

บทที่ 4

รายงานผลการทดลองและอภิปรายผลการทดลอง

4.1 ผลส่วนผสมทางเคมีของเงินสเตอร์ลิง 925 และเงินสเตอร์ลิง 935-ทองแดง-ดีบุก

ผลจากการวิเคราะห์หาปริมาณธาตุเงิน ทองแดงและดีบุกจากการตรวจสอบด้วยวิธี Inductively Coupled Plasma Atomic Spectroscopy และวิธี Atomic Absorption Spectroscopy ดังแสดงในตารางที่ 4.1

โลหะผสม	ส่วน	ผสมตั้งต้น (เ	vt%)	ส่วนผสมที่ต	เรวจพบในชิ้นงา	นหล่อ (wt%)
ชุดที่	Cu	Sn	Ag	Cu*	Sn**	Ag
1	7.50	_	92.5	7.35	_	Balance
2	6.50	_	93.5	6.36	_	Balance
3	6.17	0.33	93.5	5.95	0.31	Balance
4	6.11	0.39	93.5	5.85	0.38	Balance
5	6.04	0.46	93.5	5.78	0.43	Balance
6	5.98	0.52	93.5	5.74	0.50	Balance
7	5.91	0.59	93.5	5.68	0.54	Balance
8	5.85	0.65	93.5	5.61	0.63	Balance

ตารางที่ 4.1 ส่วนผสมทางเคมีของเงินสเตอร์ลิง 925 และเงินสเตอร์ลิง 935-ทองแดง-ดีบุก ก่อนและ หลังการหล่อ

<u>หมายเหตุ</u>: * ผลตรวจส่วนผสมทางเคมี Umicore Precious Metal (Thailand) Ltd.

** ผลตรวจส่วนผสมทางเคมีได้มาจากสถาบันวิจัยอัญมณีและเครื่องประดับ แห่งชาติ

โลหะผสมชุดที่	ปริมาณดีบุกที่ใช้ใน	ปริมาณดีบุกที่	ปริมาณดีบุกที่	เปอร์เซนต์ที่ปริมาณ
	การหล่อ	มือยู่จริง	สูญเสีย	ดีบุกสูญเสียไป
	(wt%)	(wt%)	(wt%)	(wt%)
1	-	-	-	_
2	-	-	-	-
3	0.33	0.31	0.02	6.06
4	0.39	0.38	0.01	2.56
5	0.46	0.43	0.03	6.52
6	0.52	0.50	0.02	3.85
7	0.59	0.54	0.05	8.47
8	0.65	0.63	0.02	3.08

ตารางที่ 4.2 ส่วนผสมทางเคมีของปริมาณดีบุกในเงินสเตอร์ลิง 925 และเงินสเตอร์ลิง 935-ทองแดง-ดีบุกก่อนหล่อ หลังการหล่อ และที่สูญเลียระหว่างทำการหล่อ

จากตารางที่ 4.1 และ 4.2 แสดงผลการตรวจสอบส่วนผสมทางเคมีหลังการหล่อ ของโลหะ ผสมทั้ง 8 ชุด โดยมีปริมาณดีบุกตั้งต้น 0 – 0.65%โดยน้ำหนัก เมื่อตรวจสอบส่วนผสมหลังการหล่อ จะพบว่าปริมาณธาตุดีบุกที่ตรวจพบในโลหะผสมมีปริมาณลดลงจากปริมาณดีบุกตั้งต้น เหลือดีบุก เพียง 0 - 0.63%โดยน้ำหนัก ปริมาณดีบุกที่สูญเสียไปมีตั้งแต่ 0 – 0.05%โดยน้ำหนัก โลหะผสมชุดที่ 7 จะมีการสูญเสียปริมาณธาตุดีบุกสูงที่สุดคือ 0.05%โดยน้ำหนัก ส่วนโลหะผสมชุดที่ 4 จะมีการสูญเสีย ปริมาณธาตุดีบุกต่ำที่สุดคือ 0.01%โดยน้ำหนัก

ถึงแม้ว่าปริมาณธาตุแต่ละชนิดที่ตรวจสอบได้จากโลหะผสมทั้ง 8 ชุด จะไม่เท่ากับปริมาณ ธาตุดีบุกตั้งต้นที่เติมลงไป แต่แนวโน้มของปริมาณธาตุทองแดงที่ลดลงและปริมาณธาตุดีบุกที่เพิ่มขึ้น เป็นไปในทิศทางเดียวกันกับปริมาณธาตุตั้งต้นที่เติมลงไปก่อนจึง มีสัดส่วนที่สามารถนำไปทดสอบ สมบัติต่าง ๆ เพื่อศึกษาเปรียบเทียบได้

