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Chapter 2

Theoretical Background

This chapter is devoted to a review of some theoretical background for approach­
ing our problem: the physics of Anderson localization, Josephson tunneling ef­
fects, quantum vortex and its interaction.

2.1 Anderson Localization
Every levels of the electrons in a periodic potential in form an energy band: the 
electronic wave functions extend through out the system. When the periodicity 
is distorted the spatial extent of the wave functions is reduced in such a way 
that they are localized. This phenomenon is called Anderson localization (An­
derson, 1958). Anderson considered a three-dimensional point lattice occupied 
by “atoms”, each of which has just one single state En. If all En are equal, an 
energy band of width B  results. For the discussion of the states in a disorders
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Figure 2.1: Anderson model: Potential wells of different depths at the lattice sites 
of a three-dimensional point lattice.

lattice, he maintains the positions of the atoms in the point lattice, but takes the 
En to be statistically distributed over a range of width พ  (Fig. 2.1 ).

The Hamiltonian can then be written as

H  n c lIc ท T V m n Cm CTi (2-1)
ท m n

. where cjj is a creation operator, and cn is an annihilation operator in the 
Wannier representation for site ท. To simplify matters, in the second term only 
transitions between nearest neighbors are allowed and for them Vmn are asumed 
to take equal value V  for all pairs mn. Starting from an initial state in which an 
electron is located at a given lattice point, one can inquire about the probability 
of finding the electron at this point again as t —> ๐0 . Diffusion of the electron in 
the lattice can, of course, occur since transitions are made possible by the second 
term in the Hamiltonian. If the initial position belongs to a localized state, the
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diffusion is restricted to a finite volume. The probability of return for t —)■ oo 
is then nonzero. If, however, the electron can diffuse to infinity, the probability 
of return is zero. Anderson was able to show that the magnitude of the ratio 
W /B  decides between these two alternatives. In particular, for the state E = 0 
(mean value of the En distribution in the disordered lattice, middle of the band 
in the ordered lattice) the probability of return is zero if W /B  falls below a fixed 
value of the order of 5. The state is then delocalized (extended). For larger ratios 
W /B , i.e., when the width of the spread of energy levels significantly exceeds the 
band width B , the state E — 0 is localized.

This definition of localization does not allow US to distinguish in a real case 
between localized and extended states. It can, however, help US to understand the 
increasing localization of band states as the transition is made from an ordered 
to a disordered lattice.

We can follow this transition qualitatively, without having to go into the 
detailed calculations (Madelung, 1978). In solid, the periodicity of a lattice is the 
cause of the periodic potential, and the wave function which describes the system 
is the Bloch wave. The energy band is formed. To study the effect of defects on 
the lattice, it is instructive to consider a single defect in a periodic potential. We 
begin with the Schrôdinger equation of an electron in a periodic lattice,

^ ท(k,r) = 2m V2 + V  (r) T„(k,r) = £ 71(k)T„(k,r) ( 2 .2)

where V(r) is the periodic lattice potential and Tn(k, r) is the Bloch function.
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The inclusion of defect modifies eq.(2.2) to

[Ho + บ(r)] T = Ety. (2.3)

Here บ (r) is the additional potential introduced by the defect. For an impurity 
atom at a lattice position, for example, it is the potential of the impurity less 
than the potential of the lattice atom which has been substituted. บ (r) may, 
however, include the effect of a local lattice distortion caused by the impurity 
atom.

Since บ (r) can be either negative or positive, electrons can thus be 
bounded to the defect or repelled by it. We consequently anticipate that eq.(2.3) 
has solutions which are localized about the defect, and whose energy levels lie 
below or above the state of the energy band considered.

An analysis of eq.(2.3) for simple models indeed revealed this behavior 
(Madelung, 1978). We show one result in Fig. 2.2. The general feature is that 
the presence of the defect in an otherwise periodic potential leads to a split-off of 
one state from the original band. If บ (r) is positive, the uppermost state splits 
off; if บ (r) is negative the lowest splits off. In this case, there are only minor 
displacements of the states within the band. While the wave function in the band 
remains approximately a delocalized Bloch function, the one associated with the 
split-off state is localized. We shall not carry out the calculations which lead to 
Fig. 2.2.

