REFERENCES

- Blazkova, A., Csolleova, I., and Brezova, V. (1998). Effect of light sources on the phenol degradation using Pt/TiO₂ photocatalysts immobilized on glass fibers. <u>Journal of Photochemistry and Photobiology A:</u> <u>Chemistry</u>, 113, 251-256.
- Brezova, V., Blazkova, A., Karpinsky, L., Groskova, J., Havlinova, B., Jorik, V., and Ceppan, M. (1997). Phenol decomposition using Mⁿ⁺/TiO₂ photocatalysts supported by the sol-gel technique on glass fibers. Journal of Photochemistry and Photobiology A: Chemistry. 109, 117-183.
- Chen, D.,, and Ray, A.K. (1999). Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO₂. <u>Applied Catalysis B:</u> <u>Environmental</u>, 23, 143-157.
- Cheng, S., Tsai, S.J., and Lee, Y.F. (1995). Photocatalytic decomposition of phenol over titanium oxide of various structures. <u>Catalysis Today</u>, 26, 87-96.
- Choi, W., and Hoffmann, M.R. (1995). Photoreductive mechanism of CCl₄ degradation on TiO₂ particles and effects of electron donors. <u>Environmental Science & Technology</u>, 29:6, 1646-1654.
- De Lasa, H.I., Dogu, G., and Ravella, A. (Eds.). (1992). <u>Chemical Reactor</u> <u>Technology for Environmentally Safe Reactors and Product</u>. Dordrecht/Boston/London : Kluwer Academic Publishers, 577-608.
- Gao, X., and Wachs, I.E. (1999). Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties. <u>Catalysis</u> <u>Today</u>, 51, 233-254.
- Handcock, F.E. (1999). Catalytic strategies for industrial weter re-use. Catalysis Today, 53, 3-9.

- Herrmann, J.M. (1999). Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. <u>Catalysis Today</u>, 53, 115-129.
- Herrmann, J.M., Matos, J., Disdier, J., Guillard, C., Laine, J., Malato, S., and Blanco, J. (1999). Solar photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension. <u>Catalysis Today</u>, 54, 255-265.
- Ilisz, I., and Dombi, A. (1999). Investigation of the photodecomposition of phenol in near UV irradiated aqueous TiO₂ suspensions II: Effects of charge trapping species on product distribution. <u>Applied Catalysis A:</u> <u>General</u>, 180, 35-45.
- Jung, K.Y., and Park, S.B. (1999). Anatase phase titania: preparation by embedding silica and photocatalytic activity for the decomposition of trichloroethylene. <u>Journal of Photochemistry and Photobiology A:</u> <u>Chemistry</u>, 127, 117-122.
- Jung, K.Y., and Park, S.B. (2000). Enhanced photoactivity of silicaembedded titania particles prepared by sol-gel process for the decomposition of trichloroethylene. <u>Applied Catalysis B:</u> <u>Environmental</u>, 25, 249-256.
- Litter, M.I. (1999). Heterogeneous photocatalysis transition metal ions in photocatalytic systems. <u>Applied Catalysis B: Environmental</u>, 13, 89-114.
- Phuaphromyod, P. (1999). <u>Photocatalytic degradation of isopropyl alcohol by</u> <u>using Pt/TiO₂</u>. M.S. Thesis in Petrochemical Technology, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Pozzo, R.L., Baltanas, M.A., and Cassano, A.C. (1997). Supported titanium oxide as photocatalyst in water decontamination: State of the art. <u>Catalysis Today</u>, 39, 219-231.

- Reutergardh, L.B. and Iangphasuk, M. (1997). Photocatalytic decolourization of reactive azo dye: A comparison between TiO₂ and CdS photocatalysis. <u>Chemosphere</u>, 35:3, 585-596.
- Robertson, P.K.J. (1996). Semiconductor photocatalysis: An environmentally acceptable alternative production technique and effluent treatment process. J. Cleaner Prod., 4:3-4, 203-212.
- Stafford, U., Gray, K.A., and Kamat, P.V. (1997). Photocatalytic degradation of 4-chlorophenol: The effects of varying TiO₂ concentration and light wavelength. <u>Journal of Catalysis</u>, 167, 25-32.
- Theurich, J., Lindner, M., and Bahnemann, D.W. (1996). Photocatalytic degradation of 4-chlorophenol in aerated aqueous titanium dioxide suspensions: A kinetic and mechanistic study. <u>Langmuir</u>, 12, 6368-6376.
- Torimoto, T., Ito, S., Kuwabata, S., and Yoneyama, H. (1996). Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide. <u>Environmental Science &</u> <u>Technology</u>, 30:4, 1275-1281.
- Vorontsov, A.V., Stoyanova, I.V., Kozlov, D.V., Simagina, V.I., and Savinov, E.N. (2000). Kinetics of the photocatalytic oxidation of gaseous acetone over platinized titanium dioxide. <u>Journal of Catalysis</u>, 189, 360-369.
- Ward, D.A. and Ko, E.I. (1995). Preparing catalytic materials by the sol-gel method. <u>Ind. Eng. Chem. Res.</u>, 34, 421-433.

