CHAPTER II

LITERATURE REVIEWS

2.1 General characterization of plants in the Genus Croton ⁽¹¹⁾.

The genus Croton comprises 700 species of trees or shrubs. Their flowers are solitary or clustered in the rachis of a terminal raceme and the bracts are small. Male flowers contain 5-calyx, 5-petals. There are many stamens inserted on a hsiry receptacle. In female flowers, sepals are usually more ovate than the male, petals are smaller than the sepals or missing and disk annular of 4-6 glands are opposite the sepals. There are three ovaries with a solitary ovule in each cell. Seeds are smooth, albumen copious and broad cotyledons. Leaves are usually alternate with 2-glandular stipule at the base.

2.2 General characterization of *Croton oblongifolius* Roxb. ⁽¹²⁾

Croton oblongifolius Roxb. is a medium sized tree. Its calyx and ovary are clothed with minute orbicular silvery scales. Leaves are 5.6-12.0 by 13.0-24.0 cm in size. The shape of leaf blade is oblong-lanceolate. Flowers are pale yellowish green and solitary in the axial of minute bracts on long erect racemes. The male flowers are locates in the upper part of the raceme and the females in the lower part. Male flowers are slender and have of pedicels the length of 4.0 mm. The calyx is more than 6.0 mm long and the segments are ovate, obtuse and more than 2.5 mm long. Petals are 3.0 mm long, elliptic-lanceolate and woolly. The twelve stamens are inflected in the bud and the lengths of the filaments are 3.0 mm. Inflames flowers, the pedicels are short and stout. Its sepals are more acute than in the male with densely ciliated margins. The diameter of the fruit is less than 1.3 cm, slightly 3-lobed and clothed with small orbicular scales.

2.3 The chemical constituents of *Croton oblongifolius* Roxb.

From the literature surveys *C. oblongifolius* Roxb. has been widely studies and many diterpenoid compounds have been isolated and characterized as in the following examples.

The chemical constituents from the barks of *C.oblongifolius* Roxb. were first investigated by Rao, P.S, Sachdev, G.P., Seshadri, T.R and Singh, H.B.⁽¹³⁾ in 1968. They found a new diterpene alcohol, oblongifoliol.

In 1969, Aiyar, V.N, Rao, P.S, Sachdev, G.P. and Seshadri, R.R. ⁽¹⁴⁾ found deoxyoblongifoliol from the stem barks of *C. oblongifolius* Roxb.

Aiyar, V.N and Seshadfri, T.R. ⁽¹⁵⁾ in 1970 investigated of the structure of oblongifolic acid, the major diterpene acid component of the structure of the barks of *C. oblongifolius*. They proposed its structure to be isopimara-7(8),15-diene-19-oic acid.

In 1971 Aiyar, V.N. and Seshadri, T.R. identified the structure of oblongifoliol and deoxyoblongifoliol led to the assignment of their structures of *ent*-isopimara-7,15-diene-13 β , 19-diol and *ent*-isopimara-7,15-diene-3 β -ol,respectivel⁽¹⁶⁾

In the same year, Aiyar, V.N. and Seshadri, T.R. discovered three new minor components from the barks which were identified as *ent*-isopimara-7,15-diene, 13-hydroxy-*ent*-isopimara-7,15-diene and *ent*-isoppimara-7,15-diene-19-aldehyde ⁽¹⁷⁾. Moreover, acetyl aleuritolic acid and 36-acetoxy-olean-14(15)-ene-28-oic acid were found in the barks ⁽¹⁸⁾.

In 1972, Aiyar, V.N. and Seshadri, T.R. reported the discovery of two furanoid diterpenes from the barks, namely *ent*-15,16-epoxy-3,11,13(16), 14-clerodatetraen-19-oic acid or 11-dehydro(-)-hardwickiic acid and (-)-hardwickiic acid ⁽¹⁹⁾.

In addition, in the same year the other parts of *C.oblongifolius* Roxb., including the root-bark, wood and leaves were studied. The stem bark was found to give a poorer yield of diterpene compounds, while the leaves gave only waxy materials⁽²⁰⁾.

The wood and leaves of *C.oblongifolius* Roxb. were investigated by Roengsumran, S., Petsom, A., Pudhom, K., Surachedtapan, S., Archayindee, S., and Vilaivan, T., in 1998 led to the isolation of two new cembrane diterpenes namely crotocembraneic acid and neocrotocembraneic acid from barks and leaves ⁽²¹⁾.