From Fig. 2.2, we saw that a single imperfection leads to the split-off (and
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Figure 2.2: Energy band for a simple three-dimensional potential model (periodic 
potential with an isolated defect) as a function of the deviation บ of the defect 
potential from the potential from the potential at an undisturbed lattice site. 
Depending on the sign of บ, the state of highest or lowest energy splits out from 
the quasi-continuous band. The split-off state is spatially localized to the vicinity 
of the defect. The remaining delocalized band states are only displaced slightly in 
energy. This result justifies the retention of the band model and its extension with 
defect levels to describe crystals distorted by a small concentration of defects.
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simultaneous localization) of a state from the band edge. With increasing number 
of imperfections, the number of localized states outside the band increases. The 
defect levels combine into a band (impurity band) which can overlap with the 
band of the delocalized states if the defect concentration is sufficiently high. We 
can imagine that the same phenomenon occurs with increasing disorder of a 
lattice. The states at the edges of an energy band become localized first, and 
simultaneously shift into the energy gap. These band this requires tails with 
localized occur states at its top and bottom edges. Fig. 2.3 shows the result of the 
calculation by Economou and Cohen (Economou, 1970). With growing disorder, 
the limits Ec and EC! approach one another from both sides and eventually meet 
at the middle of the band. When they meet, all band states are localized. This 
occurs just when the ratio พ / B  is fulfilled.

The electronic wave function in a random potential may be profoundly 
altered if the randomness is sufficiently strong. The traditional view had been 
that the scattering by the random potential causes the Block waves to lose phase 
coherence on the length scale of the mean free path l. Nevertheless, the wave 
function remains extended throughout the sample. Anderson pointed out that if 
the disorder is very strong, the wave function may become localized, in that the 
envelope of the wave function decays exponentially from some point in space, i.e.,

|T(r)| ~ e x p ( | r - r 0|/O  (2.4)

and £ is the localization length. This is illustrated in Fig. 2.4. This is expected if
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Figure 2.3: Density of states (solid curves) and distribution of the extended states 
(dashed curves) for an energy band of an ordered and a disordered lattice. E B-  
band edge; Ec, iv -lim its between localized and extended states.
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Figure 2.4: Typical wave function of (a) extended state with mean free path l; 
(b) localized state with localization length £.

the disorder is sufficiently strong or in energy regions where the density of states 
is sufficiently small. The energy regions with small densities of states are typically 
associated with the tails of quantum mechanically allowed energy bands. For weak 
disorder or energy regions with sufficient density of states, the wave functions will 
extend throughout the whole system with their phases and amplitudes varying 
randomly in space. Physically the disorder can be imagined to be commented 
with the presence of impurities (Kramer, 1993), vacancies and dislocations in 
an otherwise ideal crystal lattice. Another possibility is to distribute atoms or 
molecules at more or less random positions. Strong disorder can then be achieved 
by using a large concentration of impurities, for instance, independent of the 
strength of the individual impurities. A complete disordered assembly of atoms 
will be the one in which the atoms are sitting on sites that are chosen completely, 
independently and randomly.

The existence of the localized state is understood if we go to the limit
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of very strong disorder. Then a zeroth-order description of the eigenstate would 
be a bound state or a localized orbital bound by deep fluctuation in the ran­
dom potential. We could then consider the admixture between different orbital 
as a perturbation. The main point is that such admixtures will not produce an 
extended state composed of linear combinations of infinitely many localized or­
bital. The reason is that the orbitals that are nearby in space, so that the wave 
functions overlap significantly, are in general very different in energy, so that the 
admixture is small because of the large energy denominator. On the other hand, 
states that are nearly degenerate are in general very far apart in space, so that 
the overlap is exponentially small. Thus, in the strongly disordered limit, the 
wave function will be exponentially localized.

Now that we understand the two limits of weak and strong disorder, the 
interesting question is what happens for intermediate disorder. Instead of varying 
the amount of disorder, we can also consider varying the energy of the eigenstates. 
We expect the states deep in the band tails to be localized, since these are states 
that are formed from localized orbital bound in deep potential fluctuations. The 
states in the center of the band have the best chance of remaining extended for 
a moderately disordered system. Thus, as a function of energy, the states must 
change their character from being localized to being extended. The critical energy 
at which this change occurs is called the mobility edge. Therefore, if the Fermi 
energy lies in a region of localized states, the conductivity at zero temperature 
would vanish, while the extended states give rise to a finite zero-temperature
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Figure 2.5: Schematic illustration of the mobility edge ECJ which separate local­
ized and extended states. The two possibilities of a continuous or discontinuous 
transition with am171 are shown.

conductivity. The mobility edge marks the transition between a metal and an 
insulator. This is illustrated in Fig. 2.5.

