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CHAPTER I

INTRODUCTION

Let N(n) be a Poisson random variable with parameter n, then we obtain that

e~ k

k!

P(N(n) = k) = for kK = 0,1,2,.... An infinite urn model is defined as fol-
lows: N(n) ball are independently placed in an infinite set of urns and each ball has
probability pr > 0 of being assigned to the & th urn. We assume that pp > pri1
for all k£ and ipk = 1. Let Z, be the number of occupied urns after n balls have
been thrown. k:SIO ZN(ny is the number of occupied urns after N(n) ball have been
thrown. Since the number of urns is infinite and the number of thrown is random, we
cannot apply the usual central limit theorem to Z, and Zy(,). In 1967, Karlin gave
Zn—E(Z,)

the condition on (py) for the convergence of — 2

the standard normal random variable and b2 ~ Var(Z,). In 1989, Dutko considered

to N'(0,1) where N(0,1) is

in case of random thrown. Under the condition

lim Var(Zym)) = 0o, (1.1)
he showed that
lim F,(z) = ®(z) (1.2)

ZNwm) — E(Znw))
VaT(ZN(n))

where F,, is the distribution function of and ® is the standard nor-

and

mal distribution function. Examples of (py) which satisfy (1.1) are p, = ok



C
Pk =0 where C' is a normalizing constant and r > 1 (see [1], page 1257-1258). In

1972, Stein gave a new technique to find a bound in normal approximation. His tech-
nique relied instead on the elementary differential equation. In 2001, Chen and Shao
combined truncation with Stein’s method and by taking the concentration inequality
approach to find uniform and non-uniform bounds on Berry-Esseen theorem. In our
work, we use the technique in Chen and Shao to obtain bounds on the convergence

of (1.2).

Znw) — E(Znw)

Let F,, and ® be the distribution function of
Var (Z N(n))

and N (0,1) re-
spectively. The followings are our main results.

Theorem 1

6.655
sup | B (2) = (z)] <

z€R “ \/ VG,’T‘(ZN(n)) '

Theorem 2 There exists an absolute constant C' such that for every real number x,

C

L+ |z Var(Zn ()

Furthermore, under the condition (1.1) we have the bounds in Theorem 1 and Theo-

[ Fn(z) — ®(2)] <

rem 2 tend to zero as n —00.



CHAPTER 11

PRELIMINARIES

In this chapter, we present some basic concepts and facts of probability theory
that are needed in this thesis. The proofs of the statements are omitted as they can

be found in [2] and [3].

2.1 Random Variables and Distribution functions

A probability space is a measure space (€2, F, P) for which P(2) = 1. The set
Q) will be refered as a sample space. The elements of F are called events. For any
event A, the value P(A) is called the probability of A.

A function X from the probability space (€2, F, P) to the set of complex numbers
C is said to be a complex-valued random variable if for every borel set B in C,
X~1B] belongs to F. In case that X is real-valued, we say that it is a real-valued
random variable, or simply a random variable. We note that the composition
beetween a Borel function and a complex-valued random variable is also a complex-
valued random variable.

We will use the notation P(X < z), P(X > z) and P(|X| > z) to denote
P{w|X(w) < z}), P{w|X(w) > z}) and P({w| | X|(w) > z}), respectively.

We define the expectation of a complex-valued random variable X to be



/ XdPp,
Q

provided that the integral /Q XdP exists. It will be denoted by E(X) or EX. The
expectation of a random variable X is known as the mean. The expectation of
(X — E(X))? is known as the variance of X and is denoted by Var(X).

Let {Fa|a € A} be a family of g-algebras. We say that {F,|a € A} is a family of

independent o-algebras if for every finite subset {ay,as,...,a,} of A

for all A,, € Fo, and all s =1,2.... n.
We say that {E, € Fla € A} is a family of independent events if

{o({E.})|a € A} is a family of independent o-algebras where
J({Ea}> = {@7 Ea, Ega Q}

and {X,|a € A} is a family of independent random variables if

{o(X4)|a € A} is a family of independent o-algebras where
0(X,) = {X;"(B)|B is a Borel set in R}.

Proposition 2.1. ([3],p.55) Let {X,, o € A} be a family of independent random
variables. For every a€ A, let g, be a Borel measurable function defined on R. Then

{94(X4), o € A} is also a family of independent random variables.

Let X be a random variable. A function F': R — [0, 1] is defined by

F(x) = P(X < =),



for each real number x. F' is called the distribution function of the random
variable X.

Let X be a random variable on a probability space (2, F, P). X is said to be
a discrete random variable if the image of X is countable and X is called a

continuous random variable if F' can be written in the form

N S / f(t)dt
for some nonnegative integrable function f on R and in this case, we say that f is

the probability function of X.

Now we will give some examples of random variable.

Example 2.2. [ is said to be an indicator random variable with respect to event

Eif

We note that E(Ip) = P(E).

Example 2.3. X is said to be Poisson random variable with parameter A, written
as X ~ Poi(\), if its image 1s {0,1,2,...} and

e ANF

P(X= k) = —

Example 2.4. We say that X is a normal random wvariable with parameter u
and o2, written as X ~ N(u,c?), if its probability function is

1 1
f@) = ——sem(—

V2mo?

Specifically, X is a standard normal random variable if X ~ N (0,1).

(z = 1)?).




