

บทที่ 2 ทฤษฎี

2.1 ทฤษฎีพื้นฐานของเซลล์แสงอาทิตย์

2.1.1 การทำงานของเซลล์แสงอาทิตย์

เซลล์แสงอาทิตย์แบบ p-n มีหลักการทำงานคือ เมื่อมี Photon ที่มีพลังงานสูงกว่า แถบพลังงานต้องห้าม (h $V > E_g$) อิเล็กตรอนจะดูดกลืนพลังงานไว้และกระโดดข้ามไปยัง Conduction band ได้และเกิดโฮลที่ Valence band คือเกิด electron-hole pair ขึ้นและพาหะทั้งสอง จะถูกสนามไฟฟ้าที่หัวต่อกวาด โดยอิเล็กตรอนจะถูกกวาดไปทางสาร n และจะถูกขับเคลื่อนไปยัง ขั้วโลหะที่ทำหน้าที่รวบรวมพาหะ จากนั้นพาหะจะถูกส่งออกไปยังโหลดที่ต้องการ

โฮลจะถูกกวาคไปทางสาร p เมื่อเกิคการสะสมของอิเล็กตรอนและโฮลมากพอจะทำให้ กำแพงศักย์ลดต่ำลงเกิดความต่างของระดับพลังงานเฟอร์มิขึ้นเป็นแรงคันเปิดวงจรของเซลล์ แสงอาทิตย์ (V_) คังรูปที่ 2.1

รูปที่ 2.1 แสดงระดับพลังงานลดต่ำลงจนเกิดแรงดันเปิดวงจร

จากรูปที่ 2.1 จะเห็นว่าค่า V $_{\rm cc}$ ถูกกำหนดโดยค่า E $_{
m g}$ คือ qV $_{\rm cc} \leq {
m E}_{
m g}$

ส่วนเซลล์แสงอาทิตย์แบบ Schottky เมื่อได้รับ Photon จะเกิดปรากฏการณ์ Photovoltatic ขึ้น ซึ่งมีได้ 3 แบบ คือ

1. เมื่อแสงถูกดูดกลืนที่ชั้นโลหะและกระตุ้นให้อิเล็กตรอนมีพลังงานมากกว่า $_q \varPhi_{_B}$

2. แสงที่มีความยาวคลื่นสั้นจะถูกดูดกลืนบริเวณหัวต่อ (บริเวณที่มีความโค้งงอของ แถบพลังงาน) จะทำให้เกิด electron-hole pair ขึ้น แสงที่มีความยาวคลื่นยาวจะถูกดูดกลืนลึกเข้าไปในสารกึ่งตัวน้ำ ทำให้เกิด electron-hole pair ขึ้น electron-hole pair ที่เกิดขึ้นจะถูกกวาดโดยสนามไฟฟ้าที่ที่อยู่บริเวณหัวต่อ (บริเวณ แถบพลังงานโค้งงอ) ให้ไหลไปคนละทาง ออกไปยังขั้วโลหะได้

2.1.2 องค์ประกอบที่เป็นตัวกำหนดลักษณะสมบัติของการเคลื่อนที่ของพาหะนำ ไฟฟ้าในเซลล์แสงอาทิตย์

คุณสมบัติของสสารที่สำคัญต่อการกำหนดลักษณะสมบัติการเคลื่อนที่ของพาหะนำไฟฟ้า คือ ความนำไฟฟ้าสามารถเขียน σ เป็นสมการได้ดังนี้

$$\boldsymbol{\sigma} = n \boldsymbol{e} \boldsymbol{\mu}_{n} + p \boldsymbol{e} \boldsymbol{\mu}_{p} \tag{1}$$

โดยที่ μ_{μ} และ μ_{μ} คือ ค่าความคล่องตัวของอิเล็กตรอนหรือโฮลตามลำคับ ซึ่งเป็นค่าเฉลี่ยของ ความเร็วในการเคลื่อนที่ (Drift Velocity) ต่อสนามไฟฟ้าหนึ่งหน่วย

องค์ประกอบอื่นๆที่สำคัญที่เกี่ยวกับการเคลื่อนที่ของพาหะที่ควรนำมาพิจารณาคือ ค่าเวลาชีวิตพาหะ (Carrier lift time, Tุหรือ Tุ) คือ เวลาเฉลี่ยตั้งแต่การเกิด electron-hole pair ขึ้นจนกระทั่งอิเล็กตรอนหรือโฮลเกิดการรวมตัวกันหายไป

ค่าความยาวในการแพร่ซึม (Diffusion length, L_Pหรือ L_N) คือระยะเฉลี่ยที่อิเล็กตรอนหรือ โฮลแพร่ซึมไปก่อนเกิดการรวมตัว

ค่าระยะปลอดการชน (Mean Free Path , t) คือ ค่าเฉลี่ยของระยะทางระหว่างการชนของ พาหะครั้งที่ต่อกัน ขณะที่พาหะเคลื่อนที่ในสสาร

2.1.3 โครงสร้างของเซลล์แสงอาทิตย์

เพื่อให้ได้ค่าพลังงานที่มาก ด้องออกแบบโครงสร้างเซลล์แสงอาทิตย์ ให้มีพื้นที่กว้างๆเพื่อ รับแสงและหัวต่อต้องอยู่ใกล้ๆกับผิวหน้า เพื่อให้แสงตกกระทบถึงหัวต่อให้ได้มากที่สุด หากหัวต่อ อยู่ลึกเกินไปจะได้จำนวนพาหะที่ดูดกลืนแสงน้อยลง ทำให้ได้ปริมาณกระแสน้อยลง และที่ผิวหน้า จะมีการเคลือบสาร Antireflective coating เพื่อลดการสะท้อนของแสงและลดการรวมตัวกันที่ บริเวณผิวหน้า

รูปที่ 2.2 แสดงโครงสร้างของเซลล์แสงอาทิตย์ (ก) Planar junction (ข) ภาพ top view แสดงขั้วต่อโลหะแบบนิ้วมือ

จากรูปที่ 2.2 (ก) ความหนาของชั้น n (ระยะ d) ต้องน้อยกว่าค่าความยาวในการแพร่ซึมของ โฮล (L_p) ในสาร n เพื่อให้โฮลที่เกิดขึ้นสามารถแพร่ไปยัง metal junctionได้ก่อนการรวมตัว เช่นเดียวกันความหนาของชั้น p ต้องบางพอที่จะให้อิเลคตรอนที่เกิดขึ้นเดินทางถึง metal junction ได้ก่อนเกิดการรวมตัว ซึ่งความหนาที่เหมาะสมจะต้องเข้ากันระหว่างค่าความยาวในการแพร่ซึม ของอิเล็กตรอน (L_p) ในสาร p