APPENDIX A

Experimental data from photocatalytic study A.1 Effect of amount of TiO₂ catalyst

Time	C/C _o at different amount of catalyst					
(min)	blank	0.2 g/l	0.35 g/l	0.5 g/l	0.7 g/l	1.0 g/l
0	1	1	1	1	1	1
30	0.3446	0.3592	0.2832	0.2331	0.249	0.2438
60	0.1489	0.1040	0.0986	0.0628	0.0750	0.0706
90	0.0751	0.0673	0.0342	0.0242	0.0165	0.0337
120	0.0392	0	0	0	0	0
150	0	0	0	0	0	0

Time	TOC/TOC _o at different amount of catalyst					
(min)	blank	0.2 g/l	0.35 g/l	0.5 g/l	0.7 g/l	1.0 g/l
0	1	1	1	1	1	1
30	0.7897	0.7855	0.8398	0.7599	0.6535	0.6838
60	0.7850	0.7298	0.6635	0.6425	0.5851	0.6022
90	0.7739	0.7043	0.6577	0.6080	0.5382	0.5479
120	0.7708	0.6848	0.6522	0.5869	0.5252	0.5226
150	0.7511	0.6785	0.6451	0.5783	0.4892	0.5084
180	0.7503	0.6761	0.6380	0.5780	0.4744	0.4846
240	0.7412	0.6575	0.6225	0.5775	0.4448	0.4608
300	0.7400	0.6480	0.6070	0.5101	0.4151	0.4183
360	0.7320	0.6439	0.5915	0.5017	0.3855	0.3909

Time	C/C _o at different calcination temperature					
(min)	400 °C	500 °C	600 °C	700 °C		
0	1	1	1	1		
30	0.2331	0.2887	0.3729	0.3589		
60	0.0628	0.0759	0.1741	0.1685		
90	0.0242	0.0346	0.0745	0.0733		
120	0	0	0.0248	0.0402		
150	0	0	0	0		

A.2 Effect of calcination temperature of TiO₂

Time	TOC/TOC_{o} at different calcination temperature					
(min)	400 °C	500 °C	600 °C	700 °C		
0	1	1	1	1		
30	0.7599	0.7739	0.7743	0.7800		
60	0.6425	0.6973	0.7552	0.7707		
90	0.6080	0.6618	0.7539	0.7614		
120	0.5869	0.6552	0.7473	0.7570		
150	0.5783	0.6487	0.7412	0.7520		
180	0.5780	0.6171	0.7351	0.7444		
240	0.5775	0.5855	0.7288	0.7368		
300	0.5101	0.5539	0.7226	0.7325		
360	0.5017	0.5223	0.7163	0.7217		

Time	C/C _o at different initial pH					
(min)	pH 3	pH 5	pH 7	pH 9		
0	1	1	1	1		
30	0.2948	0.2617	0.2493	0.3250		
60	0.1117	0.0893	0.1080	0.1434		
90	0.0633	0.0242	0.0324	0.0703		
120	0	0	0	0		
150	0	0	0	0		

A.3 Effect of initial pH of 4-chlorphenol solution

Time	TOC/TOC _o at different initial pH					
(min)	pH 3	pH 5	pH 7	pH 9		
0	1	1	1	1		
30	0.7994	0.7664	0.7602	0.7146		
60	0.7521	0.7045	0.6984	0.6951		
90	0.7014	0.6796	0.6956	0.6736		
120	0.6928	0.6715	0.6755	0.6685		
150	0.6872	0.6596	0.6672	0.6536		
180	0.6816	0.6525	0.6513	0.6574		
240	0.6498	0.6385	0.6346	0.6475		
300	0.6370	0.6245	0.6338	0.6224		
360	0.6253	0.6111	0.6086	0.6193		