Proposition 2.5 is the property of ® where @ is the distribution function of N'(0, 1).

Proposition 2.5. ([4],p.295-297 and [5],p.246) Let W be a random variable such

that E(W) =0 and Var(W) = 1. Then
|P(W < z)—®(x)] <0.55
for all z > 0.

The following are properties of expectation and variance which we need in our

work.

Proposition 2.6. (2], p.59) Let (X;) be a sequence of random variables from (2, F, P)

to [0,00). Then E(f: X;) = iE(XJ)

J=1

Proposition 2.7. ([2],p.64) Let (X;) be a sequence of random variables in L* (2, P)

such that ZE|Xj| < 00. Then
j=1

o0 (o.0]

EQY” X;) =) SB(X,).
j=1 j=1
Proposition 2.8. ([3],p.55) Let X, Xy be two independent random variables. If

E|Xi| < 00 and E|X;3| < oo, then E|X1X5| < 00, and E(X1X5) = EX;EX,.

Now we will give the definition condition expectation of a random variable.

Let (€2, F, P) be a probability space and let D-C F be a o-algebra. Let Pp be a
probability measure induced by P, that is, Pp(E) = P(E) for all E € D. Let X be a
random variable defined on (€2, F, P) such that F(X) exists. Then for every E € D

we can define the indefinite integral

Qx(E) = /E XdP = /Q XIgdP.



Clearly Qx is a finite signed measure on D such that Qx(E) = 0 for every E € D
for which Pp(E) = 0. Hence Qx << Pp, so that in view of the Radon-Nikodym
theorem there exists a D- measurable function defined on €2, which we denote by

E(X|D), such that the relation

E(X|D)dPp = Qx(E) = [ XdP
I I

holds for every £ € D. Here the function £(X|D) is determined uniquely with
respect to Pp in the sense that, if there exists another D-measurable function g on {2

satisfying

/EQdPD = Qx(E)

for every E € D, then g = E(X|D) a.s. [Pp]. The measurable function E(X|D) is
called the conditional expection of X with respect to D.

Let X and Y be random variables on a probability space (€2, F, P) such that
E(|X]) < 00. E(X|o(Y)) is called the conditional expectation of X with respect
to Y, where o(Y) = {YY(B)|B is a Borel set in R}. We denote E(X|o(Y)) by
E(X|Y) or EY(X).

The conditional probability P(A|D) of an event A € F, given D, is defined by
P(A|D) = E(14]|D).

Proposition 2.9. ([3],p.365) Let X be a random variable on (Q,F, P) with E(X)
exists and let D C F be a o-algebra and o(X) and D are independent. Then

E(X|D) = E(X) a.s. [Pp]



2.2 An Infinite Urn Model

An infinite urn model is defined that n ball are independently placed in an infinite
set of urns and each ball has probability p, > 0 of being assigned to the k th urn.We

o0
assume that pp > pro1 and Z pr = 1, we define the random variable S, j, by
k=1

Sh. = the number of balls in the £ th urn after n throws.

We need to consider the case where the number of throws is not fixed in advance
but depends on the outcome of a random experiment. Specifically, suppose that
the number of balls thrown is a Poisson random variable with means n, denoted

by N(n), then we have

P(N@n)=r)= L forall r =0,1,2,... .
We define the random variable Sy by
SN,k = the number of balls in the & th urn after N(n) throws.

The random variables (Sym)k), ¥ = 1,2,... are mutually independent Poisson

random variables with respective mean (npy) (see [1], p.1259), so that

P(‘SN(”)’]C = T) - T!

forall r =0,1,2,... .
We next define the random variable Z,, by

0o 1, if u> 0,
Z, = ZI(Sn,k), where I(u) =
k=1

0, if uw=0.



Also, we define the random variable Zy, by

o)

Znmy = (S k)-

k=1

The random variable Z,, is the number of occupied urn after n balls have been thrown,

and the random variable Zy ) is the number of occupied urn after N(n) balls have

been thrown. From Dutko[1] we know

(I(Sn@)k))ken is the sequence of independent random variables,

E(I(Snm)k)) = 1 —e ™,

Var((Sym) k) =e " = e72,

o0

B(Zyy) =D (1 =),
k=1
Var(Zigh) = Y (e — e2m),
Sl

E(ZN(R)) is finite

and Var(Zyy) is finite.

Let
X, = ](SN(n),k) - E(I(SN(n),k))
7 Var(Znemy)
Then
1
|Xn,k| S

\/V(I’I“(ZN(”)) ’

Znw) = E(Znm)
= E Xn,ka
) o

\/ VCLT(ZN(”)

o0

E(> Xn)=0and Var(d_ X,;) =1.
k=1 k=1

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)
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Proposition 2.10.

- 1
1. E FE Xn 3 < ——————— which is finite.
—1 | 7k| o VCLT(ZN( )) ﬁ

2. If lim Var(Znm) = oo, then lim ZE|Xnk|3—O

n—00 n—00
=1

Proof.

1. We note that

0 4 S = 0,
I(Snm)k) =

1 if SN(n),k > 0.