สิ่งที่ต้องคำนึงถึงอีกอย่างคือ ค่าความต้านทานต้องมีค่าน้อยมาก เพื่อไม่ให้ไปลดค่ากำลังที่ ใด้จากเซลล์แสงอาทิตย์ จากการที่ความหนาของชั้น n ต้องบาง metal contact ต้องมีการออกแบบ เป็นพิเศษ ถ้าชั้น n นี้มีการต่อออกภายนอกที่ขอบจะมีผลทำให้ค่าความต้านทานสูง เพื่อป้องกัน ผลกระทบนี้ ดังนั้นขั้วโลหะมักถูกออกแบบให้เป็นรูปนิ้วมือดังรูปที่ 2.2 (ข) และทางด้านหลังของ เซลล์แสงอาทิตย์จะต้องเป็นผิวสัมผัสแบบโอห์มิคที่ดีฉาบไว้

2.1.4 ลักษณะสมบัติและพารามิเตอร์ที่สำคัญของเซลล์แสงอาทิตย์

เมื่อเซลล์แสงอาทิตย์ได้รับแสงและทำการวัด I-V curve จะได้กราฟดังรูปที่ 2.3

สมรรถนะของเซลล์แสงอาทิตย์พิจารณาได้จาก

1. ค่าแรงคันไฟฟ้าวงจรเปิด (V_{oc})

2. ค่าความเข้มกระแสลัควงจร (I_s)

3. ค่า Fill Factor (F.F.) โดยคิดจาก

$$F.F. = \frac{V_m \times I_m}{V_{oc} \times I_{sc}}$$
(2)

$$\eta = \frac{V_{oc} \times I_{sc}}{P_{in}} \times F.F. \times 100$$
(3)

โดย P, คือกำลังที่ป้อนให้เซลล์แสงอาทิตย์ ซึ่งกำหนดได้จากความเข้มแสงอาทิตย์ (วัตต์ ต่อพื้นที่หนึ่งหน่วย)

2.2 การปลูกผลึกด้วยวิธี Molecular Beam Epitaxy

เครื่องปลูกผลึกด้วยลำโมเลกุลประกอบไปด้วย 4 Chamber หลัก คือ Growth chamber, Transfer chamber, Introduction chamber และ Load-lock chamber แผนผังในส่วนของระบบที่ใช้ ในการปลูกผลึกในรูปที่2.4 สามารถแบ่งเป็น 4 ส่วนหลักๆ คือ

รูปที่ 2.4 แผนภาพภายใน growth chamber ของเครื่องปลูกผลึกด้วยลำโมเลกุล

ส่วนที่ 1 : สารที่ใช้เป็นแหล่งให้ลำโมเลกุล คือ สารที่เราต้องการปลูกลงบนแผ่นฐาน สารนี้ จะถูกบรรจุอยู่ใน effusion cell และถูกควบคุมการให้ลำโมเลกุลโดยการควบคุมจังหวะเปิด – ปิด ชัตเตอร์ที่อยู่ด้านหน้าของแต่ละ Cell โดยปริมาณลำโมเลกุลที่กำเนิดจากสารแต่ละชนิดนั้น สามารถ ควบคุมได้จากปริมาณความร้อนที่ให้กับสาร

ส่วนที่ 2 : แผ่นฐาน คือแว่นผลึกที่ใช้รองรับลำโมเลกุลเพื่อให้เกิดเป็นผลึกเดี่ยว (Single crystal) ดังนั้นแผ่นฐานจึงต้องมีค่าคงตัวผลึก (lattice constant) เท่ากันหรือใกล้เคียงกับสารที่ใช้ใน การสร้างชั้นผลึก เพื่อให้การปลูกผลึกได้ผลึกเดี่ยวที่ไม่มีจุดบกพร่องหรือมีน้อยมาก ทำให้สามารถ นำไปใช้สร้างสิ่งประคิษฐ์ได้ แผ่นฐานนี้จะถูกหมุนและให้ความร้อนระหว่างการปลูกผลึก โดยการ หมุนเพื่อให้โครงสร้างที่ปลูกมีความสม่ำเสมอกันมากขึ้น

ส่วนที่ 3 : ระบบสุญญากาศ ในเทคนิคการปลูกผลึกด้วยลำโมเลกุลนี้ มีส่วนที่เป็นจุดด้อย คือ ความจำเป็นที่ต้องให้สภาพความดันพื้นฐาน (Background pressure) ในระหว่างการปลูกอยู่ใน ระดับ ultra high vacuum (UHV : : < 10⁻⁷ Torr) ดังนั้นในระบบของเครื่องปลูกผลึกด้วยลำโมเลกุล นี้จึงต้องใช้ ไอออนปั๊ม (Ion pump) และ ไทเทเนียม ซับลิเมชั่นปั๊ม (Ti sublimation pump) ในการ ลดระดับความคันลง และในระหว่างการปลูกผลึกจะต้องใช้ในโตรเจนเหลว (liquid nitrogen , LN₂) ให้ความเย็นแก่ chamber เพื่อให้โมเลกุลของสารต่างๆมาเกาะที่ผนังด้านในมากขึ้น ซึ่งเป็นการลด ระดับความคันในขณะปลูกผลึกอีกวิธีหนึ่ง

ส่วนที่ 4 : ระบบการตรวจสอบรูปแบบ RHEED คือ ระบบที่ใช้ในการสังเกตลักษณะการ เรียงตัวของอะตอมบนผิวหน้า ทั้งก่อนและระหว่างการปลูกผลึก ซึ่งระบบ RHEED ที่ติดตั้งใน growth chamber นี้ ประกอบด้วย ปืนยิงอิเล็กตรอน (Electron gun) ขนาด10 - 20 kV และแผ่น ฟลูออเรสเซนต์ (Fluorescent screen) ซึ่งเป็นฉากรับและแสดงภาพ RHEED ที่เกิดขึ้น ในรูปที่ 2.5 แสดงลักษณะทางเรขาคณิตของระบบ RHEED