Time	C/C _o				
(min)	Degussa P25	Sol-gel TiO ₂			
0	1	1			
30	0.5904	0.3592			
60	0.3836	0.1040			
90	0.2737	0.0673			
120	0.1825	0			
150	0.1203	0			
180	0.0546	0			
210	0	0			

A.4 Comparison between Degussa P25 and sol-gel TiO₂

Time	TOC/TOC _o			
(min)	Degussa P25	Sol-gel TiO ₂		
0	1	1		
30	0.7721	0.7853		
60	0.6782	0.7298		
90	0.6400	0.7043		
120	0.6269	0.6848		
150	0.5894	0.6785		
180	0.5395	0.6761		
240	0.4790	0.6575		
300	0.4187	0.6480		
360	0.3341	0.6439		

A.5	Pt/TiO ₂	at	different	%Pt	loading
	-				

Time	C/C _o at different %Pt loading					
(min)	0 %Pt	0.2 %Pt	0.5 %Pt	1.0 %Pt	1.5 %Pt	2.0 %Pt
0	1	1	1	1	1	1
30	0.2331	0.2622	0.3040	0.2904	0.2951	0.3348
60	0.0628	0.0880	0.1059	0.1010	0.1105	0.1393
90	0.0242	0.0321	0.0483	0.0458	0.0347	0.1017
120	0	0	0	0	0	0.0313
150	0	0	0	0	0	0

Time	TOC/TOC _o at different %Pt loading					
(min)	0 %Pt	0.2 %Pt	0.5 %Pt	1.0 %Pt	1.5 %Pt	2.0 %Pt
0	1	1	1	1	1	1
30	0.7599	0.8573	0.6189	0.8742	0.7402	0.7396
60	0.6425	0.7147	0.5478	0.6536	0.6683	0.6833
90	0.6080	0.5720	0.5256	0.5342	0.6453	0.6740
120	0.5869	0.5623	0.4715	0.4734	0.6172	0.6608
150	0.5783	0.5526	0.4620	0.4643	0.6154	0.6496
180	0.5780	0.5441	0.4605	0.4512	0.5972	0.6384
240	0.5775	0.5226	0.4316	0.4232	0.5682	0.6272
300	0.5101	0.5011	0.4244	0.4072	0.5467	0.6160
360	0.5017	0.4796	0.4174	0.3912	0.5321	0.5210

Time	C/C_o at different calcination temperature					
(min)	400 °C	500 °C	600 °C	700 °C		
0	1	1	1	1		
30	0.2673	0.2751	0.3056	0.3098		
60	0.0819	0.0875	0.1031	0.1138		
90	0.0375	0.0394	0.0422	0.0440		
120	0	0	0	0		
150	0	0	0	0		

A.6 <u>5%SiO₂-TiO₂ at different calcination temperature</u>

Time	TOC/TOC _o at different calcination temperature			
(min)	400 °C	500 °C	600 °C	700 °C
0	1	1	1	1
30	0.7266	0.7461	0.7788	0.8195
60	0.6565	0.6821	0.7092	0.7513
90	0.6387	0.6598	0.6955	0.7467
120	0.6218	0.6521	0.6815	0.7314
150	0.6049	0.6441	0.6695	0.7178
180	0.5875	0.6101	0.6579	0.7056
240	0.5700	0.5927	0.6561	0.6843
300	0.5525	0.5673	0.6350	0.6586
360	0.5296	0.5476	0.6073	0.6514

Time	C/C _o at different calcination temperature				
(min)	400 °C	500 °C	600 °C	700 °C	
0	1	1	1	1	
30	0.2076	0.2115	0.2601	0.2757	
60	0.0664	0.0737	0.0858	0.0791	
90	0.0226	0.0202	0.0211	0.0295	
120	0	0	0	0	
150	0	0	0	0	