So P(I(SN(n)yk) = O) == P(SN(n),k = 0) = ¢ Pk

and P([(SN(n),k) = 1) F P(S}\/(n)’kJ > 0) =1- P(SN(n),k — O) =1- €_npk, i.e.,

0. with the probability e "k,

I(Sn@myk) =
1 with the probability 1 — e™"P*.
Thus
X c -1 P(I(S 0 P and
nk = = k) =0)=e "k an
( k= Var(Zy ))> (I(Sn(m)) )
X 49" PI(S p
L3 2 e =1 1 — e Pk
( b1 Viar(Zng ))) (SN m)) )
Hence,

E| Xl = ) |afP(Xp=1)

zelm Xn,k
npr _ e~ Pk
™ gl
Var ZN Var ZN



(1 - efnpk)i’: efSnpk

— - e—npk F ( _ e—npk>
(V(M’(ZN(H)))§ (VQT(ZN(n)))§
B (1 _ 3e_npk + 36_2npk — e_3npk)e_npk + e—?mpk(l — e_npk)
(Var(Znw))?
e Pk — 372k 4 373k _ o—4nPE | o—3npK _ o —Anpy
(Var(Zym))?
— e 4Pk | fe 3Pk _ e 2Pk | Pk
(Var(Zygm))?

We observe that

— 9 4nPk 4 Ae 3Pk’ o~ 20Pk 4 eT"PE
— _9p4npi 4 2e7OPk L Qe 3MPk . 9ok _ o 2MPE | o MPk

= Qe 2nPK (e*npk A 6*2"1%) — e TPk (e*npk _ e*%Pk) 4 (efnpk _ e*QnPk)
then

ZE|Xn,k’3 i An i Bn + Cn

k=1

where

o0
9 E e—QTLPk (e—npk gl 6—2711%)
fe=1

A, = 3 )
(V(I’I“(ZN(TL)))§
-9 Z e "Pk (e—npk _ 6—2711%)
B, = ol 5 and
(VGT(ZN(n)))§

By (2.2), (2.3) and A, + B, <0, Y E|Xp4f* € ——onee.
k=1 Var(Znm))

2. This follows from 1.



12
2.3 Stein’s equation for standard normal distribution

function

In this section, we will introduce Stein’s method which is based on the differential

equation

J'(@) = wf(w) = hlw) - E(h(2)) (2.7)

where f : R — R is a continuous function, A : R — R is a test function and Z is
the standard normal randem variable. The equation (2.7) is called Stein’s equation

for normal approximation. For any real number z, let h be an indicator function

defined by

he(w) = (2.8)

0, if , w> z,

then Stein’s equation (2.7) has a unique solution f, : R — R defined by

21 ez CO(w)[1 — B(z)], if w<a;

folw) = B (2.9)
Vor ez o)1 — d(w)], if w>uz
(see [6], p.22).

By (2.7) —(2:9) we get

x

which implies that

P(W < ) — B(x) = Ef{(W) — EW £,(W). (2.10)
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Hence we can find a bound of Ef.(W) — EW f, (W) instead of P(W < z) — ®(z).
To find a bound of Ef/ (W) — EW f.(W), we need the following properties of the
solution f, of Stein’s equation (2.7).

For w,s,t € R,

.

1, fwt+s<z, w+t>ux;

folw ) = [o(w 1) < 3 (lw| + L25)(|s| 4+ [t]), if s > t;

0, elsewhere,
(
(2.11)
.
—4r fw+s>x, w+t <o,
folws) = falw+8) 2 ¥ (ol + L2=)(Js| + |t]), ifs <t
0, elsewhere;
\
(2.12)
and
[fa(s) — fa(t)] <1 (2.13)

(see [5], p.246-247).



CHAPTER II1
A UNIFORM BOUND ON

AN INFINITE URN MODEL

Let Zn(n) be defined as in section 2.2 of Chapter II. The purpose of this chap-

ter is to give a uniform bound in the approximation of the distribution function of

ZNw)y — E(Znwm)
Var(ZN(n))

following results.

by ® is stated in Theorem 3.5. To prove Theorem 3.5, we need the

Proposition 3.1. Let § € R" and M : R?> — R be defined by
Mw,t)=wl(-w <t<0)~wl(0<t<—w),

0
then / M (w, t)dt = |w| min(0, |w|).
-3

Proof.
Case 1 min(d, jw|) = 9.

If w > 0, then
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= |w|min(9, |w]).
If w <0, then

1 0
/M(w,t)dt:/ wl(—w <t<0)—wl(0<t<—w)dt

5
= / —wl(0 <t < —w)dt

Case 2 min(d, [w|) = |w].
If w > 0, then
5 5
/ M(w,t)dt:/ wl(~w<t<0)—wl(0<t< —w)dt

5
:/ wl(—w <t <0)dt

0
:/ wdt
= [wllw]
='w| min(d; |w])-

If w <0, then

5
wl(—w <t<0)—wl(0<t<—w)dt

(S9]

) _

—wl(0 <t < —w)dt
-5

—wdt

I
S~ T
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= (-w)(=w)
= [w[|w]

= |w|min(é, [w]).
Then the proof is completed. n

Proposition 3.2. Let (a;) be a sequence of real numbers such that the both series

[e.9] o0
E a; and E a? are finite. Then
i=1 i=1

(o.0] (0 9] oo (0.0]
Qa7 DL+ a) q
i=1 i=1 =1 j=1
JF
Proof. We note that for each i € N
oo (0.@] (o0}
CLZZCL] = ai(Zaj —a;) = alz:aJ —a;