In 1999, Roengsumran, S., Singtothong, p., Pudhom, K., Ngamrojnavanich, N., Petsom, A., and Chichantipyuth, C., discovered new cembrane diterpene compound, neocrotocembranal from *C. oblongifolius* Roxb.⁽²²⁾

In the same year, Roengsumran, S., Petsom, A., Sommit, D., and Vilaivan, T., reported the discovery of four new labdane compounds which were identified as labda-7,12(E),14-diene, labda-7,12(E),14-triene-17-al, labda-7,12(E),14-triene-17-ol and labda-7,12(E),14-triene-17-oic acid.⁽⁷⁾

Organic compounds	Location	Reference
Oblongifoliol	India	13
19-Deoxyoblongifoliol	India	14
Oblongifolic acid	India	15
Ent-isopimara-7,15-diene	India	16
3-Deoxyoblongifoliol	India	16
Ent-isopimara-7,15-diene-19-aldehyde	India	16
Acetyl aleuritolic acid	India	17
19-Hydroxy-ent-isopimara-7,15-diene	India	16
Labda-7,12(E),14-diene	Prachaubkhirikhan	7,11
Labda-7,12(E),14-triene-17-al	Prachaubkhirikhan	7,11
Labda-7,12(E),14-triene-17-ol	Prachaubkhirikhan	7,11
Labda-7,12(E),14-triene-17-oic acid	Prachaubkhirikhan	7,11
Crotocembraneic acid	Petchaboon	5,21,23
Neocrotocembraneic acid	Nakonratchasima	5,21,24
Crotohalimaneic acid	Kanchanaburi	5,22
Benzoyl crotohalimaneic acid	Nakonrratchasima	5,22
Crovatin	Kanchanaburi	5
Isokolavenol	Kanchanaburi	5
Nidorellol	Loei, Sakolnakorn	5
Poilaneic acid	Chaingmai	5
Hardwickiic acid	India, Chonburi,	5,8,17
11-Dehydrohardwickiic acid	Udonthani	17
Labda-7,13(Z)-diene-17,12-olide	India	8
Labda-7,13(Z)-diene-17,12-olide-5-ol	Udonthani	8
(-)-20-Benzyloxyhardwickiic acid	Udonthani	S

<u>Table 1</u> The chemical constituents of *Croton oblongifolius* Roxb.

Organic compounds	Location	Reference	
		÷	
(-)-Pimara-9(11),15-diene-19-oic acid	Uttaradit	9	
(-)-Pimara-9(11),15-diene-19-ol	Uttaradit	9	
(2E,7E,11E)-1-Isopropyl-1,4-dihydroxy-	Uttaradit	9	
4,8-dimethylcyclotetradeca-2,7,11-triene-			
12-carboxylic acid			
Methyl-15,16-epoxy-12-oxo-3,13(16),14-	Uttaradit	9	
clerodatriene-20,19-olide-17-oate			
3-Acetoxy-labda-8(17),12(E)-triene-2-ol,	Loei	10	
2-Acetoxy-labda-8(17),12(E)-triene-3-ol	Loei	10	
Labda-8(17),12(E)-triene-2,3-diol	Loei	10	

Isopimarane Group

R ₁	R_2	
CH_OH	ОН	:Oblongifoiol
CH ₃	ОН	:Deoxyoblongifoliol
СООН	Н	:Oblongifolic acid
ОН	Н	:ent-isopimara-7,15-diene-3,19-diol
CH ₃	Н	:ent-isopimara-7,15-diene

Labdane Group

R	
CH ₃	Labda-7,12(E),14-triene
СНО	Labda-7,12(E),14-triene-17-al
сн_он	Labda-7,12(E),14-triene-17-ol
соон	Labda-7,12(E),14-triene-17-oic-acid

Clerodane Group

11-dehydro--(-)-hardwickiic acid

(-)-hardwickiic acid

Cembrane Group

neocrotocembranal

neocrotocembraneic acid

crotocembraneic acid

Halimane Group

crotohalimaneic acid

benzoyl crotohalimaneic acid

2.4 **Biological activity of Diterpene compounds.**⁽²⁵⁾

Various biological activities have been reported for diterpenoids, principally from the members of the Ericaceae, Euphorbiaceae, Lamiaceae and Compositae. Each of the major diterpenoid classes from this last family will be discussed below in terms of their biological properties. (Table 2)

Activity compound	Source	Family
Antifeedant		
Ajugarin I-III	Ajuga remota	Limiaceae
Grindelanes	Chrysothamnus Nauseosus	Compositae
	Grindelia humilis	Compositae
	Haplopappus camporum	Compositae
Ciliaric acid	Helianthus annuus	Compositae
Kalmitoxins	Kalmia latifolia	Compositae
Grayanotoxins	Kalmia latifolia	Ericaceae
Kaurenoic acids	Helianthus annuus	Ericaceae
Trachylobanic acids	Helianthus annuus	Compositae
Kaurenoid	Wedelia asperrima	Compositae
Glycosides	Xanthium strumarium	Compositae
	Atractylis gummifera	Compositae
Teucjaponin A	Teucrium japonicum	Compositae
<u>Antifungal</u>		Lamiaceae
Casbene	Ricinus communis	
Pseudolaric acid	Pseudolarix kaempferi	Euphorbiaceae
Sclareol	Nicotiana glutinosa	Pinaceae
		Solanaceae

Table 2 Plant diterpene biological activity.

