Chapter 2

Classical Uniform Distribution

In this chapter, we discuss briefly the theory of uniform distribution of sequences in the classical case. We introduce the basic concepts of uniform distribution modulo 1 and uniform distribution modulo m and some of their applications. Most of these results can be found in Kuipers and Niederreiter [8].

2.1 Uniform Distribution Modulo 1

This section covers basic definitions, the Weyl criterion and properties of uniform distribution modulo 1.

For a real number x, let [x] denote the integral part of x, that is, the greatest integer $\leq x$ and $\{x\} = x - [x]$ the fractional part of x.

Definition 2.1.1. A sequence $(x_n)_{n=1}^{\infty}$ of real numbers is uniformly distributed modulo 1 (abbreviated u.d.mod 1) if and only if for all subintervals [a, b) of [0, 1) we have

$$\lim_{N \to \infty} \frac{1}{N} \cdot |\{n \le N : \{x_n\} \in [a, b)\}| = b - a.$$

Remark 2.1.2. (1) A definition equivalent to Definition 2.1.1 is the following: A sequence $(x_n)_{n=1}^{\infty}$ of real numbers is u.d.mod 1 if and only if for all subintervals [0,c) of [0,1) we have

$$\lim_{N \to \infty} \frac{1}{N} |\{n \le N : \{x_n\} \in [0, c)\}| = c.$$

- (2) If a real sequence $(x_n)_{n=1}^{\infty}$ is u.d.mod 1, then the sequence $(\{x_n\})_{n=1}^{\infty}$ of fractional parts is everywhere dense in [0,1).
- (3) If a real sequence $(x_n)_{n=1}^{\infty}$ is u.d.mod 1, then $\{\{x_n\}: n \in \mathbb{N}\}$ is infinite.

Example 2.1.3. The sequence $(r_n)_{n=1}^{\infty} = (\frac{0}{1}, \frac{0}{2}, \frac{1}{2}, \frac{0}{3}, \frac{1}{3}, \frac{2}{3}, \frac{0}{4}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \dots)$ is u.d.mod 1. To show this, let $c \in (0, 1]$. In each block with denominator q, we want to find all nonnegative integers p such that $0 \leq \frac{p}{q} < c$, equivalently $0 \leq p < cq$; note that for a fixed q, the number of such p's is [cq] or [cq] + 1. Now, let N be any positive integer. Then, there is a positive integer n such that $\frac{(n-1)n}{2} \leq N \leq \frac{n(n+1)}{2}$. Thus,

$$\frac{cn^2 - (c+2)n + 2}{n^2 + n} = \frac{\sum_{q=1}^{n-1} (cq-1)}{\frac{n(n+1)}{2}} \le \frac{\sum_{q=1}^{n-1} [cq]}{\frac{n(n+1)}{2}} \le \frac{|\{n \le N : r_n \in [0,c)\}|}{N}$$

$$\le \frac{\sum_{q=1}^{n} ([cq]+1)}{\frac{(n-1)n}{2}} \le \frac{\sum_{q=1}^{n} (cq+1)}{\frac{(n-1)n}{2}} = \frac{cn^2 + (c+2)n}{n^2 - n}.$$

Then

$$c = \lim_{n \to \infty} \frac{cn^2 - (c+2)n + 2}{n^2 + n} \le \liminf_{N \to \infty} \frac{1}{N} |\{n \le N : r_n \in [0, c)\}|$$

$$\le \limsup_{N \to \infty} \frac{1}{N} |\{n \le N : r_n \in [0, c)\}|$$

$$\le \lim_{n \to \infty} \frac{cn^2 + (c+2)n}{n^2 - n}$$

Therefore,

$$\lim_{N\to\infty}\frac{1}{N}|\{n\leq N:r_n\in[0,c)\}|=c.$$

Hence, $(r_n)_{n=1}^{\infty}$ is u.d.mod 1.

The following theorem and corollary were proved by Hermann Weyl.

Theorem 2.1.4. The real sequence $(x_n)_{n=1}^{\infty}$ is u.d.mod 1 if and only if

$$\forall f \in \Re[0,1), \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(\{x_n\}) = \int_{0}^{1} f(x) dx,$$

where, $\Re[0,1)$ denotes the space of Riemann integrable functions on [0,1).

Proof. See Theorem 1.1 and Corollary 1.1 of Chapter 1 in [8].

Corollary 2.1.5. The real sequence $(x_n)_{n=1}^{\infty}$ is u.d.mod 1 if and only if for every complex-valued continuous function f on \mathbb{R} with period 1 we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(x_n) = \int_0^1 f(x) dx.$$

Proof. See corollary 1.2 of Chapter 1 in [8].