=1 j=1 j=1

J#i

Hence
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Proposition 3.3. Let X, be defined in (2.4) and § > 0. Then we have

Var( 31X min(8,1X,5]) = S Var (X, min(8, | X, ).
j=1 Jj=1

Proof. By (2.1), (2.4) and Proposition 2.1, (|X,, ;| min(d, | X, ;|))jen is the sequence

of independent random variables. Now we will show that

D [ Xl min(s, 1X,0), Y (1 Xn i min0 | X )%, D EIXol min(s, | X,
j=1 j=1 j=1
and Z(E]an| min(d, | X, ;|))? are finite. It is clear that for every k € N,

j=1
> 1 (Snyg)I* s finite
j=1

and, by the fact that 1 — e ™7 <np;,

o0

Z(l —e "P) - i 1—e ™)< f:
J=1 J=1

Jj=1

From this facts and (2.3), it follows that

TSNy ;) — (=€)
Xn v
Z| J| Z’ /Var(ZN(n) ’
J W{Z'I SN HZ

=1

< .00

and

> SN(n)g (1 —€7npj) 2
X,.il?
;‘ 7]‘ Z’ VGT(ZN(n)> ’

I(Snn (1 —e )%}
Va'r ZNn) {Z‘ e ’+Z ‘

j=1

< 00.
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Hence

DXl mind, [ X)) <6 [Xo,] and

Jj=1 j=1
(o @] o0
(| X ;| min(o, | X, 2 < 52 X,,.i|* are finite.
J J J
i=1 i=1

Observe that

ElXngl= Y |alP(X, /=)

z€lm X ;5
B ’ e ) ‘e‘”pf ’ ’ e
Var(Znwm) \/Var ZN(n
(= e7™Pi)eT™Pi 4 (1 — e™"Pi)e s
VCLT'(ZN(n))
Q(e—npj _ e—2npj)
Var(Znmy) /

hence, by (2.2),

> E[X, =24/ Var(Znw) (3.1)

st

which implies

Y E|X,;|min(6, X)) <6 E|X, ;| = 20\/Var(Zym) < oo

j=1 7j=1

and

M

(B| Xy | min(8, | X)) Z E|Xni)?

<
Il
—

46? =
Z(efnpj _ eanpj )2

N VCL’/’(ZN(n)) et

< 462 i(enpj . eanpj)
- VCLT(ZN(n)) -

J=1



= 46*
< 0.
By Proposition 3.2, we obtain
Var() | Xo, min(s, | X, ;1))
j=1
Z|Xn]|m1n(5 ‘an' ZE|XnJ|m1n(5 |an|))
Jj=1 g
Z | X, i) min(d, | X))
=1
—|—EZ[Xm|m1n(5 | Xni]) Z|anlm1n(5 1 X041
=0 L
et
— ) (E|X, J min(s, [X,4]))?
=1
=) E|X | min(5, X, ) Y B X, 4 min(s, | X, ;1)
i=1 |
EE

(e 9]

= > B X mins,1X,5))° = Y (Bl X, min(8, | Xo,0))?

j=1 Jj=1

= > (B(|Xn ;| min(5, | X, 1)) = (B|X;| min(s, | X,,0))°
j=1

= Var(|X, ;| min(s, | X,]))-
j=1

In what following, we let

W= X,;and := Y E|X,[*
j=1 j=1
By (2.6), we see that

Znm) — E(Znw)
VCM”(ZN(”))

W:

19
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Proposition 3.4. (concentration inequality for a uniform bound) Let a < b and for

each k €N, let W& =W — X, .. If 3 < 0.14, then
Pla <WW® <b) <1.5(b—a)+4.213,

Proof. Let f:R — R be defined by

fOSyt=3b+a). if a=f<t<b+5;

ﬁ@—@+§, if ¢>0+2

and let M : R? — R be defined by
M t)=wl(-w<t<0)—wl(0<t<—w).
By (3.1),

o0 1 [e.9]
DL BIX WO < 50— a+B)) [ EIX.
j=1 g=1
i7k

= (b—a+B)\/Var(Znm)

< Q.

Hence it follows from Proposition 2.7 that

EY X fW®) =Y EX, ;f(WW).
=1 =1
s Tk

(3.2)

Since X,,; and W® — X, ; are independent for all j # k, EX,; = 0 for all k and
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M(w,t) > 0, we have

EW(k)f(W(k))
= 3 B{Xu f WO} (from (3.2))

=1

Jh
=Y E{X; f(WW)} — E{X,,; f(W® — X, )},

=1

ik

(because X, ;, W® — X, ; are independent and EX,, ; = 0)

= ZE{X [FWE)=f WD = X, )]}
J;ﬁk

_ ZE{XM / Wy )

J#k
~ S B / £ =X, << 0) = I(0 < t < —X,,)]dt}
k‘

J#

= E{/ FWW® £ HM(X,,;, t)dt} (3.3)

J#

5
tl<3

>y E (X, ;,t)dt
k

J?é

= E{I(a <W® <b)> X, ] mln( /|1 X5)} (by Proposition 3.1)

= F{I(a <W® <b)S} — P(a < WW < b)E| X, mln( X))
> E{I(a <WH® < b)SI(S >0.38)}—P(a < WK < b)E|X,, 1| mm( X))
> 0.38E{I(a <W® < b)(1 —I(S <0.38)}

— Pla <WW <B)E|X, 4| mm( X))