ปัจจัยที่มีผลต่อการสูญเสียธาตุดีบุกและทองแดงในโลหะผสม คือ ธาตุดีบุกและทองแดง สามารถรวมตัวกับออกซิเจนได้ดี จึงเกิดปฏิกิริยาออกซิเดชันขึ้น เกิดเป็นสารประกอบดีบุกออกไซด์และ คอปเปอร์ออกไซด์ลอยปกคลุมที่ผิวหน้าโลหะขณะกวนโลหะหลอมเหลวในขั้นตอนการหลอม และ หลังจากโลหะเย็นตัว จะเหลือเศษโลหะหรือสแลก (slag) แยกตัวออกมาอยู่บริเวณผิวหน้าตรง รูเทของงานหล่อ

4.2 ผลการตรวจสอบโครงสร้างจุลภาค

ผลการตรวจสอบโครงสร้างจุลภาคและผลการตรวจสอบส่วนผสมทางเคมีด้วย EDX ของ โลหะเงินสเตอร์ลิง 925 และเงินสเตอร์ลิง 935 - ทองแดง – ดีบุกในสภาพหล่อ แสดงไว้ในตารางที่ 4.3 ส่วนภาพโครงสร้างจุลภาคก่อน etch ซึ่งถ่ายด้วยกล้องจุลทรรศน์แบบส่องกวาด (SEM) แสดงดังรูปที่ 4.1 และภาพโครงสร้างจุลภาคของโลหะผสมเงินหลังจาก etch แสดงในภาคผนวก ก และรูปที่ 4.2 ที่ กำลังขยาย 100 เท่า

ตารางที่ 4.3	ปริมาณธา	เตุผสมใ	ในโครงส	ร้างของ	งเงินสเ	เตอร์ลิง	925	และเงินส	เตอร์ลิง	935- v	าองแดง-	ดีบุก
	ตรวจสอบ	ด้วยกล้	<i>โ</i> องจุลทร	ารศน์แา	าบสอง	งกวาด ((SEN	Л)				

ชุด	สว	นผสมท	างเคมี	র	านผสมทา	างเคมีที่ต	รวจสอบโ	ดยกล้อง	จุลทรรศ์เ	เบบส่องก	บบสองกวาด(SEM)		
โลหะ		(wt%)		(wt%)								
ผสม	Cu	Sn	Ag		All			Matrix			Second phase(สีดำ)		
				Cu	Sn	Ag	Cu	Sn	Ag	Cu	Sn	Ag	
1	7.35	-	Balance	7.82	-	92.18	4.42	-	95.58	25.71	-	74.30	
2	6.36	-	Balance	6.72	-	93.28	4.67	-	95.33	37.86	-	62.14	
3	5.95	0.31	Balance	6.76	ND	92.89	4.46	0.47	95.08	36.00	ND	63.78	
4	5.85	0.38	Balance	6.71	0.47	92.83	6.79	0.83	92.38	43.60	ND	56.21	
5	5.78	0.43	Balance	6.30	ND	93.36	8.61	0.52	90.87	58.09	0.31	41.60	
6	5.74	0.50	Balance	6.31	0.48	93.22	6.00	0.57	93.43	31.41	0.61	67.98	
7	5.68	0.54	Balance	6.44	0.40	93.21	7.32	0.73	91.95	61.39	0.48	38.13	
8	5.61	0.63	Balance	5.85	0.58	93.57	4.36	0.67	94.97	68.31	0.61	31.09	

ND-ตรวจไม่พบ

4.1 (n)

4.1 (ฃ)

4.1 (A)

4.1 (ง)

โลหะผสมชุดที่ 2 : Ag - 6.36%Cu

โลหะผสมชุดที่ 3 : Ag - 5.95%Cu – 0.32%Sn

รูปที่ 4.1 โครงสร้างจุลภาคของโลหะผสมเงินสเตอร์ลิง 925 และเงินสเตอร์ลิง 935-ทองแดง-ดีบุก ใน สภาพหล่อ ถ่ายด้วยกล้องจุลทรรศน์แบบส่องกวาด (SEM)

4.1 (ป)

4.1 (1)

โลหะผสมชุดที่ 4 : Ag - 5.85%Cu – 0.38%Sn

4.1 (ฌ)