ร**ูปที่ 2.5** ลักษณะทางเรขาคณิตของระบบ RHEED

ถ้าอิเล็กตรอนจะถูกยิงตกกระทบบนแผ่นฐานทำมุม Θ ประมาณ 1 – 2° กับระนาบผิวหน้า ของแผ่นฐาน ซึ่งถ้าอิเล็กตรอนนี้จะแทรกสอดกัน โดยมีลักษณะการเรียงตัวของอะตอมบนผิวหน้า เปรียบเสมือน เกรตติ้ง ซึ่งขึ้นกับทิศทางผลึก ทำให้ในบางทิศทางจะเกิดรูปภาพสะท้อนบนแผ่น ฟลูออเรสเซนต์ ซึ่งเรียกรูปแบบนี้ว่า รูปแบบ RHEED โดยรูปแบบของภาพที่ได้จะบ่งบอกการเรียง ตัวของอะตอมบนผิวหน้า โดยการเรียงตัวของอะตอมบนผิวหน้านี้ขึ้นอยู่กับ ชนิดของแผ่นฐาน อุณหภูมิของแผ่นฐานและสภาพบรรยากาศโดยรอบเป็นสำคัญ ดังนั้นการตรวจสอบ รูปแบบ RHEED นี้ จึงสามารถใช้เป็นวิธีเทียบอุณหภูมิที่แท้จริงบนผิวหน้า กับอุณหภูมิที่อ่านได้จากเทอร์ โมคัปเปิ้ลได้วิธีหนึ่ง โดยลักษณะของผลึกที่ปลูกได้จากเครื่องปลูกผลึกแบบลำโมเลกุลนี้สามารถแบ่งออก ด้วยกัน 3 โหมด ได้แก่

 Frank-van der Merwe เป็นรูปแบบการก่อตัวแบบ 2 มิติ ผลึกจะก่อตัวในแนวระนาบเป็นชั้นๆ ดังแสดงในรูป ที่ 2.6 (ก) การก่อตัวลักษณะนี้เกิดขึ้นเนื่องจาก แรงยึดเหนี่ยวระหว่างอะตอมในลำ โมเลกุลกับอะตอมบนผิวหน้าของแผ่นฐานมีค่ามากกว่าแรงยึดเหนี่ยวระหว่างอะตอม-อะตอมในลำ โมเลกุล ซึ่งเป็นรูปแบบการเกิดผลึกที่พบในการปลูกผลึกสารกึ่งตัวนำบนผิวหน้าผลึกสารกึ่งตัวนำ ที่มีก่าคงที่โครงผลึกเท่ากันหรือใกล้เคียงกัน

 Volmer-Weber เป็นรูปแบบการก่อตัวของผลึกแบบ 3 มิติ เกิดขึ้นเนื่องจากแรงยึดเหนี่ยวระหว่าง อะตอมที่ปลูกลงไปมีค่ามากกว่าแรงยึดเหนี่ยวระหว่างอะตอมในลำโมเลกุลกับอะตอมบนผิวหน้า ของแผ่นฐาน ดังแสดงในรูปที่ 2.6 (ข) การเกิดผลึกในรูปแบบนี้จะพบในการปลูกผลึกที่มีค่าคงที่ โครงผลึกแตกต่างกันมากๆ

3. Stranski-Krastanow เป็นรูปแบบการก่อตัวของผลึกแบบ 2 มิติในช่วงแรก และแบบ 3 มิติ ในช่วงหลัง ซึ่งทำให้ได้เกาะ (island) แบบ 3 มิติบนฟิล์มบางแบบ 2 มิติของสารที่ปลูกลงไป ดัง แสดงในรูปที่ 2.6 (ค) การก่อตัวรูปแบบนี้เกิดขึ้นในการปลูกผลึกที่มีค่าคงที่โครงผลึกของสารที่ ปลูกลงไปต่างกับค่าคงที่โครงผลึกของอะตอมของแผ่นฐานไม่มากนัก (น้อยกว่า 10%) ซึ่งในการ สร้างโครงสร้างควอนตัมดอตแบบจัดเรียงตัวเองก็คือการใช้การปลูกผลึกในโหมด Stranski-Krastanow นั้นเอง

(n) Frank-van der Merwe

(१) Volmer-Weber

(ค) Stranski-Krastanow

รูปที่ 2.6 รูปแบบการก่อตัวของผลึกในโหมด (ก) Frank-van der Merwe (ข) Volmer-Weber และ (ค) Stranski-Krastanow

2.2.1 กลไกการเกิดผลึกของการปลูกผลึกด้วยวิชี MBE

กลไกการปลูกผลึกของการปลูกผลึกจากลำโมเลกุลสำหรับสารประกอบกึ่งตัวนำหมู่ 3 และ หมู่ 5 เนื่องจากความสามารถของการเกาะติดพื้นผิวแผ่นผลึกฐานของธาตุหมู่ 3 ซึ่งตามปกติแล้ว ผิวหน้าของแผ่นผลึกฐานก่อนการปลูกจะถูกปกคลุมด้วยบรรยากาศของโมเลกุลธาตุหมู่ 5 เพื่อ ชดเชยการสูญเสียในขณะที่แผ่นผลึกมีอุณหภูมิสูงจึงทำให้ผิวหน้าของแผ่นผลึกฐานเป็นชั้นของ อะตอมหมู่ 5 ดังนั้นอะตอมหมู่ 3 จึงเรียงตัวเกาะลงบนชั้นของอะตอมหมู่ 5 จนกลายเป็นชั้นของ อะตอมธาตุหมู่ 3 จากนั้นอะตอมของธาตุหมู่ 5 จะทำปฏิกิริยาเกาะลงบนชั้นอะตอมของธาตุหมู่ 3 หรือถูกดูดซับจากอะตอมของธาตุหมู่ 3 โดยลักษณะการเรียงตัวของอะตอมหมู่ 3 และหมู่ 5 นั้นเรียง ตัวสลับกันไปตลอดการปลูกผลึก ซึ่งอะตอมของธาตุหมู่ 5 ได้จากการแตกตัวของโมเลกุลที่อยู่ใน รูป Dimer หรือ Tetramer ทำให้กระบวนการเกิดผลึกเป็นลักษณะได้สัดส่วนตามโครงสร้าง โดย โมเลกุลส่วนเกินของธาตุหมู่5 นั้นถูกปล่อยคายออกจากผิวของแผ่นผลึกฐานแต่อุณหภูมิที่ผิวหน้า ของแผ่นฐานมีความสำคัญสำหรับการปลูกผลึกด้วยวิธีนี้ ดังนั้นหากผิวหน้าของแผ่นฐานมีอุณหภูมิ สูงจะทำให้เกิดผลดังนี้