= 0.38E{I(a < W® <b)} —0.38E{I(a <W® <B)I(S < 0.38)}
— P(a <WW <B)E|X, 4| mm( A Xonk])

> 0.38P(a < W™ < b) —0.38P(S < 0.38)
— Pla <WW <B)E|X, 4| mln( N Xonk])

> 0.34P(a < W® < b) = 0.38P(S < 0.38),

22

(3.4)

where S = Z | X0 rnm( .| X, ;) and the last inequality follows from the fact that

7j=1

whs

B 5

E\Xm|mm< A1 Xagl) < E|er S BIX s < - < 0.04

By the fact that

b2
min(a,b) > b— —

4a

for positive number a and b (see [5], p.238), we obtain that

E(S ZE|XM| mln( XD 2 EX) - = E|X. ;P =05

j=1 Jj=1

From this fact and the fact that
Var(S) = va|memm( 26
7=1

F Z Var(| X, | mm( .| Xn,;]) (by Proposition 3.3)

Jj=1

I
Mg

{(\Xmlmm( X g0)? (E!Xmlmm( X D)%}

1

<,
Il

Mg

(\Xm\mm( [ Xng0)?

1

<.
Il

IN

S 4>|Q

(3.5)
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we have
P(S <0.38)=P(ES—S>ES—0.38)

< P(ES—S>0.12)

Var(S)

=012
ﬁQ

= 1012

(by Chebyshev’s inequality)

< 2.458, (3.6)

where we have used the fact that g < 0.07 in the last inequality.

Observe that

IEW® (WP < ~(b—a+ ) EWHY| < - (b—a+m

t\')l»—t

Hence, by (3.4) and (3.6),

Aadn
Pla<W® <py< G3itab—a+B) +0.9315}
1 1.431
L/ A it
0.68( )+ 537

I5(6=a) F4:21p5:

Next, we will prove the main result of this chapter.

— E(Zn(w)
Var(ZN ))

Theorem 3.5. Let F,, and ® be the distribution function of and

N(0,1), respectively. Then

6.655
sup |[Fy (@) — B(2)] < ——00
zeR VCI/T‘(ZN(n))

Moreover, under the additional condition that lim Var(Zy,)) = 0o, the bound tends

to zero.
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Proof. We devide the proof into 2 cases.

Case 1 x> 0.
1
By Proposition 2.10(1) we know that § < ———=. If § > 0.14, then
VCL’I”(ZN(n))
6.655
0.9317 < 6.6553 < ——> (3.7)
VCLT‘(ZN(n))
From (3.7) and Proposition 2.5,
6.655
z/ Var(ZN(n))

Next, we assume that § < 0.14. For each k € N, let
Kip(t) = E{X,ux I (0<t < X, ) — L( X <t <0)]}.
Observe that

> / Ky(t)dt =Y EX2, =1. (3.8)
k=1 2755 i,

Let f be a real-valued, bounded, continuous and piecewise differentiable function

defined on the real line. Then

EW f(W)

=Y EX, 1 f(W)
k=1

= 3T E{X fOV® £ X0, 0L X, VN (B X f (W)= 0)
k’ozol .

= EX.p / FW® 4 t)dt
k=1 0

~YF / FOV® 4 )X, {10 < < Xp) — I(Xos < £ < 0)}dt
k=1 o
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-y / B L E{X 10 < t < Xnp) — I(Xnp < t < 0)]}dt

_ Z / ) 1) K(t)dt. (3.9)

8

Let f in (3.9) be the unique bound solution f, of the Stein equation (2.7) for h, which

is defined by (2.8). Then, by (2.10), (3.8) and (3.9),

Fo(z) — @(x)

— Ef(W) = EW £(W)

x

[e.o]

= Z / fr (W) K, (t)dt — ;E/OO fo(W® 1) K (t)dt

8

=) F / W+ X)) = f (WO 5 0] K1)t} (3.10)

k=1

By (3.10) and (2.11), we have

where
R1:ZE/ e Ki(t)dt and

wW® X, <z

Z E/ B 4+ 0.63) (| Xpx| + |t K5 (t)dt.

k>t

We observe that if W®) 4 >z and W% 4 X, < 2, then

r—t<W® <z — Xnr and t > X, 5. Then

Ri<> E Iz —t<WW <2 — X, ) K (t)dt
k=1

t>Xn,k

M]3

E/ It > X l(x —t <WH <2 — X, ) K (t)dt
k=1 R

NE

/ EEXw [ (t > X, ) (x —t < WW <z — X, ) K (t)dt
R

T

1



/ BI(t > Xy ) Kp(O) EX Iz — t < WO < 3 — X, )dt

8 ||M8 HM8

/ OEX* [z —t <WW <z — X, ,)dt
t>Xn k

:Z Plz—t< W® <2 — X, | Xni) Kp(t)dt.

k=1 t>Xn k

By (3.11) and Proposition 3.4, we have

R, < ZE/ (1.5t 1) + 4.218 K (1)t

e

<1 5ZE/ ([t] + | X e K () dt + 4.215.

t>Xp, i

Since W®) and X, are independent, we have

Xn,kzt

Ry=> B(|W®+ 0.63)E/ (| X | + [t) K5 (t)dt
k=1

<1633 F [ ([Xaslet Kty
k=1

Xn,lczt

By (3.12) and (3.13), we get

R +R, <1. 63ZE/ (| X n] + [t) Ke(®)dt + 4.215.

k=1 oS

o o 1
Since / Ky(t)dt = EX.}y and / || Ky (t)dt = §E|Xn,k|3, we have

-~ 1
Fo(z) — ®(z) < 1.63 > (B X1 EX2 o+ 5 PIXil?) 44216
k=1

<1633 EIX,uul’ + 0815 E|X,.f* +4.215

k=1 k=1

= 2445 E|X, ' + 4218
k=1

< 6.6558.

