loss of 50 µm thick film containing	
	12 wt% starch immersed in pH 6.5 acetate buffer at 80°C	
	without enzyme	34
4.9	Comparison of starch removals from 50 μ m thick films	
	Containing 12 wt% starch hydrolyzed in 5 N HNO3 at 65°C	
	and in α -amylase at 80°C	35
4.10	SEM micrographs of 50 μ m thick films containing 12 wt%	
	starch hydrolyzed in (a) 5 N HNO3 and (b) α -amylase	36
4.11	Tensile stress at break in machine direction of untreated	
	LDPE/starch film, HNO ₃ hydrolyzed film, and α -amylase	
	hydrolyzed film as a function of initial starch content	37
4.12	Elongation at break in machine direction of untreated	
	LDPE/starch film, HNO ₃ hydrolyzed film, and α -amylase	
	hydrolyzed film as a function of initial starch content	38
4.13	Gloss value at 60° of untreated LDPE/starch film, HNO3	
	hydrolyzed film, and α -amylase hydrolyzed film in machine	
	direction as a function of starch content	39
4.14	Gloss value at 60° of untreated LDPE/starch film, HNO3	
	hydrolyzed film, and α -amylase hydrolyzed film in transverse	
	direction as a function of starch content	40

FIGURE

4 15	Tear resistance in machine direction of untreated	
т.15	real resistance in machine uncetion of uniteated	
	LDPE/starch film, HNO ₃ hydrolyzed film, and α -amylase	
	hydrolyzed film as a function of initial starch content	41
4.16	Tear resistance in transverse direction of untreated	
	LDPE/starch film, HNO ₃ hydrolyzed film, and α -amylase	
	hydrolyzed film as a function of initial starch content	42
4.17	Gas permeabilities for N ₂ , CO ₂ ,C ₂ H ₄ , C ₃ H ₈ , and C ₃ H ₆	
	of the untreated LDPE/starch film as a function of initial	
	starch content	43
4.18	Gas permeabilities for N ₂ , CO_2 , C_2H_4 , C_3H_8 , and C_3H_6	
	of the α -amylase hydrolyzed film as a function of initial	
	starch content	44
4.19	Gas permeabilities for N ₂ , CO ₂ ,C ₂ H ₄ , C ₃ H ₈ , and C ₃ H ₆	
	of the HNO ₃ hydrolyzed film as a function of initial	
	starch content	45