Particles that occupy exponentially localized states are restricted to finite 
regions of space. They cannot contribute to transport at the absolute zero of 
temperature, T =  0K , and therefore the coupling to other degrees of freedom, 
such as phonons and particle-particle interactions, has become negligible. On the 
other hand, particles in extended states can escape to infinity and contribute to 
transport. As a consequence, if there are only localized states near the Fermi 
energy the system will be an insulator, in the sense that, at T = 0 K, the DC 
conductivity (the zero frequency limit of the linear conductivity) vanishes. On 
the other hand, when the Fermi level lies in a region of extended states (T = 0
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K). The DC conductivity will be finite and the system will be metallic. The 
localization of the quantum mechanical wave functions as a consequence of the 
presence of disorder is one of the fundamental ingredients for the understanding of 
the existence of insulators and metals, and, in particular, the transition between 
the insulating and the metallic states of matter.

2.2 The Josephson Tunneling Effect
When two superconductors are separated by a thin layer of insulating material, 
electron pairs will tunnel through the insulator from one superconductor to the 
other. Josephson (Josephson, 1962) proposed that there should be a contribution 
to be current through an insulating barrier between two superconductors which 
would behave like direct tunneling of condensed pairs from one condensed gas of 
bound pairs at the Fermi surface to the other. The Hamiltonian for the problem 
of Josephson Effect is (Anderson, 1964)

H  =  H  1+ H 2  +  £  T k q  ( c ^ C g t + c i ,4.c_fc 1 )  + H . c .  + ... (2.5)

where H i  and H 2 are corresponding Hamiltonians of the two superconductors on 
both sides of the barrier; T k q  is the exponentially small tunneling matrix element 
from state k on one side to state q on the other. Eq.(2.5) is a standard form for 
many kinds of tunneling problems.

It is generally assumed, either because of the microcanonical assumption 
that the number of electrons is absolutely fixed, or because the system is in a
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mixed state as a result of contact with an electron reservoir undergoing fluctu­
ations, that the total phase of the sample as a whole is meaningless. It can be 
shown that the state of fixed number of Cooper pairs N  is an average over all 
phase values. In fact, the total number N  of Cooper pairs and the phase 4> are 
conjugate variables obeying an uncertainty relation

ANA(j) > 27r. (2.6)

It is, on the other hand, not necessarily meaningless to discuss the relative 
phases of two blocks of superconductor which are connected by an insulating 
barrier sufficiently thin for tunneling to occur. Clearly, again, the total phase of 
the assembly as a whole is not physical, but the relative phases can be meaningful 
when we observe that electrons can pass back and forth between the two through 
the barrier, leading to the possibility of coherence between states in which the 
total number of electrons is differently partitioned between the two sides: just as 
the phase coherence within the single block means that the number of electrons is 
not fixed locally and, for instance, there is coherence between the state with N/2  
electrons in one half of the block and N/2  in the other, and that with (N/2) +  2 
on one side and (N/2) — 2 on the other.

It thus may be meaningful to calculate the properties of the system as­
suming a given phase relationship. If we find that the energy is indeed a function 
of the relative phase, we must presume that the phase may adjust itself in such a 
way as to minimize the energy. If there are the possibility of quantum-mechanical
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zero-point fluctuations or thermal fluctuations, as well as any external stresses, 
we can apply them to break up the coherence.

Now we simply write down the standard expression for the second-order 
energy perturbation using in eq.(2.5). We are also interested in the case in which 
the energy gaps on both sides differ in magnitude. In terms of the coherence 
factors uk, vk and Vq by which the Bogolyubov quasi-particles are defined,

A E2 =  - 2 E  (1 - f t -  fq). (2.7)

Here we have allowed the energy gaps Afc and Aq to have arbitrary complex 
values, given by

2UkV*k =
k l 2 -  k l 2 = 4 r ,

2u V* = —9 g Eg
Un

E = k 2 + A2

( 2.8)

E and e have the usual significance, and fk and fq are the Fermi distribution 
functions of Ek and Eq respectively. Here we have thrown away the terms with 
energy denominators ±(Ek -  Eq) because they are not important except near Tc. 