4.1 (ល្អ)

โลหะผสมชุดที่ 5 : Ag - 5.78%Cu – 0.43%Sn

รูปที่ 4.1(ต่อ) โครงสร้างจุลภาคของโลหะผสมเงินสเตอร์ลิง 925 และเงินสเตอร์ลิง 935-ทองแดง-ดีบุก ในสภาพหล่อ ถ่ายด้วยกล้องจุลทรรศน์แบบส่องกวาด (SEM)

4.1 (ฑ)

โลหะผสมชุดที่ 7 : Ag - 5.68%Cu – 0.54%Sn

รูปที่ 4.1(ต่อ) โครงสร้างจุลภาคของโลหะผสมเงินสเตอร์ลิง 925 และเงินสเตอร์ลิง 935-ทองแดง-ดีบุก ในสภาพหล่อ ถ่ายด้วยกล้องจุลทรรศน์แบบส่องกวาด (SEM)

ผลการตรวจสอบโครงสร้างจุลภาคของเงินสเตอร์ลิง 925 และเงินสเตอร์ลิง 935-ทองแดง– ดีบุก ในสภาพหล่อก่อนการ etch ซึ่งถ่ายด้วยกล้องจุลทรรศน์แบบส่องกวาด (SEM) แสดงดังรูปที่ 4.1 พบว่าโครงสร้างจุลภาคของเงินสเตอร์ลิงทุกอัตราส่วนผสมภายหลังจากการหล่อที่กำลังขยาย 100 เท่า จะมีลักษณะเป็นเดนไดรท์ (Dendrite) เมื่อพิจารณาภาพโครงสร้างจุลภาคที่กำลังขยาย สูงขึ้น จะปรากฏโครงสร้างหลัก 2 ซนิด คือ โครงสร้างพื้น (Matrix) ซึ่งจะมีเงินเป็นองค์ประกอบสูง เรียกว่า Ag-rich solid solution (α-phase) และโครงสร้างยูเทคติค (Eutectic structure) มีลักษณะ เป็นแถบสีดำสลับกับแถบสีขาวกระจัดกระจายอยู่ โดยแถบสีขาวจะมี Ag-rich solid solution (αphase) ส่วนแถบสีดำจะมี Cu-rich solid solution (β-phase) ปริมาณของธาตุผสมในโครงสร้างต่าง

34

phase) ส่วนแถบสีดำจะมี Cu-rich solid solution (β-phase) ปริมาณของธาตุผสมในโครงสร้างต่าง ๆ สามารถตรวจสอบได้จาก EDX(ตาราง4.3) ปริมาณธาตุผสมในโครงสร้างที่ตรวจสอบได้และกราฟ แสดงพีคของธาตุต่าง ๆ ในโครงสร้างแสดงไว้ในภาคผนวก ข

โลหะเงินสเตอร์ลิงที่ไม่ได้เติมดีบุกมีส่วนผสมทางเคมี Ag-7.35%Cu รูปที่ 4.1(ก)และ(ข) และ โลหะเงินสเตอร์ลิงที่ไม่ได้เติมดีบุกมีส่วนผสมทางเคมี Ag-6.36%Cu รูปที่ 4.1(ค)และ(ง) จะพบ ลักษณะโครงสร้างเป็นเดนไดรท์ บริเวณโครงสร้างเนื้อพื้น Ag-rich solid solution (α-phase) มี ลักษณะเป็นเนื้อพื้นสีขาว พบว่ามีปริมาณธาตุเงินเป็นองค์ประกอบสูงมาก ที่กำลังขยาย 3000 เท่า จะพบโครงสร้างที่มีลักษณะแถบลายขาวดำ ซึ่งเป็นโครงสร้างยูเทคติคระหว่างเฟส α และเฟส β เนื่องจากโครงสร้างยูเทคติคมีขนาดเล็ก ดังนั้นจากการตรวจสอบด้วย EDX จึงครอบคลุมพื้นที่ยูเทคติค ทำให้ไม่สามารถวัดค่าปริมาณทองแดงในเฟส β ได้ ค่าที่วัดได้ในตาราง 4.3 จึงแสดงถึงส่วนผสม โดยรวมของเฟสทั้งสองนี้ ซึ่งค่าที่ได้พบว่ามีค่าใกล้เคียงจุดยูเทคติคของแผนภูมิสมดุลของเงิน-ทองแดง (28.1%ทองแดง) ยกเว้นกรณีของเงินผสมดีบุก 0.54% และ 0.63% ที่มีขนาดของ Second phase ที่ ใหญ่จึงจะได้ปริมาณทองแดงสูงถึง 61.39% และ 68 31%