The fundamental result in the theory of uniform distribution modulo 1 is Hermann Weyl's uniform distribution criterion.

Theorem 2.1.6 (Weyl Criterion). The real sequence $(x_n)_{n=1}^{\infty}$ is u.d.mod 1 if and only if

$$\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} e^{2\pi i h x_n} = 0 \text{ for all integers } h \neq 0.$$

Proof. See Theorem 2.1 of Chapter 1 in [8].

Theorem 2.1.7. Let the sequence $(x_n)_{n=1}^{\infty}$ be u.d.mod 1. Then

- (i) the sequence $(x_n + \alpha)_{n=1}^{\infty}$ is u.d.mod 1, for every real constant α ,
- (ii) if $(y_n)_{n=1}^{\infty}$ is a sequence with the property

$$\lim_{n \to \infty} (x_n - y_n) = \alpha,$$

where α is a real constant, then $(y_n)_{n=1}^{\infty}$ is u.d.mod 1,

(iii) $(mx_n)_{n=1}^{\infty}$ is u.d.mod 1 for every nonzero integer m.

Proof. See Lemma 1.1, Theorem 1.2 and Exercise 2.4 of Chapter 1 in [8].

Example 2.1.8. The sequence $(n\alpha)_{n=1}^{\infty}$ is u.d.mod 1 if and only if α is an irrational number. If α is an irrational number, then

$$\left| \sum_{n=1}^{N} e^{2\pi i h n \alpha} \right| = \frac{\left| e^{2\pi i h N \alpha} - 1 \right|}{\left| e^{2\pi i h \alpha} - 1 \right|}$$

$$= \frac{\sqrt{1 - \cos 2\pi h N \alpha}}{\sqrt{1 - \cos 2\pi h \alpha}}$$

$$\leq \frac{\sqrt{2}}{\sqrt{2 \sin^2 \pi h \alpha}}$$

$$\leq \frac{1}{\left| \sin \pi h \alpha \right|} \neq 0$$

for all integers $h \neq 0$; hence $\frac{1}{N} \sum_{n=1}^{N} e^{2\pi i h n \alpha} \to 0$ as $N \to \infty$ since $\sin \pi h \alpha \neq 0$ for all integers $h \neq 0$. If α is a rational number, say $\alpha = \frac{a}{b}$ where a and b are relatively prime, then $\{\{\frac{na}{b}\}: n \in \mathbb{N}\} = \{0, \frac{1}{b}, \frac{2}{b}, \dots, \frac{b-1}{b}\}$, which is finite, and so $(n\alpha)_{n=1}^{\infty}$ cannot be u.d.mod 1 by (3) of Remark 2.1.2.

Example 2.1.9. The converse of Remark 2.1.2 (2) is not necessarily true. The sequence $(\log n)_{n=1}^{\infty}$ is not u.d.mod 1, but the sequence $(\{\log n\})_{n=1}^{\infty}$ is dense in [0,1). Note that for each nonnegative integer h,

$$\begin{split} \frac{1}{N} \sum_{n=1}^{N} e^{2\pi i h \log n} &= \frac{1}{N} \sum_{n=1}^{N} (e^{\log n})^{2\pi i h} \\ &= \frac{1}{N} \sum_{n=1}^{N} n^{2\pi i h} \\ &= \frac{N^{2\pi i h}}{N} \sum_{n=1}^{N} \left(\frac{n}{N}\right)^{2\pi i h} \\ &\sim N^{2\pi i h} \int_{0}^{1} x^{2\pi i h} dx \\ &= \frac{N^{2\pi i h}}{1 + 2\pi i h} \quad , \text{ by the theory of Riemann integral.} \end{split}$$

Thus, $\frac{1}{N} \sum_{n=1}^{N} e^{2\pi i \log n}$ does not tend to 0, and so the sequence $(\log n)_{n=1}^{\infty}$ is not u.d.mod 1. However, we observe that the sequence $(\{\log n\})_{n=1}^{\infty}$ is dense in [0,1). To see this, let $0 \le a < b \le 1$. Since $e^n(e^b - e^a) \to \infty$ as $n \to \infty$, there is an integer k such that $e^{a+k} - e^{b+k} > 1$. Thus, there is an integer n such that $e^{a+k} < n < e^{b+k}$. That is $a+k < \log n < b+k$. Hence, $a \le \{\log n\} < b$.

Next, we introduce the Van der Corput's Difference Theorem.

Lemma 2.1.10 (Van der Corput's Fundamental Inequality). Let u_1, \ldots, u_N be complex numbers, and H be an integer with $1 \le H \le N$. Then

$$H^{2} \left| \sum_{n=1}^{N} u_{n} \right|^{2} \leq H(N+H-1) \sum_{n=1}^{N} |u_{n}|^{2} + 2(N+H-1) \sum_{n=1}^{H-1} (H-h) Re \sum_{n=1}^{N-h} u_{n} \overline{u}_{n+h},$$

where Re z denotes the real part of $z \in \mathbb{C}$.