 ถ้าแผ่นฐานมีอุณหภูมิสูงกว่าจุดระเหิดของธาตุหมู่ 5 จะทำให้เกิดการปล่อยคายอะตอม ของธาตุหมู่ 5 ออกจากผิวแผ่นผลึกฐาน

 ถ้าแผ่นฐานมีอุณหภูมิสูงกว่าจุดระเหิดของธาตุหมู่ 3 จะทำให้เกิดการปล่อยคายอะตอม ของธาตุหมู่ 3 ออกจากผิวแผ่นผลึกฐาน

สารประกอบ	T _{cs} (°C)	T _{max(v4)} (°C)	$T_{\max(v2)}(^{\circ}C)$	Jv4/J3
AlP	>700	640	700	~1.0/1
GaP	670	490	750	~1.0/1
InP	363	>450	>500	~3.0/1
AlAs	>750	630	750	~1.5/1
GaAs	~620	480	>760	~1.0/1
InAs	~370	~450	~550	~5.0/1

ตารางที่ 2.1 แสดงอุณหภูมิจุดระเหิดของสารประกอบหมู่ 3กับหมู่ 5 ชนิดต่างๆ

โดย T_{..}(°C) หมายถึงอุณหภูมิของการระเหิด

T_{max(v4)} (°C) หมายถึงอุณหภูมิสูงสุดในบรรยากาศ Tetramer โมเลกุลของธาตุหมู่ 5 T_{max(v2)}(°C) หมายถึงอุณหภูมิสูงสุดในบรรยากาศ Dimer โมเลกุลของธาตุหมู่ 5 Jv4/J3 หมายถึงอัตราส่วน ก_{ux} ของหมู่ 5 ต่อหมู่ 3 ที่เกิดจากการสลาย ดังนั้นอุณหภูมิของแผ่นผลึกฐานจึงกวรอยู่ในระดับที่ไม่ทำให้เกิดสาเหตุในข้อ 2 จึงต้องมี การชดเชยอะตอมของธาตุหมู่ 5 ที่เสียไปเนื่องจากผลจากข้อ 1 ซึ่งก่าอุณหภูมิการระเหิดของ สารประกอบชนิดต่างๆมีตามตาราง

การอธิบายปฏิกิริยาที่เกิดขึ้นในการปลูกผลึกจากลำโมเลกุลสามารถใช้แบบจำลองตาม รูป ที่ 2.6 และรูปที่ 2.7 ซึ่งเป็นตัวอย่างของ GaAs ซึ่งปฏิกิริยาสามารถเกิดได้ 2 กรณีคือ

กรณี Ga- As₂-(100) GaAs ปฏิกิริยาที่เกิดขึ้นเริ่มจากอะตอมของ Ga เกาะติดบนผิวหน้า ของแผ่นผลึกฐานเรียงตัวเป็นชั้น จากนั้นโมเลกุลของ As₂ ทำปฏิกิริยากับอะตอมของ Ga โดยแตก ตัวเป็นอะตอม As และเกาะตัวบนชั้นอะตอม สำหรับอัตราการเกาะของโมเลกุล ที่ผิวหน้าแผ่นผลึก ฐานขึ้นอยู่กับค่า Flux ของ Ga สำหรับโมเลกุล ส่วนเกินจะระเหิดไปในรูปของโมเลกุล As₂ และ As₄ ทำให้การเกิดผลึกเป็นแบบ Stoichiometric Growth ดังรูปที่ 2.7

รูปที่ 2.7 แสดงปฏิกิริยาของการเกิดผลึก GaAs ในกรณี Ga- As₂-(100) GaAs

กรณี Ga- As₄-(100)GaAs ปฏิกิริยาที่เกิดขึ้นจะมีความซับซ้อนกว่า โดยโมเลกุล As₄ คู่หนึ่ง ทำปฏิกิริยากับอะตอม Ga ที่อยู่ใกล้เคียงซึ่งอะตอม Ga ได้เกาะอยู่ที่ผิวหน้าของแผ่นผลึกฐาน ปฏิกิริยาที่เกิดขึ้นจากโมเลกุล As₄ แต่ละโมเลกุลแตกตัวให้อะตอม As 2 อะตอมเกาะลงบนผิวหน้า ของแผ่นผลึกฐานด้วยการดูดซับจากอะตอมของ Ga ที่เกาะที่ผิวหน้า ส่วนอะตอมของ As ส่วนที่ เหลือจำนวน 4 อะตอมนั้นจะรวมตัวเป็น As₄ และถูกปล่อยออกจากผิวไป ดังนั้นกรณีนี้จึงมีความ จำเป็นที่ต้องให้ค่าความหนาแน่นของโมเลกุล As₄ หรือ Flux ของ As₄ (J_{As4}) มีค่ามากกว่าค่าความ หนาแน่นของโมเลกุล Ga หรือ Flux ของ Ga (J_G) เพื่อให้จำนวนโมเลกุล As₄ มีจำนวน มากเพียงพอ สำหรับปฏิกิริยาที่มีส่วนที่เกาะเรียงตัวในผลึกและในส่วนที่ปล่อยคายออกซึ่งเป็นส่วนที่สูญเสียไป และการสูญเสียนี้มีก่าเพิ่มขึ้นเมื่ออุณหภูมิผิวหน้าของแผ่นผลึกฐานมีก่าสูงขึ้น

ร**ูปที่ 2.8** แสดงปฏิกิริยาของการเกิดผลึก GaAsในกรณี Ga-As₄-(100) GaAs

รูปที่ 2.9 แสดงโครงสร้างแบบ Zincblende

โครงสร้างของสารประกอบกึ่งตัวนำของธาตุหมู่3-5 มีโครงสร้างผลึกแบบ Zincblende คัง รูปที่ 2.9 ซึ่งมีลักษณะคล้ายกับโครงผลึกเพชร โดยการเรียงตัวของอะตอมของธาตุหมู่ 3 และหมู่ 5 เรียงตัวสลับกันเป็นชั้นๆ ไปตามทิศทาง (100) ในโครงผลึก ซึ่งแรงยึคเหนี่ยวระหว่างอะตอมใน โครงสร้างนี้เป็นแบบโควาเลนท์ (Covalent Bond) และระยะห่างระหว่างอะตอมนั้นขึ้นกับชนิดของ อะตอมที่มาประกอบกันเป็นสารประกอบในโครงผลึก ดังนั้นตัวแปรอีกตัวหนึ่งที่เป็นสมบัติเฉพาะ ของสารประกอบแต่ละชนิดคือค่าคงตัวผลึก (Lattice Constant: a) ซึ่งสารประกอบแต่ละชนิดมีค่า แตกต่างกันดังแสดงในตารางที่ 2.2