26

(3.11)

(3.12)

(3.13)
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Similarly, we use (2.12) to get,
Fy(z) — ®(x) > —6.6550.

Then

6.655

\/ Var(ZN(n)) .

|[Fo () — ®(x)] < 43.70 <

Case 2 2 < 0.

Since P(W < ) (n|:1|{W <x+n}) im P(WW <x+n),

n—oo
o0

P(-W < —z)=P(| J{-W < -z - %}) = lim P(-W < —z — %) and

1
¢(z) = lim ®(z + —), we have
n

n—oo

|IP(W <z)—®(z)| = | lim [P(W < z + l) — ®(z + l)]|

n— 00 n n

=1 {0 B )}~ {1 - POV <2+ )]

n—00

= | lim [®(—z — %) — P(W > x+%)]\

n—00

1
= | lim [®(—z — —
n— 00 n n

< |P(=W < —x) — &(=2)]
6.655

S -
A/ VCL’I“(ZN(n))

(by case 1).
Therefore,

6.655
sup | F,(z) — ®(2)] <

z€R - \/ Va’I"(ZN(n)) .



CHAPTER IV
A NON-UNIFORM BOUND ON

AN INFINITE URN MODEL

In this chapter, we give a non-uniform bound in normal approximation of

ZNw) — E(ZNnw)
V(I’I“(ZN(n))

the following results.

which is stated in Theorem 4.4. To prove Theorem 4.4, we need

Throughout this chapter, C' stands for an absolute constant with possibly different
values in different places.
Proposition 4.1. (Rosenthal inequality, [7], p.59) Let p > 2 and let X1, Xa,..., X,
be independent random variables such that EX; = 0, E|X;|P < co. Then there exists

C(p) such that
E| Y XilP <) BIX.F+ ()] EX))%}
i=1 i=1 i=1
where C(p) is a-positive constant depending, only on p.

In the following, we let

W = ZXn,k, 8= ZE|Xn,k|3 and 6, 1= L3 for a > 0.
k=1 k=1 (]. + a)
By (2.6), we have

Znm) — E(Znw)
VCLT'(ZN(”))

W:
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Proposition 4.2. (concentration inequality for non-uniform bound) For any 0 < a <

b < oo, we have

b—a
Pla<W® <b) < C{——= + 0
(e < W< b= g 0
where C'is a positive constant.
Proof. We devide the proof into 2 cases
1
Case 1 (14+a)B> e (4.1)
By the Rosenthal inequality, we have
EW® Y =By X.p)*
j=1
ik
4 / lim (3 X, ;)*dP
Q M—0o0 =
J#k
= 'lim / O Xpy)'dP
m—oo o =
%k
=lim-B>—X5)*
m— oo =
ik
< lim C{) E|X,;|"+ (O EX2))*}
m— 00 = =
ik Tk
= C{)_E[X. '+ (D EX] )"} (4.2)
j=1 j=1
i#k j#k
<) ElXa 0t + 1) (4.3)
i—1
ik

and hence

Pla<W® <p) < P(WH > q)
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=Pla+1<W®41)

ol Wk
- (14 a)*
8+ 8E|W®|4
- (1+a)?
<8 + ¢ {imx Y+ 1) (by (4.3)
“(1+a)? " (1+a) < n.j NS
J#k
C C 1 -
< + E|X,:|* (by (2.5
T (1+a)t (A+a) Var(Zum) ; £ngl" by (25))
< C = Ccp
T (1+a) (A +a)\/Var(Znw)
cp Cp
< + by (4.1
- (1—|—CL)3 (1+a)3\/Va7“(ZN(n)) ( Y ( ))
__¢B
- (1+a)3 (4.4)
Case 2 (1+a)f < 6i4 (4.5)
Let k =160, f : R — R be defined by
(
0 for * <a— K,

f(r) = (l+z+k)3(@—a+r) for a—r<z<b+k,

(1+24k)3b—a+2k) for x>0b+rk,
\

and M : R? — R be defined by
M(w,t) =wl(—w <t<0)—wl(0<t < —w):
Note that f is a non-decreasing function satisfying
(1+a)® for a—Kk <z <b+k,

f'(x) > (4.6)

0 otherwise.
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and

Kk < M +a) (4.7)
E{W® f(w®)}
=S B[OV oM (X0
o
(using the same argument of (3.3))
> iu + a)PB{I(a<W® < b) M(X,;,t)dt} (by (4.6))
g;}c [t|<k
= (1+a)*E{I(a <W® < b)) " |X, ;| min(r, | X, ])}
o
=1+ a)E{I(a<W® <b)> "n;}
T2
> 0.5(1 +a)*{P(a <WH < b) = P(U <0.5)} (4.8)

where n; = | X, ;| min(x, | X, ;|), U = an and we have use the fact that

==
Jk
fora<b, y>0andec>0,
I{a <w <y >eflla<w<b) =(1- DIy <))
&

in the last inequality (see [5], p.238). By (3.5) and the fact that
3 1
EXp < (E1XuiP)s < QD EIXuil)s =87 < —,
| k=1 16

we have

EU =E E | X | min(k, | X 5])
—
Tk



Using the same argument in (4.2),

P(U < 0.5)