Proof. See Lemma 3.1 of Chapter 1 in [8].

Theorem 2.1.11 (Van der Corput's Difference Theorem). Let (x_n) be a given sequence of real numbers. If for every positive integer h the sequence $(x_{n+h}-x_n)_{n=1}^{\infty}$ is $u.d.mod\ 1$, then (x_n) is $u.d.mod\ 1$.

Proof. See Theorem 3.1 of Chapter 1 in
$$[8]$$
.

This theorem yields an important sufficient condition for u.d.mod 1, but not a necessary one, as is seen by considering the sequence $(n\alpha)_{n=1}^{\infty}$ with α irrational. One of the many applications of Theorem 2.1.11 is to sequences of polynomial values.

Theorem 2.1.12. Let $p(x) = \alpha_m x^m + \alpha_{m-1} x^{m-1} + \ldots + \alpha_0$, $m \ge 1$, be a polynomial with real coefficients and let at least one of the coefficients α_j with j > 0 be irrational. Then the sequence $(p(n))_{n=1}^{\infty}$ is $u.d.mod\ 1$.

2.2 Applications

In this section, we present some results in the theory of power series which are deduced from the fact that sequences $(n\alpha)_{n=1}^{\infty}$ with irrational α are u.d.mod 1. The next two theorems are slight extensions of Theorem 1 and 2 of Newman [16].

Theorem 2.2.1. Let α and β be real numbers, and let g be a polynomial over \mathbb{C} of positive degree. Define

$$G(x) = \sum_{n=0}^{\infty} g([n\alpha + \beta])x^{n}.$$

Then G(x) is a rational function if and only if α is a rational number.

Proof. The proof is based on the following auxiliary result: Let α be an irrational number, and let S be a finite set of nonintegral real numbers. Then there are infinitely many positive integers m such that

$$[\{m\alpha + \beta\} + \eta] = [\eta] \quad \text{for all } \eta \in S$$
 (2.2.1)

and also infinitely many positive integers n such that

$$[\{n\alpha + \beta\} + \eta] = 1 + [\eta] \quad \text{for all } \eta \in S.$$
 (2.2.2)

Observe that (2.2.1) is equivalent to

$$0 \le \{m\alpha + \beta\} + \{\eta\} < 1$$
 for all $\eta \in S$,

and that (2.2.2) is equivalent to

$$0 \le \{n\alpha + \beta\} + \{\eta\} - 1 < 1 \quad \text{for all } \eta \in S.$$

These relations follow easily from the fact that the sequence $(n\alpha + \beta)_{n=1}^{\infty}$ is u.d.mod 1 or in fact from the property that the sequence $(\{n\alpha + \beta\})_{n=1}^{\infty}$ is everywhere dense in [0, 1).

Now we turn to the proof of the theorem. Let α be irrational. If G(x) were rational, then polynomials A(x) and B(x), of degrees $a \geq 1$ and b, respectively, would exist such that G(x) = B(x)/A(x). Assume that

$$A(x) = x^{a} - c_{1}x^{a-1} - \dots - c_{a-1}x - c_{a}$$

From A(x)G(x) = B(x) it follows, by equating corresponding coefficients of x^{n+a} , that

$$g([n\alpha + \beta]) = \sum_{r=1}^{a} g([n\alpha + \beta + r\alpha])c_r \quad \text{for } n \ge \max\{0, b - a + 1\}.$$
 (2.2.3)

Since g is a polynomial of degree $p \ge 1$, we have

$$\lim_{n\to\infty}\frac{g([n\alpha+\beta+r\alpha])}{g([n\alpha+\beta])}=\lim_{n\to\infty}\frac{[n\alpha+\beta+r\alpha]^p}{[n\alpha+\beta]^p}=1,$$

so that (2.2.3) implies

$$c_1 + c_2 + \dots + c_a = 1. (2.2.4)$$

Moreover, (2.2.3) and (2.2.4) imply

$$\sum_{r=1}^{a} (g([n\alpha + \beta + r\alpha]) - g([n\alpha + \beta]))c_r = 0.$$
 (2.2.5)

We have $[n\alpha + \beta + r\alpha] = [\{n\alpha + \beta\} + r\alpha] + [n\alpha + \beta]$, and so

$$g([n\alpha+\beta+r\alpha])-g([n\alpha+\beta])=\sum_{k=1}^{p}\frac{g^{(k)}([n\alpha+\beta])}{k!}[\{n\alpha+\beta\}+r\alpha]^{k}.$$

