
Chapter 4

Simulation of 
Superconductor-Insulator 
Transition in Two-Dimensional 
Disordered Josephson Junction  
Arrays

In this chapter we will discuss the disorder effect on the Josephson junction arrays. 
For a disordered system, it is of necessity to perform a numerical calculation.

A model that we use is the 2D X Y  model, neglecting the charging energy 
effect. We check our program with the X Y  model with the clean system studied
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numerically by Gawiec and Grempel (Gawiec and Grempel, 1991). In Section 
4.2 we describe the procedure of finding the quasiground state and how to get 
the order parameter which signifies the phase transition, as we tune the impurity 
concentration to a certain critical value.

4.1 Limit of N eglecting Charging Effect
Since the charging energy associated with each grain is inversely proportional to 
the grain size, when the grain size of the superconductor is large, the charging 
energy is so small that it is enough to take into account only the Josephson 
coupling energy term in our Hamiltonian, that is,

H  = - ] £ ( E j ) i j C o s ^ i  -  <j>j) (4.1)
( บ ่ ' )

where (Ej)ij is the Josephson coupling energy between site i and site j , 4>i is 
the phase associated with each grain size, J 2 ( i j )  denotes the sum over nearest 
neighbors ij, and (E j ) i j  take a random value for any pair ij. The disorder in our 
system comes from the randomness of ( E j ) i j .  Eq.(4.1) can be mapped into the 
spin-glass X Y  model if we think of <j>i as the angle between the planar spin Sj,
I Si I =  1, at the x-axis, so that

H  =  - £ j ÿ  ร i -Sj  (4.2)
(m >

where for simplicity we have let (Ej)ij equal to Jij. As we mentioned in the 
Chapter 2, the presence of disorder can be interpreted as the existence the impu-
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rity in the lattice. For a finite concentration X  of impurities, we use the X  value 
to indicate the probability associated with the value of J i j  by

J j
J  with 
— J  with

probability
probability

1 — X ,

X .

4.2 M odel Approach

(4.3)

We want to find the configuration which give ground states energy. The configu
rations that minimize the energy (4.2) obey the equations

s ‘ = |H)| (4'4)
H ,  = Y . Jij ร1. (4.5)j

These equations express that, in equilibrium, each spin must lie in the direction 
of the internal magnetic field at its site. To solve eq.(4.4) and eq.(4.5), we start 
from some initial random configurations and sequentially rotates the spins into 
the direction of their local field. Since, as a result of each move, the local fields 
themselves change, the procedure is repeated a large number of times until the 
value of H  converges.

From the fact that eq.(4.4) and eq.(4.5) are necessary but not sufficient 
conditions for a minimum energy configuration the iterative method described 
above may not be an efficient way of locating ground states. That method can 
only take US from an initial configuration to a stationary one along a path com
posed of a sequence of straight segments along each of which the orientation of
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one spin varies while the rest are held fixed. This path is far from being the 
optimal one for our problem.

We illustrate the procedure with data from a 20 X 20 system with X  =  0.2. 
Fig. 4.1 shows the plot of energy versus magnetization. It is found that by starting 
from 100 different random initial conditions, each of them evolves into a different 
minimum, thereby exhibiting Fig. 4.1 exhibits the existence of sets of states that 
lie very close in energy but have widely different magnetizations. This reflects 
the fact that important morphological differences may exist between states that 
are essentially degenerate. It is clear that, to appropiately describe the T  =  0 
properties of the model, we need to average physical quantities over those sets of 
quasidegenerate states whose energies lie near the (unknown) absolute minimum. 
However, as illustrated in Fig. 4.1, the energies of most of the configurations that 
one can reach by random generation lie far above the ground state and, to have 
enough low-energy data, one would need to generate huge numbers of them.

Gawiece and Grempel (Gawiece and Grempel, 1991) have found a more 
efficient way to reach the low-energy part of the spectum based on the morpho
logical properties of the stationary states. Fig. 4.2 shows the configuration that 
corresponds to the lowest points in Fig. 4.1 at E = —1.5747J.

