Chapter 2
Classical Uniform Distribution

In this chapter, we discuss briefly the theory of uniform distribution of sequences
in the classical case. We introduce the basic concepts of uniform distribution modulo
1 and uniform distribution modulo m and some of their applications. Most of these

results can be found in Kuipers and Niederreiter [8].

2.1 Uniform Distribution Modulo 1

This section covers basic definitions, the Weyl criterion and properties of uniform
distribution modulo 1.

For a real number X, let [x] denote the integral part of X, that is, the greatest

integer < Xand {x} = X—[X] the fractional part of X.

Definition 2.1.1. A sequence (rn)“=1ofreal numbers is uniformly distributed modulo

1 (abbreviated u.d.mod 1) if and only if for all subintervals [a, b) of [0,1) we have

vio N - N: e b}\=b~a-



Remark 2.1.2. (1) A definition equivalent to Definition 2.1.1 is the following: A
sequence (x,)ET1of real numbers isu.d.mod 1 if and only if for all subintervals

[0,¢) of [0,1) we have

N™ooN - N ' 7 e[°,c“ =

(2) Ifarealsequence (i,)“=Llisu.d.mod 1, then the sequence ({xn})ELLof fractional

parts is everywhere dense in 0,1).

(3) If a real sequence (Xn)™=lis u.d.mod 1, then {{£,} : G N} is infinite.

Example 2.1.3. The sequence (rn)“=1 = (f181ij§,§,f,2 , f,§,...) isu.d.mod 1.
To show this, let ¢ € (0,1]. In each block with denominator (, we want to find all
nonnegative integers P such that 0 < I < ¢, equivalently 0 < p < cq\ note that for a
fixed (, the number of such p’s is [eg] or [eg] + L. Now, let N be any positive integer.

Then, there is a positive integer such that -n~1m < N < gayjil. Thus,

en2- (c+2) +2=Eq=i(cg- 1) <Eg=iM <A{n<nN:rne [0,0)}
24 (+1) ~(2+1)
2
(-1 (rc-lre
Then
Tl 24 < limiaf JyJ\{n < N:rne [0.c)}
< Ii,{ln_s>léop-|{/-|{n <N :rn€ [0,0)}



Therefore,

N™ooN”~n - N WTnge

Hence, (rn)™=Llis u.d.mod 1.
The following theorem and corollary were proved by Hermann Weyl.
Theorem 2.1.4. The real sequence (zn)~Lx is u.d.mod 1 if and only if
V/Gé&[0,1),Jinr A I({E,}) = f(x)dx,
where, SR[0,1) denotes the space of Riemann integrable functions on [0,1).

Proof. See Theorem 1.1 and Corollary 1.1 of Chapter 1 in [8]. [

Corollary 2.1.5. The real sequence (xn)eL1 is u.d.mod 1 if and only if for every
complex-valued continuous function f onr with period 1 we have

J&IVY E/(*»> =/ ~ dx-

Proof. See corollary 1.2 of Chapter 1in [8]. [

The fundamental result in the theory of uniform distribution modulo 1is Hermann

W eyl’s uniform distribution criterion.

Theorem 2.1.6 (Weyl Criterion). The real sequence (in)“=11is u.d.mod 1
if and only if
% il Y evinXn —o for all integers h ~ o.

Proof. See Theorem 2.1 of Chapter 1 in [8]. U



Theorem 2.1.7. Let the sequence (xn)* 1 be u.d.mod L. Then
(i) the sequence (xn+ a)£11is u.d.mod 1, for every real constant a,
() if 11§ a sequence with the property
ﬂﬂ%an' yn) = a,
where a is a real constant, then (i/m)£li is u.d.mod 1

(in) (mXn)~ 1is u.d.mod Lfor every nonzero integer m.
Proof. See Lemma 1.1, Theorem 1.2 and Exercise 2.4 of Chapter 1in [8].

Example 2.1.8. The sequence ( o)“Liis u.d.mod Lif and only if & is an irrational

number. If Giis an irrational number, then

st AN
. lg2niha M

\It —cos 2TthNa

sj\ —cos 27rha
) V2

V2sin2nha

< Jsinfrho; 7"
for all integers h 770; hence Jj J2n=1e2"a —>0 as iV —» o since sin rha 170 for all
integers h 0. 1fa isarational number, say @ — | where aand bare relatively prime,
then {{ f} GN}={0, |,....,"-}, which is finite, and so (na)(f=l cannot be
u.d.mod 1 by (3) of Remark 2.1.2.