Activity compound	Source	Family	
<u>Fish poison</u>			
Eremone	Emerocarpus setigerus	Solanaceae	
Hautriwaic acid	Emerocarpus setigerus	Solanaceae	
Insecticidal			
Ajugarin IV	Ajuga remota	Lamiacaea	
Antibacterial			
Longikaurins	Rabdosia longituba	Lamiaceae	
Kaurenoic acid	Mikania monagasensis	Compositae	
Antibiotic			
Przewaquinone	Salvia przewalskii	Lamiaceae	
Sonderianol	Croton sonderrianus	Euphorbiaceae	
Antimicrobial			
7,8-dihydroxy-sandaracopimaradiene	Iboza riparia	Lamiaceae	
Antiviral			
Bacchotricuneatin	Baccharis tricuneata	Compositae	
<u>Plant growth inhibitor</u>			
Carboxyatractyloside	Xanthium strumarium	Compositae	
Sweetening agent			
Stevioside	Stevia nemoralis	Compositae	

2.5 Biological activity of diterpene compounds isolated from*C. oblongifolius* Roxb.

Diterpenoids isolated from *C. oblongifolius* had been investigated for many biological activities such as cytotoxicity, antimicrobial, antiplatelet aggregation, cAMP phosphodiesterase inhibition, antioxidant, antibacterial, and so forth. For instance, cembranoid compounds (crotocembraneic acid and neocrotocembraneic acid) exhibited cytotoxic activity against P 388 cell line and poilaneic acid exhibited cAMP phosphodiesterase inhibition activity ⁽⁵⁾. Clerodane and hardwickiic acid exhibited antimicrobial activity ⁽⁸⁾. Some labdane compounds ⁽⁶⁾ were active against tumor cell line and showed antiplatelet aggregation. Moreover, some pimarane compounds ⁽⁹⁾ showed cytotoxic activity against tumor cell line, as well.

2.6 Cytotoxic activity of some Diterpene compounds of *C. oblongifolius* Roxb.

Previous studies in cytotoxic activity of some diterpene compounds from the stem barks of C. oblongifolius against 6 tumor cell lines: L 929(fibroblast), Hep-G2 (hepatoma), SW 620 (colon), Chago(lung), KATO (gastric) and BT 474 (breast) have been summarized in Table 3.

Table 3 Cytotoxic activity against cancer cell lines of some diterpene compounds

Compound	% survival					
	L929	HepG2	Sw620	Chago	Kato	BT474
(-)-20-benzyloxyhardwickiic acid	100	74	58	100	65	82
Labda-7,12(E),14-triene-17-al	6	7	3	3	7	13
Labda-7,12(E),14-triene-17-oic acid	73	57	88	59	70	91
Labda-7,13(Z)-diene-17,12-olide-15-ol	100	61	73	72	47	75
Labda-7,12(E),14-triene-17-ol	64	7	3	82	6	11
Crotocembraneic acid	82	71	96	93	6	97
Neocrotocembraneic acid	46	37	96	97	90	5
Neocrotocembranal	82	71	8	12	10	45
Crotohalimaneic acid	64	7	3	82	6	11

from C. oblongifolius

2.7 Biosynthesis of diterpenoid compounds

Biosynthesis of diterpenoid compounds is shown in Scheme 1-3⁽²⁶⁾

Scheme 1 : Biosynthesis of (s)-3-hydroxy-3-methylglutaroyl coenzyme A

<u>Scheme 2</u>: Origin of the isopentenyl-pyrophosphate (IPP) and dimethyl allylpyrophosphate (DMAPP) units

The geranylgeranyl pyrophosphate is, then through cyclize to give many diterpene compounds such as labdane compounds, clerodane compounds, trachylobane compounds, and so forth.

2.7.1 Biosynthesis of Labdane compounds (27)

Labdane compound

Figure 3: Biosynthesis of Labdane compounds

2.7.2 Biosynthesis of Trachylobane diterpene (28,29)

Figure 4: Biosynthesis of Trachylobane compounds