Therefore, after multiplying both sides of this last equality by c_r and summing from r=1 to r=a, for large n one obtains using (2.2.5),

$$\sum_{r=1}^{a} [\{n\alpha + \beta\} + r\alpha]c_r + \sum_{r=1}^{a} \sum_{k=2}^{p} \frac{g^{(k)}([n\alpha + \beta])}{k!g'([n\alpha + \beta])} [\{n\alpha + \beta\} + r\alpha]^k c_r = 0.$$
 (2.2.6)

For p=1 the last sum on the left of (2.2.6) is empty, and if $p \geqslant 2$, we have

$$\lim_{n \to \infty} \frac{g^{(k)}([n\alpha + \beta])}{g'([n\alpha + \beta])} [\{n\alpha + \beta\} + r\alpha]^k = 0 \quad \text{for } 2 \le k \le p \text{ and } 1 \le r \le a.$$

So we have

$$\lim_{n \to \infty} \sum_{r=1}^{a} [\{n\alpha + \beta\} + r\alpha] c_r = 0.$$
 (2.2.7)

The numbers $r\alpha$ in (2.2.7) are not integers. Thus, according to the auxiliary result and (2.2.7) we can find integers m and n such that the expressions

$$\sum_{r=1}^{a} [\{m\alpha + \beta\} + r\alpha]c_r = \sum_{r=1}^{a} [r\alpha]c_r$$

and

$$\sum_{r=1}^{a} [\{n\alpha + \beta\} + r\alpha]c_r = \sum_{r=1}^{a} (1 + [r\alpha])c_r$$

differ from 0 as little as we please, which contradicts (2.2.4). In this way, it is shown that if α is irrational, G(x) is not a rational function.

Now assume that α is rational. Set $\alpha = c/d$, where c and d are integers with d > 0. Applying the division algorithm, we have n = md + r with $0 \le r \le d - 1$, and so

$$n\alpha + \beta = \frac{nc}{d} + \beta = \frac{(md+r)c}{d} + \beta = mc + \frac{rc}{d} + \beta$$

so that $[n\alpha + \beta] = mc + [\frac{rc}{d} + \beta]$. Then

$$G(x) = \sum_{n=0}^{\infty} g([n\alpha + \beta])x^{n}$$

$$= \sum_{r=0}^{d-1} \sum_{m=0}^{\infty} g\left(mc + \left[\frac{rc}{d} + \beta\right]\right)x^{md+r}$$

$$= \sum_{r=0}^{d-1} \sum_{m=0}^{\infty} \sum_{k=0}^{p} \frac{g^{(k)}\left(\left[\frac{rc}{d} + \beta\right]\right)}{k!}(mc)^{k}x^{md+r}$$

$$= \sum_{r=0}^{d-1} \sum_{k=0}^{p} \frac{g^{(k)}\left(\left[\frac{rc}{d} + \beta\right]\right)}{k!}c^{k}x^{r} \sum_{m=0}^{\infty} m^{k}x^{md}.$$

Now

$$\sum_{m=0}^{\infty} m^k x^m = \left(x \frac{d}{dx}\right)^k (1-x)^{-1}$$

is rational, and so it is shown that G(x) is rational.

Remark 2.2.2. There is another result which is given by Meijer [10]. He proved that if $\alpha \in \mathbb{R}, k \in \mathbb{Z}^+$ and g(x) is a polynomial over \mathbb{C} , then the series

$$\sum_{n=0}^{\infty} g([\alpha n^k]) x^n$$

represents a rational function of x if and only if α is a rational number.

Theorem 2.2.3. Let $\alpha \in \mathbb{R}^+$ and $\beta \in \mathbb{R}$. Let

$$F(x) = \sum_{t=1}^{\infty} x^{[t\alpha + \beta]}.$$

Then F(x) is a rational function if and only if α is rational.

Proof. Since $\alpha \in \mathbb{R}^+$, there is a positive integer t_0 such that $t\alpha + \beta \geq 0$ for all positive integers $t \geq t_0$. Thus

$$F(x) = \sum_{t=1}^{t_0 - 1} x^{[t\alpha + \beta]} + \sum_{t=t_0}^{\infty} x^{[t\alpha + \beta]}.$$

Now F(x) is rational if and only if $\sum_{t=t_0}^{\infty} x^{[t\alpha+\beta]}$ is rational. Therefore, without loss of generality, we may assume that $t\alpha + \beta \geq 0$ for every positive integer t.

(\Rightarrow) Suppose that α is irrational. Let X(n) be the number of solutions of $n = [t\alpha + \beta]$ in positive integers t. Then $F(x) = \sum_{n=0}^{\infty} X(n)x^n$.