Example 2.1.9. The converse of Remark 2.1.2 (2) is not necessarily true. The
sequence (logn)*L1is not u.d.mod 1, but the sequence ({logn})EL 1is dense in [0,1).

Note that for each nonnegative integer h,

N 2*ih V 2nih

Jy2nih

L+ omh by the theory of Riemann integral.

Thus, MYIn=ie27rilog" does not tend to 0, and so the sequence (logn)EL1 is not
u.d.mod 1. However, we observe that the sequence ({logn})ELj is dense in [0,1). To
see this, let 0 < @ <b< 1 Since en(eb—ea) — oo as — , there is an integer
K such that eatk —eb+k > 1. Thus, there is an integer such that eatk < < eb+k.

Thatis a+ Kk <logn < b+ k. Hence, a < {logn} < h.

Next ,we introduce the Van der Corput’s Difference Theorem.

Lemma 2.1.10 (Van der Corput’s Fundamental Inequality). Let !,...,UN
be complex numbers, and H be an integer with 1 < H < N. Then

H2"un <H(N+H-)"2\un2+ 2(N+H-1) - h)ReE ur +h,

where Re z denotes the real part of z E ¢.

Proof. See Lemma 3.1 of Chapter 1in [8]. O



Theorem 2.1.11 (Van der Corput’s Difference Theorem). Let (xn) beagiven
sequence of real numbers. 1ffor every positive integer h the sequence (xn+h~ Xn)EL1 is
u.d.mod 1, then (xn) is u.d.mod 1.

Proof. See Theorem 3.1 of Chapter 1in [8]. [

This theorem yields an important sufficient condition for u.d.mod 1, but not a
necessary one, as is seen by considering the sequence (na)“=1with a irrational. One

of the many applications of Theorem 2.1.11 is to sequences of polynomial values.

Theorem 2.1.12. Letp{x) = amxm+ am-\xm~x+ ... + 0o, m > 1, be a polynomial
with real coefficients and let at least one of the coefficients ¢t withj > o be irrational.
Then the sequence (P(N))ELs is u.d.mod 1.

Proof. See Theorem 3.2 of Chapter 1in [8]. [

2.2 Applications

In this section, we present some results in the theory of power series which are deduced
from the fact that sequences (na)“Ll with irrational @ are u.d.mod 1. The next two

theorems are slight extensions of Theorem 1 and 2 of Newman [16].

Theorem 2.2.1. Leta and (3 be real numbers, and let g be a polynomial over ¢ of
positive degree. Define
G{x) = 229 ([na + (3])xn.

Then G(x) is a rational function if and only ifa is a rational number.
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Proof. The proof is based on the following auxiliary result: Let @ be an irrational
number, and let be a finite set of nonintegral real numbers. Then there are infinitely

many positive integers M such that
[{ma+P}+ ]—[} forall E (2.2.1)
and also infinitely many positive integers such that
{a+p}+t ]=1+[] forall E . (2.2.2)
Observe that (2.2.1) is equivalent to
0<{ma+P}+ {}<1 forall Es,
and that (2.2.2) is equivalent to
0<{a+P}+{}—1<1 forall E

These relations follow easily from the fact that the sequence { a+ Pys=1is u.d.mod
1 or in fact from the property that the sequence ({ a + PDfpi is everywhere dense
in [0.1).

Now we turn to the proof of the theorem. Let @ be irrational. |If G(X) were
rational, then polynomials A(X) and B(X), of degrees @ > 1 and b, respectively,
would exist such that G{x) —B{X)/A{X). Assume that

A{x) - xa. Clxa~l —ess—ca_iX —CQ

From A(x)G (x) = B(x) it follows, by equating corresponding coefficients of xn+a,

that

a
g([na+ P]) = A219{[na + p+ ra])Cr for > max{0,b—a+ 1}. (2.2.3)
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Since ¢ is a polynomial of degree p > 1, we have

g([ a+ 3+raj) [a+/3+ra]p
"o g(mat (@) = ™ [natplp

so that (2.2.3) implies

C\+ C2+ «+++ ca= 1. (224)