สารประกอบ	ค่าคงตัวผลึก	ค่าแถบพลังงาน	ชนิดของแถบพลังงาน
AlP	5.451	2.45	แถบพลังงานไม่ตรง
AlAs	5.66005	2.16	แถบพลังงานไม่ตรง
AlSb	6.1355	1.58	แถบพลังงานไม่ตรง
GaP	5.4512	2.26	แถบพลังงานไม่ตรง
GaAs	5.6355	1.42	แถบพลังงานตรง
GaSb	6.0959	0.72	แถบพลังงานตรง
InP	5.8686	1.35	แถบพลังงานตรง
InAs	6.0584	0.36	แถบพลังงานตรง
InSb	6.4794	0.17	แถบพลังงานตรง

ตารางที่ 2.2 แสดงตัวแปรทางกายภาพของสารประกอบกึ่งตัวนำหมู่3-5 ชนิด 2 ธาตุ

จากตารางจะเห็นว่าค่าคงตัวผลึกของ GaAs กับ InAs มีค่าต่างกัน (6.0584-5.6355)/ 6.0584*100 = 7% มีค่าน้อยกว่า 10% ดังนั้นจากหัวข้อที่ 3 การปลูก InAs บน GaAs จะอยู่ใน mode Stranski-Krastanow ซึ่งจะได้ dot ของ InAs เกาะอยู่บนฟิล์มบางของ InAs

2.2.2 โครงสร้างแบบควอนตัมดอดแบบจัดเรียงตัวเอง

เทคนิคการปลูกผลึกแบบจัดเรียงตัวเองนี้ เป็นเทคนิคที่ใช้สร้างควอนตัมดอตที่เพิ่งถูก ค้นพบมาเมื่อไม่นานมานี้ เทคนิคนี้มีส่วนสำคัญคือ เมื่อทำการปลูกผลึกสารที่มีค่าคงที่โครงผลึก ใหญ่ และ มีค่าความกว้างแถบพลังงานแคบ ลงบน แผ่นฐานซึ่งเป็นสารที่มีค่าคงที่โครงผลึกเล็ก และ มีค่าความกว้างแถบพลังงานกว้าง จะทำให้เกิดการผ่อนคลาย (Relaxation) ของอะตอมที่ปลูก ลงไปเมื่อปลูกชั้นนั้นเกินความหนาค่าหนึ่ง ซึ่งจะทำให้การเกิดผลึกต่อไปมีลักษณะเป็น 3 มิติ (ดูรูป ที่ 2.10) โดยกลุ่มเกาะของอะตอมที่เกิดจากการผ่อนคลายนี้จะสามารควบคุมการสร้างให้มีขนาด

ร**ูปที่ 2.10** แสดงการเกิดของโครงสร้างควอนตัมดอตแบบจัดเรียงตัวเอง เนื่องมาจากการผ่อนคลาย (Relaxation) พลังงานความเครียดจากโครงผลึก

วิธีการสร้างควอนตัมคอตแบบจัคเรียงตัวเองที่กล่าวมาข้างต้นนี้มีข้อคี เมื่อเทียบกับการ สร้างควอนตัมคอตด้วยวิธีอื่นๆ คือ เราไม่จำเป็นต้องสร้างลวคลายในระดับนาโนเมตร ซึ่งยังเป็น กระบวนการที่ยุ่งยากซับซ้อนในการสร้างอยู่มากในการทำในปัจจุบัน และ ควอนตัมคอตที่เกิดขึ้น ยังมีจำนวนต่อพื้นที่มากอีกด้วย นอกจากนี้ควอนตัมคอตที่สร้างได้ด้วยวิธีนี้ อาจจะกล่าวได้ว่า ไม่มี จุดบกพร่องในโครงสร้างเลย เนื่องจาก ไม่จำเป็นต้องใช้กระบวนการกัดทางเคมีในการสร้าง ทำให้ เหมาะสมต่อการนำไปใช้เป็นชั้นแอคทีฟในสิ่งประดิษฐ์เลเซอร์สารกึ่งตัวนำและนำไปใช้ใน สิ่งประดิษฐ์สารกึ่งตัวนำอื่นๆ

แต่วิธีการปลูกแบบจัคเรียงตัวเองนี้ ก็มีข้อเสีย คือ เราไม่สามารถควบคุมตำแหน่งที่จะเกิด กวอนตัมคอตได้และควอนตัมคอตที่สร้างได้ด้วยวิธีนี้จะมีความไม่สม่ำเสมอในเชิงขนาดอยู่ด้วย ทำ ให้สิ่งประดิษฐ์ที่สร้างได้ด้วยเทคนิคนี้มีความไม่อุดมคติอยู่ ซึ่งความไม่อุดมคตินี้จะส่งผลถึง ลักษณะการเปล่งแสงของผลึกที่ปลูกได้

2.3 พื้นฐานของโครงสร้าง Low-Dimension

เมื่อวางอะตอมใกล้กัน อะตอมจะยึดเหนี่ยวกันทำให้พลังงานของอะตอมที่ยึดเหนี่ยวกัน กลายเป็นแถบพลังงานที่มีความต่อเนื่องและมีจำนวนมากกว่าหนึ่งแถบ โดยมีแถบพลังงานต้องห้าม (energy gap) คั่นกลางระหว่างแถบคอนดักชัน (conduction band) และแถบวาเลนซ์(valence band) ที่ อุณหภูมิ 0 K แถบคอนดักชันปราศจากอิเล็กตรอน ในขณะที่แถบวาเลนซ์มีอิเล็กตรอนอยู่เต็ม เมื่อ อุณหภูมิสูงกว่า 0 K แถบพลังงานทั้งอิเล็กตรอนและโฮลซึ่งทำหน้าที่เป็นพาหะนำไฟฟ้า การ ควบคุมการเคลื่อนที่ของพาหะในแถบพลังงานทั้งสองเป็นพื้นฐานสำคัญของการควบคุมการทำงาน ของสิ่งประดิษฐ์สารกึ่งตัวนำ ในโครงสร้าง low-dimension พาหะจะถูกกักบริเวณในทิศทางใด ทิศทางหนึ่งหรือมากกว่าหนึ่งทิศทาง และความยาวในการกักเป็นอัตราส่วนของความยาวคลื่นเดอบ รอยล์ (De Broglie wavelength) แปรผกผันกับค่ามวลประสิทธิผลของพาหะ(Carrier effective mass,m) และค่าอุณหภูมิ (T) ดังสมการ (4)

$$\lambda_{de_Broglie} = \frac{h}{p} = \frac{h}{3m'k_BT}$$
(4)