Case 1. $\forall t \in \mathbb{Z}^+, \ t\alpha + \beta \notin \mathbb{Z}$.

Let N be a nonnegative integer such that $N \geq \beta$.

Then for $n \geq N$, X(n) is the number of integers t satisfying $n - \beta \leq t\alpha < n + 1 - \beta$, and since $\forall t \in \mathbb{Z}^+$, $t\alpha + \beta \notin \mathbb{Z}$, $X(n) = \left[\frac{n+1-\beta}{\alpha}\right] - \left[\frac{n-\beta}{\alpha}\right]$, and therefore

$$F(x) = \sum_{n=0}^{N-1} X(n)x^n + \sum_{n=N}^{\infty} \left(\left[\frac{n+1-\beta}{\alpha} \right] - \left[\frac{n-\beta}{\alpha} \right] \right) x^n.$$

Case 2. $\exists k \in \mathbb{Z}^+, k\alpha + \beta = l \text{ where } l \in \mathbb{Z}^+ \cup \{0\}.$

Then $\beta = l - k\alpha$. Thus, $\forall t \in \mathbb{Z}^+ \setminus \{k\}$, $t\alpha + \beta = t\alpha + l - k\alpha = (t - k)\alpha + l \notin \mathbb{Z}$. This implies that k is the only positive integer such that $k\alpha + \beta \in \mathbb{Z}$.

Now, let M be a positive integer such that $M > \max\{\beta, k\alpha + \beta\}$. Then for $n \geq M$, X(n) is the number of integers t satisfying $n - \beta < t\alpha < n + 1 - \beta$; hence, $X(n) = \left[\frac{n+1-\beta}{\alpha}\right] - \left[\frac{n-\beta}{\alpha}\right]$, and therefore

$$F(x) = \sum_{n=0}^{M-1} X(n)x^n + \sum_{n=M}^{\infty} \left(\left[\frac{n+1-\beta}{\alpha} \right] - \left[\frac{n-\beta}{\alpha} \right] \right) x^n.$$

In any case

$$F(x) = \sum_{n=0}^{K-1} X(n) x^n + \sum_{n=K}^{\infty} \left(\left[\frac{n+1-\beta}{\alpha} \right] - \left[\frac{n-\beta}{\alpha} \right] \right) x^n \quad \text{for some } K \in \mathbb{Z}.$$

Note that

$$\sum_{n=K}^{\infty} \left(\left[\frac{n+1-\beta}{\alpha} \right] - \left[\frac{n-\beta}{\alpha} \right] \right) x^n = \left(\frac{1-x}{x} \right) \cdot \left\{ \sum_{n=K+1}^{\infty} \left[n \left(\frac{1}{\alpha} \right) - \frac{\beta}{\alpha} \right] x^n \right\} - \left[\frac{K-\beta}{\alpha} \right] x^K.$$

Now,

$$F(x) = \sum_{n=0}^{K-1} X(n) x^n + \left(\frac{1-x}{x}\right) \cdot \left\{ \sum_{n=0}^{\infty} \left[n \left(\frac{1}{\alpha}\right) - \frac{\beta}{\alpha} \right] x^n - \sum_{n=0}^{K} \left[\frac{n-\beta}{\alpha} \right] x^n \right\} - \left[\frac{K-\beta}{\alpha} \right] x^K.$$

According to theorem 2.2.1, $\sum_{n=0}^{\infty} [n(\frac{1}{\alpha}) - \frac{\beta}{\alpha}]x^n$ is not a rational function, and hence F(x) is not a rational function.

(\Leftarrow) Suppose that α is rational. Write $\alpha = c/d$ with positive integers c and d. Then, using t = md + r with $0 \le r \le d - 1$, we have

$$x^{[\beta]} + F(x) = \sum_{t=0}^{\infty} x^{[t\alpha+\beta]}$$

$$= \sum_{r=0}^{d-1} \sum_{m=0}^{\infty} x^{[mc+rc/d+\beta]}$$

$$= \sum_{r=0}^{d-1} \sum_{m=0}^{\infty} x^{mc+[rc/d+\beta]}$$

$$= \sum_{r=0}^{d-1} x^{[rc/d+\beta]} \cdot \sum_{m=0}^{\infty} (x^c)^m$$

$$= \sum_{r=0}^{d-1} x^{[rc/d+\beta]} \cdot (1 - x^c)^{-1}$$

$$= (1 - x^c)^{-1} \cdot \sum_{r=0}^{d-1} x^{[rc/d+\beta]},$$

so that F(x) is rational.

Next, we give and prove another result.