Moreover, (2.2.3) and (2.2.4) imply

A ((net+P+ra])- g([ a+ 0]))er=no. (2.2.5)
T—1
We have [net+ 3+ ra] = [{net+ 3}+ ra]+ a+ 3] and so
g([na + P +ra]) - g{[na+ 1) = g{k)([ f; +P) [{net+ P} + rct]A

k=1
Therefore, after multiplying both sides of this last equality by Cr and summing from

r= 1tor=a,forlarge one obtains using (2.2.5),

A net+ 2y +orajer+ Y, s K\J(\Z + % “na+™ +ratQ= - (2:27)
Forp = 1the last sum on the left of (2.2.6) is empty, and if P~ 2, we have

1_-K»gél(,)(([[naa++0?]).i{na+(3}+ ralk=0 for 2<k<p and 1<r<a

So we have
a

lim y_"i[{nct + 7} + rajer = 0. (2.2.7)
r_

The numbers ret in (2.2.7) are not integers. Thus, according to the auxiliary result

and (2.2.7) we can find integers M and such that the expressions

a a
yA[{mct + (3} + retjey = yA[ro:]er
r=1 r=1
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and
. + 0} + rajer —?_Zl(l + M o)cr
differ from 0 as little as we please, which contradicts (2.2.4). In this way, it is shown
that if @ is irrational, G(X) is not a rational function.
Now assume that @ is rational. Set @ — C/d, where ¢ and d are integers with

d > 0. Applying the division algorithm, we have = md+ rwith 0 < r < d—1, and

S0

Q+P

nas =gy MAENC oo ey
so that [a+ Pl = me+[~+/2]- Then
G()="2g([na + p])x

md+r

(me T [H +13) ) x

= g oWt tr )T

-1 .
p tk)(ll-l- ) £ mfexmd.
r=0 fe=0 m=0

Now
II*I*I ] (*é)

is rational, and so it is shown that G(X) is rational.

Remark 2.2.2. There is another result which is given by Meijer [10]. He proved that
ifa€R,kEZ+and g(X)isapolynomial over C, then the series

{[anl)xn

represents a rational function of x if and only if a:is a rational number.
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Theorem 2.2.3. Leta cr+ and /3 r. Let

F(x) = J 2 x[ta+®-
Then F(x) is a rational function if and only ifa is rational.

Proof. Since @ M+, there is a positive integer to such that tap (3> o for all positive

integers t > to- Thus
F(x) =" x [atp] + Y " x[ta+3]-

Now F(X) is rational if and only if J2tlto ® tat" is rational. Therefore, without loss
of generality, we may assume that ta + (3 > 0 for every positive integer t.
(=>) Suppose that a is irrational. Let X () be the number of solutions of — [ta+/3]
in positive integers t. Then F(X) — Lo X(n)xn.
case . Meztta+ P~ Z

Let be a nonnegative integer such that N > (3
Then for > N, X () is the number of integers t satisfying —B<ta< + 1—/

and since Vic ZHta+(3 z, X ()= _ p=£]5and therefore

Case 2. 3k cz+, ka + @= Iwhere IGZ+ {0}.

Then 3—1—ka. Thus, vfcz+\ {k},ta+ B—ta+ l—ka= (t— kla +1~ z.
This implies that K is the only positive integer such that ka + 3 Z.

Now, let M be a positive integer such that M > max{/3,ka + /?}.Then for

> M, X ()isthe number of integers t satisfying —(@<ta <n+ 1— 3 hence,

X () = [mtl~p]- p~], and therefore
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In any case
+ 1—P n—P
F(x)= 53 X ()Tl + 55 ( Xn for some K G Z,
Note that
+1-P n—"P
] 3 Xn
[
Now,
F(x) =
551()Xn+ - En p Kro_p K-P
X : - E -
- m 0 0 @
According to theorem 2.2.1, o[n(a) —f]®" is n°t a rational function, and hence

F(X) is not a rational function.
(4=) Suppose that @ is rational. Write @ = C/d with positive integers ¢ and d. Then,

using t=md+ r with 0 < r < d—1, we have
+ F(x) = 53 lo+h)

[me+re/d+:3
r=0 m=0

d-1
:5 £ CH{reld+/3]
=53 xjodg53 (XM
r=0o m=0

= ¥V o~ xpresd+ry L (120 -]

R [rdcH3]
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so that F(X) is rational.
Next, we give and prove another result.