Let us rewrite eq.(2.7) using the relationships eq.(2.8)

A E2 ^  l k , |2(l -  f k -  fq)
k , q

EkEq + Re A kA*q\
EkEq J (2.9)

This demonstrates explicitly the phase-dependent term. It will be interesting to 
calculate this term explicitly at the absolute zero. Let us assume Afc and Aq
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constant, namely equal to

A k = Ai exp(z</»i), Aq =  A2 exp(i(j)2) ; (2.10)

where A i and A2 are real. Introducing the two densities of states of one spin in 
energy, Ni and N2, we obtain

It will lead to negligible error if we let the upper limits of the integrals to approach 
tend infinity. Then the integral is a complete elliptic integral:

From the energy expression E2 we can easily deduce the Josephson current as 
follows. We first observe that eq.(2.11) is clearly not gauge invariant because 
it depends on the phase difference of the wave functions on the two sides. A 
gauge transformation which changes the phase can be performed, but only at 
cost of changing the vector potential A. We can deduce, assuming-as by now 
is permissible-that the BCS theory gives gauge-invariant results, that had we 
calculated the energy in the presence of a vector potential A  we should have 
obtained

A E 2 =  — Ari N2A \ A2(|T/Cg|2)aj,e cos(0i — (f)2)

-  - N ,N 2(\T2\) cos(^  -  h )  ■ (2. 12)

18



Here we define AE  as the result of the integration in eq.(2.11), i.e., the coefficient 
of cos(<pi — (f>2) in eq.(2.12) or the corresponding number at finite T. We use 2e 
in the A integration, of course, because A depends on the mean value of Ip*Ip*, 
and its phase therefore transforms with the doubled charge.

The current may be defined in term of the derivative of Hamiltonian with 
respect to the vector potential:

j  =  c A .  (2 , 4)

The dependence of the energy on the vector potential A implies immediately the 
existence of a certain density of supercurrent flow such that

(J> =  c !พ ? '  (215)

In order to get mass flow per unit volume = current per unit area, we must 
note that AE  in eq.(2.13) is a surface energy, and should be divided by พ, the 
thickness of the barrier, to give volume energy. We then get

( J )  =  2A^ e s in ( # i  -<t>2 -  Y c  l ^ M  ( 2 .16 )

Presuming that A is in the direction perpendicular to the surfaces. This then 
gives us the current (again at absolute zero):

J  = Ji sin(S<p) (2.17)

where

J i  =
2eAE  47T2e Ar , 7. ._ 1.2  A iA 2—A—  ^  N ^ i i T ) 2 i  . ท ท w  A! + A2 (2.18)
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2.3 Quantum Vortex
In Type II superconductors it is observed that the magnetic flux is completely 
excluded only for the external field D < J3C1. Above the lower-critical field, 
Bc 1, magnetic flux penetrates in the form of the flux tubes, discrete flux quanta, 
or vortices (Poole et ฟ., 1995). We have seen that an applied magnetic field 
Bapp penetrates into a superconductor in the mixed-state, Bc 1 < Bapp < Bc2. 
Penetration occurs in the form of tubes, called vortices (see Fig. 2.6), which serve 
to confine the flux. The strongest field is in the core which has a radius £. The 
core is surrounded by a region of larger radius A within which magnetic flux 
and screening currents flowing around the core are present together, as shown in 
Fig. 2.6.

As the applied magnetic field increases, the density of vortices increases 
and they begin to overlap, making the vortex-vortex nearest-neighbor distance 
less than the penetration depth. The high-density case can be treated by assuming 
that the magnetic field at any point is a superposition of the fields from all of 
the overlapping vortices. At high density of vortices, the magnetic field between 
vortices 1Bin  becomes very large and the variation of the field in the space between 
the cores becomes very small, as indicated in Fig. 2.7.

Since vortices is a flux lines through the superconductor, there are inter­
action potential between them. When two lines are separated by a distance r,
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Figure 2.6: Sketch of shielding currents circulation around a vortex core. We 
can prove by using the Ginzberg-Landau theory that, the magnetic flux which 
penetrates into a superconductor in the mixed-state will be quantized in the unit 
of fluxoid $ 0, where $0 is the quantum of flux and equal to Ye-

21



A A A A A A ® เท

High corwerttrâtëon

A A A A /l  8„
Metfftfm concentration

tsolatiKi พ»tax

Figure 2.7: Sketch showing how the magnetic field 
increases as the concentration of vortices increases
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there is a repulsive interaction potential V(r) oc K 0(r/X ), where K 0(r /A) is a 
Bessel function and A is the London penetration depth. In general, the lattice 
spacing of the Josephson junction arrays fabricated in the laboratory is small in 
the order of micrometers. We therefore are interested in the limit of small r/A in 
which case the Bessel function K 0(r/X) ~  — ln(r/A). This motivates US to take 
V(r) oc ln(r/A) when we consider the problem of vortex transport in Chapter 5.
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