Theorem 2.2.4. Let α , β be real numbers and f, g polynomials over \mathbb{C} of positive degrees. Define

$$G(x) = \sum_{n=0}^{\infty} \left(\frac{f}{g}\right) ([n\alpha + \beta]) x^n \qquad (g([n\alpha + \beta]) \neq 0 \text{ for all } n \in \mathbb{Z}^+ \cup \{0\}).$$

If G(x) is a rational function, then α is a rational number.

Proof. Let α be irrational. If G(x) were rational, then polynomials A(x) and B(x), of degrees $a \geq 1$ and b, respectively, would exist such that G(x) = B(x)/A(x). Assume that $A(x) = x^a - c_1 x^{a-1} - \ldots - c_{a-1} x - c_a$. From A(x)G(x) = B(x) it follows, by equating corresponding coefficients of x^{n+a} where n > a + b, that

$$\left(\frac{f}{g}\right)([n\alpha+\beta]) = \sum_{r=1}^{a} \left(\frac{f}{g}\right)([n\alpha+\beta+r\alpha])c_r. \tag{2.2.8}$$

Since f, g are polynomials of positive degrees,

$$\lim_{n \to \infty} \frac{f([n\alpha + \beta + r\alpha])}{f([n\alpha + \beta])} = \lim_{n \to \infty} \frac{g([n\alpha + \beta])}{g([n\alpha + \beta + r\alpha])} = 1.$$

Hence

$$\lim_{n \to \infty} \frac{\binom{f}{g}([n\alpha + \beta + r\alpha])}{\binom{f}{g}([n\alpha + \beta])} = \lim_{n \to \infty} \frac{f([n\alpha + \beta + r\alpha])g([n\alpha + \beta])}{f([n\alpha + \beta])g([n\alpha + \beta + r\alpha])}$$
$$= 1 \quad \text{for each } r = 1, \dots, a,$$

so that (2.2.8) implies

$$c_1 + c_2 + \ldots + c_a = 1. (2.2.9)$$

Moreover, (2.2.8) and (2.2.9) implies

$$\sum_{r=1}^{a} \left(\left(\frac{f}{g} \right) \left(\left[n\alpha + \beta + r\alpha \right] \right) - \left(\frac{f}{g} \right) \left(\left[n\alpha + \beta \right] \right) \right) c_r = 0. \tag{2.2.10}$$

Note that $[n\alpha + \beta + r\alpha] = [\{n\alpha + \beta\} + r\alpha] + [n\alpha + \beta]$. By Taylor's Theorem, for each large integer n, there is a real number $c_{n,r}$ between $[n\alpha + \beta]$ and $[n\alpha + \beta + r\alpha]$ such that

$$\left(\frac{f}{g}\right)([n\alpha+\beta+r\alpha]) - \left(\frac{f}{g}\right)([n\alpha+\beta])$$

$$= \frac{\left(\frac{f}{g}\right)'([n\alpha+\beta])}{1!} \cdot [\{n\alpha+\beta\}+r\alpha] + \frac{\left(\frac{f}{g}\right)''(c_{n,r})}{2!} \cdot [\{n\alpha+\beta\}+r\alpha]^{2}.$$

Therefore, after multiplying both sides of this last equality by c_r and summing from r=1 to a, for large n one obtains using (2.2.10),

$$0 = \sum_{r=1}^{a} [\{n\alpha + \beta\} + r\alpha]c_r + \sum_{r=1}^{a} \frac{\left(\frac{f}{g}\right)''(c_{n,r})}{2!\left(\frac{f}{g}\right)'([n\alpha + \beta])} \cdot [\{n\alpha + \beta\} + r\alpha]^2 c_r. \quad (2.2.11)$$

Note that for each $r = 1, \ldots, a$,

$$\lim_{n \to \infty} \frac{\left(\frac{f}{g}\right)''(c_{n,r})}{\left(\frac{f}{g}\right)'([n\alpha + \beta])} = 0$$

since $c_{n,r}$ is between $[n\alpha + \beta]$ and $[n\alpha + \beta + r\alpha]$ (we see that $[n\alpha + \beta + r\alpha] - [n\alpha + \beta] = [\{n\alpha + \beta\} + r\alpha]$) and $\frac{\binom{f}{g}}{\binom{f}{g}}(x)$ is in the form $\frac{p(x)}{q(x)}$ where p(x) has degree $\leq 4j + l - 1$ and q(x) has degree 4j + l where j is the degree of q and q is degree of the numerator polynomial of $\left(\frac{f}{g}\right)'$. Now,

$$\lim_{n \to \infty} \frac{\left(\frac{f}{g}\right)''(c_{n,r})}{2!\left(\frac{f}{g}\right)'([n\alpha + \beta])} \cdot \left[\left\{n\alpha + \beta\right\} + r\alpha\right]^2 = 0 \quad \text{for} \quad r = 1, 2, \dots, a.$$