โดย h คือ ค่าคงตัวของพลังค์ (Planck's constant) P คือโมเมนตัมของพาหะ (carrier momentum) k_B คือ ค่าคงตัวของโบลซ์แมน (Boltzmann's constant)

ความยาวคลื่นเดอบรอยล์สำหรับสารประกอบกึ่งตัวนำหมู่ III-V มีค่าประมาณ 20 nm ที่ อุณหภูมิ 300 K ผลของการกักพาหะที่คาดว่าจะเป็นประโยชน์ต่อสิ่งประดิษฐ์สารกึ่งตัวนำนั้นมี มากมาย เช่นการเปลี่ยนสถานะระหว่างแถบพลังงานย่อย (intersubband transition) ในโครงสร้าง ควอนตัมเวลล์ (Quantum well) ซึ่งเป็นหลักการสำหรับสร้าง Detector ซึ่งทำงานในย่าน far – infrared ที่ความยาวคลื่นมากกว่า 9 μm

รูปที่ 2.11 แสดงการเปรียบเทียบขนาดของ Bulk, ท่อนำคลื่น (Waveguide), ควอนตัมดอต (Quantum dot) และ อะตอม ซึ่งขนาดของโครงสร้างควอนตัมดอตอยู่ในระดับของความยาวคลื่นเด อบรอยล์ สำหรับท่อนำคลื่นอยู่ในระดับไมโครเมตร ส่วนโครงสร้างทางอิเล็กทรอนิกส์ของ Bulk กับอะตอมนั้นแตกต่างกัน ในส่วนของ Bulk นั้นอธิบายโดยทฤษฎีแถบพลังงาน ส่วนอะตอมนั้น อธิบายโดยระดับพลังงานแบบไม่ต่อเนื่อง

ความหนาแน่นของสถานะ (Density of state, D.O.S.) ของ bulk และของโครงสร้าง Lowdimension ถูกแสดงในรูปที่ 2.12 ชั้นแถบพลังงานที่ต่างกันระหว่างโครงสร้าง Low-dimension กับ วัสดุรอบข้างทำให้เกิดการกักพาหะ ในกรณีที่อิเล็กตรอนและ โฮลถูกกักอยู่ในวัสดุชนิดเดียวกัน กำแพงพลังงานสูงสุดจะถูกกำหนดโดยแถบพลังงานที่ยกขึ้นในแถบคอนดักชันหรือแถบวาเลนซ์ ในควอนตัมเวลล์ อิเล็กตรอนและ โฮลสามารถเคลื่อนที่ได้อิสระในระนาบ X-Y ในควอนตัมไวร์ อิเล็กตรอนและ โฮลสามารถเคลื่อนที่ได้อิสระในทิศทาง X และในควอนตัมคอต พาหะถูกกักอยู่กับ ที่ ในกรณีควอนตัมดอตเป็นการกักแบบ 3 มิติทำให้เกิดการ Quantization ของพลังงานดังแสดงใน รูปที่ 2.12 (ง)

ร**ูปที่ 2.12** โครงสร้างและความหนาแน่สถานะ (D.O.S) ของ (ก) Bulk, (ข) ควอนตัมเวลล์, (ค) ควอนตัมไวร์ และ (ง) ควอนตัมดอต โดย L อยู่ในระดับ µm ในขณะที่ L_x L_y L_z อยู่ในระดับ nm

ในกรณีของโครงสร้างในรูปที่ 2.12 (ก) พาหะสามารถเคลื่อนที่ได้อิสระทุกทิศทุกทาง สำหรับควอนตัมเวลล์ในรูปที่ 2.12 (ข) พาหะจะถูกจำกัดทิศทางการเคลื่อนไหวเฉพาะในแนวแกน Z โดยสามารถเคลื่อนที่ได้อิสระในแนวระนาบ X-Y สำหรับควอนตัมไวร์ รูปที่ 2.12 (ค) พาหะถูก กักขังแบบ 2 มิติจึงเดินทางอย่างอิสระได้เพียงมิติเดียว (แกนX) สำหรับควอนตัมดอตในรูปที่ 2.12 (ง) พาหะถูกขังแบบ 3 มิติ พาหะจึงไม่มีมิติหรือพิกัดที่จะเคลื่อนไหวได้เลย ระดับพลังงานที่ อิเล็กตรอนสามารถมีได้ในแต่ละโครงสร้างข้างค้นเป็นไปตามความสัมพันธ์

$$E_{\text{bulk}} = E(k) = \frac{h^2 k^2}{2m^*} \qquad \text{สำหรับ bulk} \qquad (5)$$
$$E_{\text{QW}} = E(k) = \frac{h^2 k_{\text{II}}^2}{2m^*} + E_{n,z} \qquad \text{สำหรับ quantum well} \qquad (6)$$

$$E_{QWR} = E(k) = \frac{h^2 k_{\perp}^2}{2m^*} + E_{m,y} + E_{n,z} \quad \text{สำหรับ quantum wire} \quad (7)$$

 $E_{QD} = E_{l,x} + E_{m,y} + E_{n,z}$ สำหรับ quantum dot (8)

โดย k(k, ,k, ,k,) คือ เวกเตอร์คลื่น (wave vector) ของพาหะ

$$k^{2} = k_{x}^{2} + k_{y}^{2} + k_{z}^{2}$$

$$k_{\parallel}^{2} = k_{x}^{2} + k_{y}^{2}$$

$$k_{\perp}^{2} = k_{x}^{2}$$

E_{l,x} , E_{m,y} และ E_{n,z} คือ พลังงานที่เป็นฟังก์ชันของตัวเลขควอนตัม (quantum number) l , m และ n