< P(EU —U > 0.75—0.5)
E|U — EUJ*
= (0.25)

E|Y {1 X | minr, | X1) = BLX, ;| mins, [ X))}
=1
ik

(0.25)?
< C{ > B X min(s, | Xnl) = B|Xns| min(s, | X))
j=1

ik

= . . 2
+ (D0 B min(s, | X, [) = BIX | mine, | X0,30)12)° |

j=1
Gk
- . 2 . 2
< Cf DT E{IX o] mings, XD F (DD B X0 miin(s, | X0,0)12)"}
—1 i=1
ik Jk

< C{x* Z EX,  + '}
j=1

1 [o.¢]
<ol —— L ST EIX, P4 st (by (25))
{ Var(Zn)) ; ’ }
cp

<

T A1+ a)t/Var(Zywy)

+ Cr*k (by (4.7))

32
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cp cp _
< NG + 0+ a7 (by (4.7) and k = 160)
e
- (I+a)¥

Combining this with (4.8), we have

Pla < WH® <p)

2E{W® (W)}
< P(U<05)+ e
__CB |, 2B{Wwe))
~ 1+ap (+a)

<C(1+a) B+ (b—a+2&) EWP 1 + WH 1 x)}
<O+ a) B +(b = at+r)BIWO (L + k)* + WO}
<O +a) 3B+ (b~ a+r)BWH (I + k)2 +WE)]
<C(1+a){B+b=a+w)(EWE| + BVP)Hy

<C(1+a) B+ (b—a+r)(EWR|+ C(i E|X, |*+ 1)} (by (4.3))

o
< CO+a) HB+O—atRETY]
Oty 1 PPl # ) O @3)

<CA+a)y{B+b—a+r} (by (45) and EJWH]| <1)

<C(l+4a)?*{B+b—a} (k=163). (4.9)
Hence, by (4.4) and (4.9), the concentration inequality is proved. O

Proposition 4.3. ([5],p.248, 250) Let g(w) = (wf.(w))". Then the followings hold.

L filw+s)— fi(w+t) < /S g(w+ u)du + I(x — max(s,t) < w <z —min(s,t)).
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2. For x > 4 and |u| < 1+§’ we have

E(gW®) +u) <C((1+2)3 + s ),
where f, is given by (2.9).
We are now ready to prove the main result of this chapter.

Theorem 4.4. There exists an absolute constant C' such that for every real number
‘/‘E’

C

(1 R |£L”)3\ / VCL’/’(ZN(n)).

Moreover, under the additional condition that lim Var(Zy(,)) = oo, the bound tends
n—oo

| Ea(7) = ()| <

to zero.

Proof. By the same arguments on Theorem 3.5, it suffice to prove the theorem in case
of z > 0.
Case 1. 0 <z < 4.

125
m. By Theorem 35,
Z

Note that (1 + |z|)? € 125 s0 1 <

P (x) — ®(x)| < 6.655 o125 C

B \/VCLT‘(ZN(n)) (1 +ZL’)3 = (1 —|-$)3\/VCLT(ZN(7Z))'

Case 2. ¢ > 4.

For w >0, we note from [6] on page 23 that

|—=
»

1 dw) < &2
2mw
Let f : R — R be defined by
f@) = S (1 +w)*
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then

/ 1
flw)= _\/%WQ

e 2’ (1+wP(w—1)(w?+2w—1) <0

for all w > 4. It follows that for each w > 4,

1,2
e 2% 156.25¢78
(14 w)i=fw) < f4) = ———
Tm;( ) = fw) < f(4) o
and hence
e 2%’ C
1 =P(z) < o .
(@) = orx = (1+x)?

1
If (142)8> 61 then, by the same arguments of (4.4), we have

(@6}
= <
PW=o) < G5
which implies
|F(z) = @(z)| < P(W > 2) + 1 — ®(x)
Cpg @
<
=T+2¢  (to)
Cp Cp 64
< <
= +ap + (+2) (because Gt =1 +x)3>
&
=& by Proposition 2.10(1)).
Assume-that
(1+2)8 < i (4.10)
x e )
By noting that
(1+ )3 C

o

= 50, < 0, < for all x > 4,
1+%) L+ ]2/ Var(Zyw)

8
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it suffice to show that

|[Fo(z) — ®(2)] < Cde. (4.11)
Let
Xowe = Xoad (| Xppl <14 7)
and
Kz (t) = B{X gz [I(0 <t < Xppz) = I(X oz <t <0)]}
Note that  [Xs2] < [ Xug| and / Ky + (t)dt = 0.

[t]>14-5

Let f, be the unique solution of the Stein’s equation for h, which given by (2.8) and

(2.9). Using the same arguments as for (3.10), we have
Fu(z) — ®(2)

> B{H(1Xul <14 2

00
k=1

[ ARV X £V 0] )i
i

X

+ ZE{I(|XM| =T
k=1
[ v 4 X0 — £V 4 0] (1]
[t|<1+F
= R1 + RQ.