Thus, by (2.2.11) we have

$$\lim_{n \to \infty} \sum_{r=1}^{a} [\{n\alpha + \beta\} + r\alpha]c_r = 0.$$
 (2.2.12)

The numbers $r\alpha$ in (2.2.12) are not integers. Thus, according to (2.2.12) and the fact that the sequence $(n\alpha + \beta)_{n=1}^{\infty}$ is u.d.mod 1, we can find integers m and n such that the expressions

$$\sum_{r=1}^{a} [\{m\alpha + \beta\} + r\alpha]c_r = \sum_{r=1}^{a} [r\alpha]c_r \quad \text{and} \quad \sum_{r=1}^{a} [\{n\alpha + \beta\} + r\alpha]c_r = \sum_{r=1}^{a} (1 + [r\alpha])c_r$$

differ from 0 as little as we please, which contradicts (2.2.9). In this way, it is shown that if α is irrational, G(x) is not a rational function.

2.3 The Multidimensional Case

In this section, we discuss the concept of uniform distribution modulo 1 in multidimensional case. All of the following results can be found in [8].

Definition 2.3.1. Let m be a positive integer. Let $(\mathbf{x}_n)_{n=1}^{\infty} = ((x_1(n), x_2(n), \dots, x_m(n)))_{n=1}^{\infty}$ be a sequence in \mathbb{R}^m . The sequence $(\mathbf{x}_n)_{n=1}^{\infty}$ is said to be uniformly distributed modulo 1 (abbreviated u.d.mod 1) in \mathbb{R}^m if and only if $\forall [a_1, b_1) \subseteq [0, 1) \forall [a_2, b_2) \subseteq [0, 1) \dots \forall [a_m, b_m) \subseteq [0, 1)$,

$$\lim_{N \to \infty} \frac{1}{N} \cdot |\{n \le N : \{x_i(n)\} \in [a_i, b_i) \text{ for all } i = 1, 2, \dots, m\}| = \prod_{i=1}^m (b_i - a_i).$$

We also have the Weyl criterion in the multidimensional case.

Theorem 2.3.2 (Weyl Criterion). A sequence $(x_n)_{n=1}^{\infty} = ((x_1(n), x_2(n), \dots, x_m(n)))_{n=1}^{\infty}$ is u.d.mod 1 in \mathbb{R}^m if and only if for every $(h_1, \dots, h_m) \in \mathbb{Z}^m$, $(h_1, \dots, h_m) \neq (0, \dots, 0)$,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2\pi i (h_1 x_1(n) + \dots + h_m x_m(n))} = 0.$$

Proof. See Theorem 6.2 of Chapter 1 in [8].

Corollary 2.3.3. A sequence $(x_n)_{n=1}^{\infty} = ((x_1(n), x_2(n), \dots, x_m(n)))_{n=1}^{\infty}$ is u.d.mod1 in \mathbb{R}^m if and only if for every $(h_1, \dots, h_m) \in \mathbb{Z}^m$, $(h_1, \dots, h_m) \neq (0, \dots, 0)$, the sequence of real number $(h_1x_1(n) + \dots + h_mx_m(n))_{n=1}^{\infty}$ is u.d.mod 1.

Proof. See Theorem 6.3 of Chapter 1 in [8]. □

Theorem 2.3.4. Let $1, \theta_1, \ldots, \theta_m$ are linearly independent over the rational numbers, then the sequence $((n\theta_1, n\theta_2, \ldots, n\theta_m))_{m=1}^{\infty}$ is u.d.mod 1 in \mathbb{R}^m .

Proof. See Example 6.1 of Chapter 1 in [8].

Theorem 2.3.5. Let $p(x) = (p_1(x), \ldots, p_m(x))$, where all $p_i(x)$ are real polynomials, and suppose p(x) has the property that for each $(h_1, h_2, \ldots, h_m) \in \mathbb{Z}^m$, $(h_1, \ldots, h_m) \neq (0, \ldots, 0)$, the polynomial $h_1p_1(x) + h_2p_2(x) + \ldots + h_mp_m(x)$ has at least one nonconstant term with irrational coefficient. Then the sequence $(p(x))_{n=1}^{\infty} = ((p_1(x), \ldots, p_m(x)))_{n=1}^{\infty}$ is $u.d.mod\ 1$ in \mathbb{R}^m .

Proof. See Theorem 6.4 of Chapter 1 in [8].

2.4 Uniform Distribution of Integers

In this section, we introduce the concept of uniform distribution of integers.