A.7 <u>10%SiO₂-TiO₂ at different calcination temperature</u>

Time	TOC/TOC _o at different calcination temperature				
(min)	400 °C	500 °C	600 °C	700 °C	
0	1	1	1	1	
30	0.7154	0.7216	0.7647	0.8369	
60	0.6522	0.6610	0.6900	0.7794	
90	0.6031	0.6538	0.6685	0.7405	
120	0.5998	0.6072	0.6478	0.7344	
150	0.5582	0.5955	0.6404	0.7015	
180	0.5503	0.5837	0.6378	0.6929	
240	0.5420	0.5112	0.5960	0.6617	
300	0.4876	0.5032	0.5541	0.6172	
360	0.4582	0.5003	0.5295	0.5697	

Time	C/C_o at different calcination temperature				
(min)	400 °C	500 °C	600 °C	700 °C	
0	1	1	1	1	
30	0.3398	0.3840	0.3216	0.3306	
60	0.1327	0.1562	0.1346	0.1222	
90	0.0595	0.0620	0.0486	0.0676	
120	0.0290	0.0384	0	0.0332	
150	0	0	0	0	

A.8 <u>20%SiO₂-TiO₂ at different calcination temperature</u>

Time	TOC/TOC_{o} at different calcination temperature			
(min)	400 °C	500 °C	600 °C	700 °C
0	1	1	1	1
30	0.7043	0.8101	0.8082	0.8255
60	0.6725	0.7331	0.7661	0.7973
90	0.6531	0.6941	0.7346	0.7585
120	0.6458	0.6795	0.7141	0.7369
150	0.6352	0.6672	0.7004	0.7268
180	0.6035	0.6355	0.6697	0.7119
240	0.5952	0.6018	0.6527	0.7053
300	0.5588	0.5681	0.5928	0.6847
360	0.5275	0.5300	0.5563	0.6617

Time	C/C_o at different calcination temperature				
(min)	400 °C	500 °C	600 °C	700 °C	
0	1	1	1	1	
30	0.3944	0.4018	0.3711	0.4035	
60	0.1855	0.2042	0.1784	0.1921	
90	0.08095	0.1006	0.0798	0.0914	
120	0.0383	0.0472	0.0392	0.0575	
150	0	0	0	0	

A.9 <u>30%SiO₂-TiO₂ at different calcination temperature</u>

Time	TOC/TOC _o at different calcination temperature			
(min)	400 °C	500 °C	600 °C	700 °C
0	1	1	1	1
30	0.8208	0.7979	0.8443	0.8200
60	0.7895	0.7438	0.7985	0.7788
90	0.7584	0.6850	0.7659	0.7632
120	0.7088	0.6766	0.7603	0.7475
150	0.6923	0.6579	0.7479	0.7386
180	0.6761	0.6448	0.7334	0.7196
240	0.6533	0.6317	0.7263	0.7183
300	0.6092	0.6206	0.6928	0.6793
360	0.5702	0.6094	0.6625	0.6606

Time	C/C _o at different calcination temperature				
(min)	400 °C	500 °C	600 °C	700 °C	
0	1	1	1	1	
30	0.2955	0.3033	0.2895	0.3036	
60	0.1107	0.1140	0.1151	0.1173	
90	0.0465	0.0441	0.0385	0.0415	
120	0	0	0	0	
150	0	0	0	0	

A.10 Pt/TiO₂-SiO₂ at different calcination temperature

Time	TOC/TOC_{o} at different calcination temperature			
(min)	400 °C	500 °C	600 °C	700 °C
0	1	1	l	1
30	0.6914	0.7193	0.7466	0.7761
60	0.5945	0.6242	0.6643	0.7093
90	0.5708	0.5977	0.6389	0.6792
120	0.5320	0.5782	0.6173	0.6541
150	0.5261	0.5677	0.6060	0.6372
180	0.5202	0.5534	0.6038	0.6246
240	0.4962	0.5316	0.5861	0.6121
300	0.4890	0.5083	0.5699	0.5782
360	0.4682	0.4873	0.5333	0.5832

APPENDIX B

Experimental data from adsorption experiment

B.1 <u>Weight of catalyst used at different 4-chlorophenol</u> <u>concentration</u>

Weight of	4-chlorophenol concentration				
catalyst (g)	0.5 Mm	1.0 mM	2.0 mM		
TiO ₂	0.0355	0.0351	0.0346		
5%SiO ₂ TiO ₂	0.0333	0.0350	0.0348		
10%SiO ₂ TiO ₂	0.0341	0.0346	0.0347		
$20\% SiO_2 TiO_2$	0.0317	0.0312	0.0318		
30%SiO ₂ TiO ₂	0.0325	0.0330	0.0334		