Theorem 2.2.4. Leta, p be real numbers and f, g polynomials over C of positive

degrees. Define

If G(x) is a rational function, then a is a rational number.

Proof. Leta beirrational. If G{X) were rational, then polynomials A(X) and B(X), of
degrees @ > 1 and b, respectively, would exist such that G(X) = B{X)/A{X). Assume
that A(x) = xa—Cixa_l —... —ca iX —ca. Prom A{X)G(x) — B(x) it follows, by

equating corresponding coefficients of Xn+a where > a+ D, that

Since /, ¢ are polynomials of positive degrees ,

Moo tap) Tl
Hence

lim na+P+ ra|)_ Jm f([ a+p +ra])g([na +P])
e (j)(na + P} amof ([ o+ Pl)g{[na+p+ ra])

= 1 foreach I'—1,..., 4,

so that (2.2.8) implies

C\+ C2+ ... + ca= 1. (229)

204 M8
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Moreover, (2.2.8) and (2.2.9) implies
A0 @B+A+ra ) M0 (na+ /20 cr=0. (2.2.10)

Note that [na+P+ra] = [{na+ P}+ ra] + [na+ /3] By Taylor’s Theorem, for each
large integer , there is a real number C' between [na + /] and [na + p+ ra] such
that
0 (ma+m3+ra)=0 )(na+P))
(£)'jna +m .
c"r
1 “fire * R} + ralyt ) 2|( ) [{na + 7} + ra]2.
Therefore, after multiplying both sides of this last equality by (0 and summing from

r= 1to d,forlarge one obtains using (2.2.10),

0=y [{na + P} + racr + y UL P} + ra]2. (2.2.11)
= i 21 (£) ([na + )

Note that for each r= 1,...,d,

lim 7 )
() «™ + )

since o is between [ a+ /3 and [ a+ P+ra] (weseethat [a+P+ra)—[a+P] =

\ 1 .
X). is in the form where p(x) has degree < 4j + | —1

(fna+ 1)+ ra]) and h'|
(1)
and (x) has degree 4] + Lwhere j is the degree of  and |is degree of the numerator

polynomial of (*) . Now,

im U™ atpy+ralz=0 for r=12,..
$(f) ([na+ p])
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Thus, by (2.2.11) we have

lisyy ([{no+ 3}+ mlcr= 0. (2.2.12)
1

The numbers ra in (2.2.12) are not integers. Thus, according to (2.2.12) and the fact
that the sequence ( a+ lisu.d.mod 1, we can find integers M and such that

the expressions

a a a a
y 1[{ma+P}+ rajer = yl [ra]cT and y]l[{no;+ (3 + rajer = y1(1+ M )er
r= r= r= [=

differ from 0 as little as we please, which contradicts (2.2.9). In this way, it is shown

that if a is irrational, G(X) is not a rational function. I

2.3 The Multidimensional Case

In this section, we discuss the concept of uniform distribution modulo 1 in multidi-

mensional case. All of the following results can be found in [8] .

Definition 2.3.1. LetM be apositiveinteger. Let (Xn)A! = ((xi(n), X2(n),..., ( )" L1
be a sequence in JRm. The sequence (xn) L1 is said to he uniformly distributed
modulo 1 (abbreviated u.d.mod 1) in Rm if and only if V[aif>i) ¢ [0, )V[d2,h2) Q
b,1)...v[am,bm) ¢ [o, 1),

A m

im — i <N {Xi(n)} e [dibi) for alli— 1,2, m} = TT(i- di)

N —too TV .~

We also have the Weyl criterion in the multidimensional case.
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Theorem 2.3.2 (W eyl Criterion). A sequence (Xn)nLi = ((xi( ), X2( ),..., ( )))ELL
is u.d.mod 1 in rm if and only if for every (hi,..., hm) ¢ Zm, (hi,..., hm) A

ljm 1 X" e2«(fclxi(n)+...+femxm( ) _Q
0N

Proof. See Theorem 6.2 of Chapter 1 in [8]. [

Corollary 2.3.3. A sequence (@n)~=l = ((ccl( ), X2( ),... IXm( ))) =1 is u.d.mod
Lin rm if and only if for every (hi,...,hm) € ZM (hi,..., hm) 7N0,...,0), the
sequence of real number (hiXi(n) +... +hmxm(n))%L1is ud.mod 1

Proof. See Theorem 6.3 of Chapter 1 in [8].