Then
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o0

gz\ 10Xl <142 /|| / + u)du

+ I(z — max(t, Xpp) < W® < 2 — min(t, Xnyk)]Kk&(t)dtH

(by Proposition 4.3(1))

b Xn,k
< E ‘ { (| Xnk| <1+ )/ Kk,z(t)/ g(Ww® —|—u)dudt}‘
4 e
k=1 [t|<1+% t

Ky (6)1 (2 — max(t; X, ) < W < & — min(t, X,Lk))dt}‘

E{I X, .| <1 & NG
(1 n,k|_1+1) K= (1) g(W'® ) dudt
t

[t|<1+7

mg

> Xz
< &
+5 E{I(;Xn,ﬂ <A+ D)
X / Kpz ()1 (x —max(t, X, ) < WP < 2 — min(t, ka))dt}
<1+
-3 / A < < X)L Xl <1+ DgW® 4 ) }dude|
t|<1+2 . 4

/ I(| Xpr <1+ )
t|<1+4 4

x Kk%(t)l(x — max(t, X,.;) < W® <z —min(t, X, ;) }dt

_ ‘/ /EEX””“{Kki(t)[(tgngn,k)I(|Xn7k|§1 + z)g(W<k>+u)}dudt‘
<142
> X
DY AR (b ST
|t <142

x Ko (0 (x = max(t, X, ) < W< 2~ min(t, X,,4)) }dt

- ‘/ /E{Kk,z(t)f(tgugxn,k) (1 Xnal 1+ ) EYrig (W("”)Jru)}dudt’
|t <1+2

> i
DN 2T WESTES
1 Y [tI<1+5

X Kz (t) EX I (z — max(t, X, ) < W® <2 — min(t, X,,1)) }dt
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o0

‘E{ (| Xni| < 1+ /K/yC It <u< Xppn)EgW® 4 u)dudt}’
i lt<1+2

+ Z E{I(| X4l <1+ %)/ Kz (1)

k=1

8

i { |Xnk|<1+4)/

k=1 [t <14+F

Xn,k
Kz (t) / Eg(W(k)—l—u)dudtH
t

8

T
+ > B{I(Xul < 1+3)

k=1

X P(z — max(t, X, ) < W® <2 — min(t, Xn’k)|Xn7k)Kk7§(t)dt}
lt <1+

= Ry + Rao. (4.12)

By Proposition 4.3(2), we have

Rll

oo Xn,k
<0y ‘E{[(;XM <1+ 2)/ Kk,z(t)/ ((1+2)~° + 202 )dudt}
k=1 t

j<1+2

< O((1+2) +20s) f: ‘E{/ Kz (1) /tX dudt}(

jtl<i+2
<C((1+2)"* +adz) ZE’/ nk—tdt’
lt|<1+2
<O +a) 0 +a6:) S E/ Kz ()Xol + Kiz (1))t
k=1 <1+
_ C((1+I)_3+m52){ZE/ K s (1) X
k=1 [t|<1+%
+ZE/ Kk&(t)\ﬂdt}
1 [t|<1+7%

—C((1+2) 3+ a;(s%){

NE
DO | =
IIM
o
><|
;

—~52
E(‘Xn7k|EXn,k,%) +5

Eonl
Il
—
bl
—

NE

1 [e.9]
< O+ 0) +a0){ S0 BIXuEXZ) + 5 D FIXl)
k=1

B
Il

1



< C((1+2)7 + 20s) {ZELXMF’

=C((1+2)* +a02) Z E| X,

k=1

s s
= C( 3+(1‘i§)3)

s [
< C( £3+(1+§)3)

SCé%

) (by (4.10), we get 1 + x5 < 6—5)

39

ZE|XM|3}
k=1

(4.13)

64

(4.14)

By Proposition 4.2, §, is decreasing in x and the fact that

r—max(t, Xpp) = v — (1+ %) for [t] <1 +§ and | X, x| <14 %,

we have

R12

Z / P a: — max(t, X, ) <
1 [t]<1+2

W) <r-

a: max(t,X,, k)+
\<1+7

<CZE{/t

(1 4+ 2= max(t, ka))_?’

(0. 9]

<CY E{ [0: + (1+2)
1 [t|<14+F
- C{ 3 Bf 5s Ky s (1)dt}
1 [t<1+2

(1+x) 3ZE{/t

<142

min(t, X, x)) K,z (t)dt}

(] + | X kDI = (£)dt }

T [ Xk DKk 2 (1)dty

(18] + 1X04)) K 5 (£)dt} }
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<cfop+ e SB[ (4 Xaah)Kiz (00}
k=1 ltI<1+3
< 0{5% +(1+a2)7? ZE]Xnk]?’} (using the same argument of (4.13))
k=1
< Cd=z (because 0, < dz). (4.15)

Next, by (2.13),

> 4
|R2‘ S ZE{I(‘Xnd‘ > 1+ Z)/ Kk&(t)dt}

k=1 ltl<1+

<Y Bl =1+ D} () Keswir<
pu ¢ (<12
2 xr

=Y PU(| Xk > 1+ Z>
k=1
> Bl Xk

< k=1

= (142)3

) (4.16)

By (4.11), (4.12) and (4.14)-(4.16), we have

C

E.(z) —®(z)] < '
) O S e Ve
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