B.2 The actual initial concentration of 4-chlorophenol from HPLC

4-chlorophenol	Actual 4-chlorophenol
concentration (mM)	Concentration (mM)
0.5	0.4697
1.0	0.9636
2.0	1.9306

Catalyst	C _S (mM)				
	$C_0 = 0.4697 \text{ mM}$	$C_0 = 0.9636 \text{ mM}$	$C_0 = 1.9306 \text{ mM}$		
TiO ₂	0.4675	0.9606	1.9264		
5%SiO ₂ -TiO ₂	0.4671	0.9592	1.9236		
10%SiO ₂ -TiO ₂	0.4636	0.9556	1.9208		
20%SiO ₂ -TiO ₂	0.4674	0.9608	1.9267		
30%SiO ₂ -TiO ₂	0.4682	0.9611	1.9271		

B.3 <u>The solution phase concentration of 4-chlorophenol at</u> <u>equilibrium adsorption (C_S)</u>

B.4 <u>The amount of 4-chlorophenol adsorbed on the catalyst at</u> <u>equilibrium (S_{ad})</u>

$$S_{ad} = (C_S - C_o) \times Volume of solution}$$

Weight of catalyst

Catalyst	S _{ad} (mmol/g)			
	$C_0 = 0.4697 \text{ mM}$	$C_0 = 0.9636 \text{ mM}$	$C_0 = 1.9306 \text{ mM}$	
TiO ₂	1.252 x 10 ⁻³	1.741 x 10 ⁻³	2.408 x 10 ⁻³	
5%SiO ₂ -TiO ₂	1.585 x 10 ⁻³	2.540 x 10 ⁻³	3.991 x 10 ⁻³	
10%SiO ₂ -TiO ₂	3.584 x 10 ⁻³	4.656 x 10 ⁻³	5.604 x 10 ⁻³	
$20\% SiO_2$ -Ti O_2	1.490 x 10 ⁻³	1.781 x 10 ⁻³	2.446 x 10 ⁻³	
30%SiO ₂ -TiO ₂	0.940 x 10 ⁻³	1.515 x 10 ⁻³	2.079 x 10 ⁻³	

~ 1					
Catalyst	$C_S/S_{ad}(g/l)$				
	$C_0 = 0.4697 \text{ mM}$	$C_0 = 0.9636 \text{ mM}$	$C_0 = 1.9306 \text{ mM}$		
TiO ₂	373.4156	551.7082	799.8367		
5%SiO ₂ -TiO ₂	294.7050	377.6719	481.9800		
10%SiO ₂ -TiO ₂	129.3475	205.2138	342.7864		
20%SiO ₂ -TiO ₂	313.7368	539.604	787.7314		
30%SiO ₂ -TiO ₂	497.9886	634.3333	926.8500		

B.5 $\underline{C_S/S_{ad}}$ at different %Si and 4-chlorophenol concentration

B.6 Calculation of adsorption constant from graph

Catalyst	Slope	Intercept	K _{ad}
	$(1/S_{ad}^{max})$	$(1/(K_{ad}S_{ad}^{max}))$	(slope/intercept)
TiO ₂	287.40	253.630	1.1330
5%SiO ₂ -TiO ₂	125.75	244.370	0.5146
10%SiO ₂ -TiO ₂	145.92	63.322	2.3044
20%SiO ₂ -TiO ₂	315.44	194.270	1.6237
30%SiO ₂ -TiO ₂	295.19	356.130	0.8289

Figure A.1 The relationship between C_S/S_{ad} and C_S of TiO₂

Figure A.2 The relationship between C_S/S_{ad} and C_S of 5%SiO₂-TiO₂

Figure A.3 The relationship between C_S/S_{ad} and C_S of 10%SiO₂-TiO₂

Figure A.4 The relationship between C_S/S_{ad} and C_S of 20%SiO₂-TiO₂

Figure A.5 The relationship between C_S/S_{ad} and C_S of 30%SiO₂-TiO₂

CURRICULUM VITAE

Name: Ms. Rungnuch Tharathonpisutthikul

Date of Birth: March 3th, 1977

Nationality: Thai

University Education:

1996-1999 Bachelor Degree of Engineering in Chemical Engineering, Kasetsart University, Bangkok, Thailand