When we use the spin-glass X Y  model to deal with the magnetic ma
terial, thus the structure is characterized by the existence of ferromagnetically 
ordered domains in regions that are either relatively free of impurities or where 
impurities are isolated, surrounded by other regions where the density of frus-
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Figure 4.1: The energies of 100 stationary states as a function of their magnetiza
tion. These states were obtained by starting the minimization of the energy from 
50 different random initial conditions. Data for a 20 X 20 system with X  = 0.2.
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Figure 4.2: Spin configuration for the state of lowest energy in Fig. 4.1.
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tated plaquettes is high. We can deform this configuration, denoted henceforth 
as the parent configuation, by rotating independently but rigidly the domains 
and giving arbitrary angles to the spins that belong to the boundaries between 
domains or, more generally, to a highly frustrated environment. If this configura
tion is used as the starting point of a new series of minimizations we may expect 
to generate states with energies lower than that of the parent state. The reason 
is that, by preparing the new initial state in this manner, the environment of 
those spins that were already in a high local field stays unchanged (except for a 
global rotation) whereas the spins that were in a weak local field have a chance 
to increase it.

We implemented this idea in practice by using the value of the internal 
field H  acting on a spin as a criterion to decide whether and by how much the spin 
should be rotated. We first choose a value of local field HL and set a threshold 
H*. We then reinitialize the spins of the parent configurations, assign new but 
arbitrary angles to those spins whose local field H i is less than a threshold H* 
and impose small random deviations with respect to their previous equilibrium 
configuration to all the others. Then we let the system find a minimum, starting 
from this new initial condition. The procedure is repeated for different values of 
H*, each of which leads to a new minimum. Fig. 4.3 shows the energies of the 
sequence of stationary states thus obtained as a function of H*. Each point in 
the figure represents the energy of the stationary state reached by minimization 
of energy in which the starting configuration is derived from that of Fig. 4.2 by
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randomly initializing all the spins whose molecular field is less than H * .
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Figure 4.3: Energy as a function of threshold field H*.

Notice that, as expected, most of the new states have an energy lower than 
that of the parent state. The spin distribution of the state at E = —1.5879 J, the 
lowest of the series, is shown in Fig. 4.4.

Comparison between Fig. 4.2 and Fig. 4.4 shows that the domain struc
tures of the parent and of the daughter states are basically the same but that the 
two configurations differ by large-scale collective rotations of the spins in the do
mains. It would have been extremely hard to generate one of these states starting
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Figure 4.4: Spin configuration for the state of lowest energy in Fig. 4.3.
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from the other algorithm.
To find states with even lower energy, we may use this configuration as a 

parent and generate a new set of minima by repeating the steps just described, 
and so on. This generates an arborescent structure that stops when we reach 
the point where every new state produced has an energy higher than that of its 
parent. At this point we estimate that we have reached the ground state.

To take degeneracy into account, we compute the observable quantities as 
appropriate statistical averages over sets of states that lie near the ground state. 
The latter has been found by going backward and collecting the information about 
all the states in the hierarchy whose energy. In our work we get the ground states 
by choosing the states which have the energy within a band of width AE  «  10-5 
J. This width corresponds to about ten times our uncertainty in the energies per 
spin.

We have applied the method in the aforementioned to study several sys
tems corresponding to a wide range of concentrations, X.  In the following we 
describe in details the results obtained for the 20 X 20 size. All along we have 
used periodic boundary conditions. The points in the curves represent averages 
over the sets of quasidegenerate states and five random configurations of bonds. 
We present the results for the order parameter, which we have used the sponta
neous magnetization as an order parameter, that is

M  = (4.6)
dis
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In this expression the angular brackets stand for an average over the set of quaside
generate ground states, and the rectangular ones stand for an average over the 
set of J  13 which have the same value X

The finite but nonzero value of M  in this spin glass corresponds to the ex
istance of the ferromagnetic state, but our system was mapped from eq.(4.1), thus 
the existance of ferromagnetic state implies the existence of the superconducting 
phase of the two-dimensional disordered Josephson junction arrays. Therefore, 
we can look for the phase transition by looking through the value of M.

We can see from Fig. 4.5 that M  begins to break down at 2=0.1. This 
means that at this value of impurity, the superconductivity of Josephson junction 
arrays was destroyed.
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Figure 4.5: The magnetization per spin M  versus the concentration of impurities
X.
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