ความหนาแน่นสถานะต่อหน่วยปริมาตรซึ่งเป็นค่าจำนวนสถานะ (number of states) ระหว่างพลังงาน E และ E + dE ของแต่ละโครงสร้างหาได้จาก

$$D_{bulk}(E) = \frac{1}{2\pi^2} \left(\frac{2m^*}{h^2}\right)^{3/2} E^{1/2}$$
(9)

$$D_{QW}(E) = \frac{m}{\pi h^2} \sum_{n} \Theta(E - E_{n,z})$$
(10)

$$D_{QWR}(E) = \frac{N_{wi}}{\pi} \frac{\sqrt{2m^*}}{h} \sum_{m,n} \frac{1}{\sqrt{E - E_{m,y} - E_{n,z}}}$$
(11)

$$D_{QD}(E) = 2N_D \sum_{1,m,n} \delta(E - E_{I,x} - E_{m,y} - E_{n,z})$$
(12)

โดย	Θ	คือ Heaviside's unit step function
	N _{wi}	คือ area density ของควอนตัมไวร์
	δ	คือ เคลต้าฟังก์ชัน (delta function)
	N _D	คือ volume density ของควอนตัมคอต

ในกรณีของควอนตัมดอต ความหนาแน่นของสถานะเป็นเดลด้าฟังก์ชัน ซึ่งคล้ายกับระดับ พลังงานไม่ต่อเนื่องของอะตอม ในส่วนซึ่งอธิบายมาด้านบนเป็นกรณีอุดมคติ แต่ในการปลูกผลึก จริงอาจเกิดข้อผิดพลาดได้ซึ่งทำให้โครงสร้างและคุณสมบัติทางไฟฟ้าของโครงสร้างควอนตัมดอต เปลี่ยนแปลง เมื่อโครงสร้างนาโนเปลี่ยนจาก Bulk เป็นโครงสร้าง low-dimension ดังแสดงในรูปที่ 2.11 การเปลี่ยนค่าความหนาแน่นสถานะจะมีผลต่อคุณสมบัติพื้นฐานของสิ่งประดิษฐ์สารกึ่งตัวนำที่นำ โครงสร้างนาโนมาประยุกต์ใช้ เช่น เลเซอร์สารกึ่งตัวนำที่นำควอนตัมดอตมาประยุกต์ใช้มีกระแส เทรสโฮล (Threshold current) ต่ำเนื่องจากมีความหนาแน่นสถานะเป็นเดลต้าฟังก์ชัน รูปที่ 2.13 แสดงวิวัฒนาการของค่ากระแสเทรสโฮลของเลเซอร์สารกึ่งตัวนำซึ่งมีค่าลดลงเมื่อนำโครงสร้าง low-dimension มาเป็นส่วนหนึ่งของโครงสร้าง

รูปที่ 2.13 วิวัฒนาการของค่ากระแสเทรสโฮลที่ใช้สำหรับขับแสงเลเซอร์สารกึ่งตัวนำ

เมื่อเราพิจารณาเจาะจงลงไปถึงระบบสารกึ่งตัวนำที่เหมาะสมที่จะนำมาใช้สร้างโครงสร้าง ควอนตัมคอดแบบจัดเรียงตัวเอง จะพบว่า เราสามารถสร้างควอนตัมคอตได้ในหลายระบบสารกึ่ง ตัวนำ ตัวอย่าง เช่น ระบบสาร In(Ga)As / GaAs InP / InGaP SiGe / Si เป็นค้น เนื่องจากระบบ สารในตัวอย่างข้างค้นมีค่าแถบกว้างพลังงานแคบว่าวัสดุที่ใช้เป็นแผ่นฐาน และ มีขนาดค่าคงที่ โครงผลึกกว้างกว่า ทำให้การเกิดผลึกสามารถเกิดเป็นโครงสร้างควอนตัมคอตแบบจัตเรียงตัวเอง ได้ โดยการเลือกสร้างควอนตัมคอตจากแต่ละระบบสารนั้นจะพิจารณาจากค่าความยาวคลื่นแสงที่ เปล่งออกมาจากโครงสร้าง ซึ่งค่านี้ขึ้นกับขนาดของโครงสร้างและชนิดของสาร

ในการทคลองนี้เลือกระบบสาร InAs / GaAs ซึ่งสามารถให้ก่าความยาวคลื่นในช่วงที่เรา ต้องการได้ ดังแสดงในรูปที่ 2.14

รูปที่ 2.14 แสดงความสัมพันธ์ระหว่างขนาดค่าคงที่โครงผลึก และ ค่าความกว้างแถบพลังงานของ ระบบสารประกอบกึ่งตัวนำ III – As ที่อุณหภูมิห้อง

2.4 การวัดรูปแบบ RHEED (reflection high-energy electron diffraction)

2.4.1 การเทียบวัดค่าอุณหภูมิของแผ่นฐานในระหว่างการปลูกผลึกด้วย RHEED

การเทียบก่าอุณหภูมิของแผ่นฐานในระหว่างการปลูกผลึกด้วย RHEED มีอยู่ 2 วิธีคือ 1. การเทียบวัดจากก่าอุณหภูมิที่ชั้นออกไซด์ระเหยออกจากผิว (Oxide desorption) เป็นที่ทราบกันดีว่า ชั้นออกไซด์ของ GaAs ที่เคลือบอยู่บนผิวของแผ่นฐานนั้นจะระเหย ออกจากผิวที่อุณหภูมิ 580 ° C ดังนั้น โดยการสังเกตลักษณะ RHEED ในระหว่างการเพิ่มอุณหภูมิ ของแนวฐานในครั้งแรกก่อนเริ่มทำการปลูกผลึก จะทำให้ทราบว่าอุณหภูมิที่อ่านได้จากเทอร์ โมคัปเปิลนั้น แตกต่างจาก ก่าอุณหภูมิจริงบนผิวหน้าของแผ่นฐาน GaAs อยู่เท่าไร รูปที่ 2.15 แสดง รูปแบบ RHEED เมื่อเริ่มมีการระเหยออกของออกไซด์บนผิวชิ้นงาน