Definition 2.4.1. Let $(a_n)_{n=1}^{\infty}$ be a sequence of rational integers and m a positive integer ≥ 2 . The sequence $(a_n)_{n=1}^{\infty}$ is said to be uniformly distributed modulo m (u.d.mod m) if and only if for each j = 0, 1, 2, ..., m-1,

$$\lim_{N \to \infty} \frac{1}{N} \cdot |\{n \le N : a_n \equiv j \pmod{m}\}| = \frac{1}{m} ,$$

and $(a_n)_{n=1}^{\infty}$ is said to be uniformly distributed in \mathbb{Z} (u.d. in \mathbb{Z}) if $(a_n)_{n=1}^{\infty}$ is u.d.mod m for every integer $m \geq 2$.

Example 2.4.2. Let m be a positive integer greater than 1. The sequence $(x_n)_{n=1}^{\infty} = 0, 1, \ldots, m-1, 0, 1, \ldots, m-1, \ldots$ is u.d.mod m. To see this, let $j \in \{0, 1, \ldots, m-1\}$. Let N be sufficiently large integer. Write N = am+b where $a \in \mathbb{Z}^+$ and $0 \le b \le m-1$. Then

$$\frac{N-b}{mN} = \frac{a}{N} \le \frac{1}{N} \cdot |\{n \le N : x_n \equiv j \pmod{m}\}| \le \frac{a+1}{N} = \frac{N-b+m}{mN}.$$

Therefore

.

$$\frac{1}{m} = \lim_{N \to \infty} \frac{N - b}{mN}$$

$$\leq \liminf_{N \to \infty} \frac{1}{N} \cdot |\{n \leq N : x_n \equiv j \pmod{m}\}|$$

$$\leq \limsup_{N \to \infty} \frac{1}{N} \cdot |\{n \leq N : x_n \equiv j \pmod{m}\}|$$

$$\leq \lim_{N \to \infty} \frac{N - b + m}{mN}$$

$$= \frac{1}{m}.$$

Then

$$\lim_{N\to\infty}\frac{1}{N}\cdot|\{n\leq N:x_n\equiv j(mod\ m)\}|=\frac{1}{m}\ .$$

Hence, $(x_n)_{n=1}^{\infty}$ is u.d. mod m.

Moreover, the sequence $(y_n)_{n=1}^{\infty} = 0, 1, 2, 3, 4, \dots$ is u.d. in \mathbb{Z} since for each positive integer m > 1, $x_n \equiv y_n \pmod{m}$ for every positive integer n.

The following theorem is a Weyl Criterion for u.d.mod m. This Theorem was first proved by Uchiyama [18].

Theorem 2.4.3. Let $(a_n)_{n=1}^{\infty}$ be a sequence of integers. A necessary and sufficient condition that $(a_n)_{n=1}^{\infty}$ be u.d.mod m is that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2\pi i h a_n/m} = 0 \quad \text{for all } h = 1, 2, \dots, m-1.$$

Proof. See Theorem 1.2 of Chapter 5 in [8].

Corollary 2.4.4. A necessary and sufficient condition that $(a_n)_{n=1}^{\infty}$ be u.d.mod \mathbb{Z} is that

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N e^{2\pi i t a_n}=0 \quad \text{for all rational numbers } t\in\mathbb{Z}.$$

Proof. See Corollary 1.1 of Chapter 5 in [8].

Theorem 2.4.5. If a sequence of integers is u.d.mod m and if k|m and $k \ge 2$, then the sequence is also u.d.mod k.

Proof. See Exercise 1.1 of Chapter 5 in [8].

Theorem 2.4.6. Let $(x_n)_{n=1}^{\infty}$ be a sequence of real numbers such that the sequence $(x_n/m)_{n=1}^{\infty}$ is u.d.mod 1 for all integers $m \geq 2$. Then the sequence $([x_n])_{n=1}^{\infty}$ of integral parts is u.d. in \mathbb{Z} .

Proof. See Theorem 1.4 of Chapter 5 in [8].

Theorem 2.4.7. Let $f(x) = \alpha_k x^k + \alpha_{k-1} x^{k-1} + \ldots + \alpha_1 x + \alpha_0$ be a polynomial over \mathbb{R} with at least one of the coefficients α_i , $i \geq 1$, being irrational. Then the sequence $([f(n)])_{n=1}^{\infty}$ is u.d. in \mathbb{Z} .

Proof. See Example 1.1 of Chapter 5 in [8].

We end this section by presenting the close relation between u.d.mod 1 and u.d. of integers.

Theorem 2.4.8. The sequence $(x_n)_{n=1}^{\infty}$ in \mathbb{R} is u.d.mod 1 if and only if the sequence $([mx_n])_{n=1}^{\infty}$ is u.d.mod m for all integers $m \geq 2$.

Proof. See Theorem 1.6 of Chapter 5 in [8]. \Box