Theorem 2.3.4. Let1,01,...,6m are linearly independent over the rational numbers,
then the sequence (( 9i, 02..., ném))*-i is u.d.mod 1inRm.

Proof. See Example 6.1 of Chapter 1in [8]. [

Theorem 2.3.5. Letp(x) = (pi(x),... ,Pm(x)), where allpi(x) are real polynomials,

and suppose p(x) has the property thatfor each (hi, ﬁz,. W, hm) €Zm(hi,..., hm)f
(0,..., 0), the polynomial hipi(x) + tizP2(x) +... + hmpm(x) has at least one noncon-
stant term with irrational coefficient. Then the sequence (p(x))*L1= ((pi(x),... Pm(x)))%Li
isu.dmod LinRm,

Proof. See Theorem 6.4 of Chapter 1in [8]. L]
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2.4 Uniform Distribution of Integers

In this section, we introduce the concept of uniform distribution of integers.

Definition 2.4.1. Let (a,)"=L be a sequence of rational integers and M a positive
integer> 2. The sequence (an)EL1 is said to be uniformly distributed modulo m

(u.d.mod m) if and only if for eachj = 0,1,2,..., m—1,

Nl -l <N can=j(mod m} =&

and (a,)EL1is said to be Uniformly distributed in z (u.d. in z) if (a,)EL1 s u.d.mod

m for every integer m > 2.

Example 2.4.2. Letm be apositive integer greater than 1. The sequence (in)* 1 =
0,1,...,m—=1,0,1,... 711—=1,... isu.d.mod m. To see this, Ietj €{0,1,..., m —1}.
Let N be sufficiently large integer. Write N = am+bwherea € z+and 0 < h<m—=L

Then

a+l1 N —=b+m
M N~=N-N"\V{n- N:Xn~j{modm)}- N *~ rnN

Therefore

1 - tm N-~hb
m N-*o mN

< Iy igy Jy-l{ < N :xn=j(mod m)y

< limsup taelf <N :xn=j(mod m)}i
ivV—*0 v

N —=b+m
“N™D  mN

1
m
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Then

N|i_rg0,\|-:|\{n <N :xn=j(mod m)} =g

Hence, (Xn)™-1is u.d. mod m,
Moreover, the sequence (yn)n:1= 0,1,2,3,4,... is u.d. in Z since for each positive

integer M > 1, XN = yn(mod m) for every positive integer

The following theorem is a Weyl Criterion for u.d.mod m. This Theorem was first
proved by Uchiyama [18].
Theorem 2.4.3. Let (an)“_1 be a sequence of integers. A necessary and suffiecient

condition that be u.d.mod m is that

dim N *2eihanm=0 forallh=12,...m - L

Proof. See Theorem 1.2 of Chapter 5 in [8].

Corollary 2.4.4. A necessary and sufficient condition that (an)~.1 be u.d.mod 7 is

that

1A

Alim svial = o JOr all rational numberst E z.

Proof. See Corollary 1.1 of Chapter 5 in [8].
Theorem 2.4.5. |fasequence of integers is u.d.mod m and if k\m and ,k> 2, then
the sequence is also u.d.mod k.

Proof. See Exercise 1.1 of Chapter 5 in [8]. Ul
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Theorem 2.4.6. Let (xn)%L1 be a sequence of real numbers such that the sequence
(xn/m) L1 is u.d.mod Lfor all integersm > 2. Then the sequence ([a;n])£L1 of integral
parts is u.d. in Z,

Proof. See Theorem 1.4 of Chapter 5 in [8].

Theorem 2.4.7. Let f(x) = ctkXk + + ...+ OiX+ cto be apolynomial over
R with at least one of the coefficients ai, i > 1, being irrational. Then the sequence

([/DES is v-o-in 2-

Proof. See Example 1.1 of Chapter 5 in [8].

We end this section by presenting the close relation between u.d.mod 1 and u.d.

of integers.

Theorem 2.4.8. The sequence (xn)*=L in R is u.d.mod L if and only if the sequence
(Imzn])* j is u.d.mod m for all integers m > 2.

Proof. See Theorem 1.6 of Chapter 5 in [8]. L]
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