รูปที่ 2.15 แสดงรูปแบบ RHEED เมื่อเริ่มมีการระเหยออกของออกไซด์บนผิวชิ้นงาน

2. การเทียบวัดจากการเปลี่ยนแปลงลักษณะการเรียงตัวของอะตอมบนผิวหน้า หลังจากทำการปลูกผลึกชั้น GaAs บัฟเฟอร์ ให้ได้ความหนาค่าหนึ่ง ซึ่งโดยทั่วไปจะมีค่า มากกว่า 200 nm เพื่อทำการปรับผิวหน้าให้เรียบและเป็นการหลีกเลี่ยงความสกปรกและ จุดบกพร่องบนผิวหน้า ทำให้ผลึกมีคุณภาพดีขึ้น จากนั้นเราสามารถทำการเทียบวัดอุณหภูมิของ ผิวหน้า ได้โดยการทำการปรับเปลี่ยนอุณหภูมิของแผ่นฐานแล้วทำการสังเกตรูปแบบ RHEED โดย จะพบว่าหากเราทำการปรับเปลี่ยนอุณหภูมิจองแผ่นฐานแล้วทำการสังเกตรูปแบบ RHEED โดย จะพบว่าหากเราทำการลดอุณหภูมิลงภายใต้ความดันไอ As คงที่ รูปแบบ RHEED จะมีการ เปลี่ยนแปลงจากลักษณะรูปแบบชนิด (2x4) เป็นชนิด (2x2) หรือ c(4x4) ที่อุณหภูมิ 500℃ ดังนั้น การสังเกตรูปแบบ RHEED นี้จะทำให้ทราบถึงอุณหภูมิจริงบนผิวหน้าของแผ่นฐานได้ รูปที่ 2.15 แสดงรูปแบบ RHEED เมื่อเริ่มมีการระเหยออกของออกไซด์บนผิวชิ้นงาน

2.4.2 การเทียบวัดความเร็วการปลูกผลึกด้วย RHEED

นอกจากการเทียบวัคค่าอุณหภูมิของแผ่นฐานในระหว่างการปลูกผลึกด้วยการสังเกต รูปแบบ RHEED ที่กล่าวมาแล้ว เรายังสามารถใช้การสังเกตการเปลี่ยนแปลงความเข้มของรูปแบบ RHEED ในการวัดค่าความเร็วในการปลูกผลึกได้อย่างแม่นยำอีกด้วย วิธีการเทียบวัดความเร็วใน การปลูกผลึกของสารต่างๆ อธิบายได้ดังนี้ การเปลี่ยนแปลงค่าความเข้มแสงของรูปแบบ RHEED ณ จุดใดๆ บนแผ่นฟลูออเรสเซนต์จะขึ้นอยู่กับความสมบูรณ์ของการเรียงตัวของอะตอมบนผิวหน้า ้คือ หากว่าอะตอมบนผิวหน้ามีการเรียงตัวกันอย่างดีแล้ว ภาพรูปแบบ RHEED จะมีความเข้มสูง ที่สุด เพราะผิวหน้าจะเปรียบเสมือนเกรตติ้งที่สมบูรณ์ สามารถสะท้อนลำอิเล็กตรอนได้อย่างคื แต่ เมื่อมีอะตอมส่วนเกินอยู่บนผิวหน้า (คือในระหว่างการปลูกผลึก) ที่ยังมีปริมาณไม่เพียงพอที่จะ เรียงด้วครบ 1 ชั้นผลึก (monolayer) แล้ว ค่าความเข้มของแผนภาพ RHEED ณ จุดใดๆ จะมีความ เข้มลดลง โดยยังมีลักษณะรูปแบบคงเดิมและในขณะที่ทำการปลูกผลึกลงบนแผ่นฐาน ปรากฏการณ์เปลี่ยนแปลงค่าความเข้มของแผนภาพ RHEED จะเกิดขึ้นอย่างต่อเนื่อง เรียก ปรากฏการณ์นี้ว่า RHEED intensity oscillation โดยค่าความถึ่งองสัญญาณ RHEED intensity oscillation นี้ คือ ความเร็วในการปลูกผลึกนั่นเอง โดยสัญญาณ RHEED intensity oscillation นี้จะมี การเปลี่ยนแปลงสูงสุดที่จุด specular beam (ดูรูปที่ 2.5) ดังนั้นในการสังเกตการ oscillation จึง มักจะกระทำที่จุดนี้การเกิด RHEED intensity oscillation เพื่อวัดค่าความเร็วในการปลูกผลึกที่ อธิบายมานี้ แสคงสรุปได้ดังรูปที่ 2.16

รูปที่ 2.16 แผนภาพแสดงลักษณะการเกิด RHEED intensity oscillation

2.4.3 การสังเกตรูปแบบ RHEED ในการปลูกควอนตัมดอตแบบจัดเรียงตัวเอง

ในการปลูกควอนตัมดอตแบบจัดเรียงตัวเองนั้น เราสามารถทำการสังเกตุการเกิดควอนตัม ดอตระหว่างการปลูกผลึกได้โดยสังเกตรูปแบบ RHEED นั่นคือ เมื่อเราทำการปลูกชั้น InAs ลงไป แล้ว ในช่วงแรกอะตอมจะก่อตัวในลักษณะ 2 มิติ โดยเมื่อเราทำการปลูกลงไปจนชั้น InAs นี้มีก่า ความหนาวิกฤติ ซึ่งมีค่าประมาณ 1.6-1.8 ML จะทำให้อะตอมเกิดการผ่อนคลาย (Relaxation) เกิด เป็นควอนตัมดอตแบบจัดเรียงตัวเอง รูปที่ 2.17 แสดงตัวอย่างรูปแบบ RHEED ในระหว่างการ ปลูกผลึกชั้น InAs ควอนตัมดอต โดยให้ความเร็วในการปลูกชั้น InAs เท่ากับ 0.01 ML/s จากรูปจะ เห็นว่า สัญญาณ RHEED จะลดลงเมื่อเริ่มทำการปลูกชั้น InAs ในช่วงแรก และ เมื่อเกิดการผ่อน คลายจะทำให้รูปแบบ RHEED ที่วัดได้เปลี่ยนแปลงไปจากเดิมที่มีลักษณะ Streaky ไปเป็นลักษณะ Spotty โดยก่าความเข้มของสัญญาณ RHEED ในช่วงหลังจะเพิ่มขึ้นซึ่งบ่งบอกถึงการเกิดการเรียง ตัวของอะตอมในลักษณะ 3 มิติ ในโหมด Stranski-Krastanow และเรียกชั้นที่มีลักษณะ 2 มิติ ที่ เกิดขึ้นก่อนเกิดควอนตัมดอตว่า Wetting layer

(ข)

(ค)

รูปที่ 2.17 รูปแบบของ RHEED (ก) Streaky pattern (ข) Spotty pattern @ > 1.7 ML (ค) Spotty pattern @ = 1.8 ML