สำหรับเงินสเตอร์ลิง 935 ที่เติมดีบุกในปริมาณต่าง ๆ กันดังนี้ 0.31, 0.38, 0.43, 0.50, 0.54 และ 0.63 เปอร์เซนต์โดยน้ำหนัก พบว่าโครงสร้างจุลภาคมีลักษณะเป็นเดนไดรท์เช่นกัน จะมี โครงสร้างเนื้อพื้นเป็น Ag – rich phase ซึ่งมีเงินเป็นองค์ประกอบสูงมาก เช่นเดียวกับโลหะเงินสเตอร์ ลิง925 และโลหะเงินสเตอร์ลิง 935 ที่ไม่ได้เติมดีบุก และเมื่อเติมปริมาณดีบุกเพิ่มมากขึ้นจะส่งผล ในทางกลับกันคือปริมาณของเฟส(β)ทองแดงลดน้อยลง ดังจะเห็นได้จากภาพโครงสร้างจุลภาค(รูปที่ 4.1)ซึ่งมี Second phase(อนุภาคสีดำ)บนโครงสร้างยูเทคติคและโครงสร้างยูเทคติคที่อยู่ระหว่างกิ่ง เดนไดรท์ลดลง และลักษณะของอนุภาคสีดำนี้จะมีรูปร่างกลมและมีขนาดใหญ่ขึ้นเมื่อปริมาณดีบุก เพิ่มขึ้นลักษณะการเปลี่ยนแปลงของโครงสร้างจุลภาคของโลหะเช่นนี้จะส่งผลต่อคุณสมบัติทางกล อย่างมาก เนื่องจากโครงสร้างยูเทคติคเป็นโครงสร้างสลับกันของสองเฟสที่ทำให้คุณสมบัติทางกล เพิ่มขึ้น ผลจากการตรวจสอบส่วนผสมทางเคมีด้วย EDX ดังตาราง 4.3 พบว่าดีบุกสามารถอยู่ได้ทั้งใน เนื้อพื้น Matrix และในเฟสต่าง ๆ ของโครงสร้างยูเทคติคโดยเฉพาะในเนื้อพื้นจะพบปริมาณดีบุกสูงอัน เนื่องมาจากความสามารถในการละลายของดีบุกที่ดีในเนื้อเงิน

สำหรับภาพโครงสร้างจุลภาคของเงินสเตอร์ลิง 925 และเงินสเตอร์ลิง 935-ทองแดง-ดีบุก หลัง etch แสดงไว้ดังรูป 4.2 ซึ่งแสดงให้เห็นถึงเฟส ที่มีลักษณะโครงสร้างเดนไดรท์ได้ชัดเจน

- รูปที่ 4.2 โครงสร้างจุลภาคของโลหะผสมเงินสเตอร์ลิง 925 และเงินสเตอร์ลิง 935-ทองแดง-ดีบุก ใน สภาพหล่อ ถ่ายด้วยกล้องจุลทรรศน์แบบแสงกำลังขยาย 100 เท่า หลังการ etch (50%NH₄OH+25%H₂O₂+25%H₂O) 4.2(n) Ag - 7.35%Cu 4.2(1) Ag - 6.36%Cu 4.2(A) Ag - 5.95%Cu-0.31%Sn 4.2(1) Ag - 5.78%Cu-0.43%Sn
 - 4.2(**a**) Ag 5.68%Cu-0.54%Sn

36

4.3 ผลจากการทดสอบสมบัติทางกลในสภาพหล่อ (as - cast)

4.3.1 ผลการทดสอบความแข็งแบบวิกเกอร์ (Vickers Hardness Test)

ทดสอบวัดค่าความแข็งแบบวิกเกอร์ตามมาตรฐาน ASTM92-82 โดยเครื่องวัดความ แข็งแบบวิกเกอร์ระบบดิจิตอล ใช้น้ำหนักกด 1 กิโลกรัม เป็นเวลา 10 วินาที วัดความยาวเส้นทแยงมุม ทั้งสองด้าน (d₁และ d₂) แล้วคำนวณค่าความแข็งแบบวิกเกอร์ (HV) ค่าความแข็งเฉลี่ยเมื่อ เปรียบเทียบกับปริมาณส่วนผสมทางเคมีของเงินสเตอร์ลิง 925 และเงินสเตอร์ลิง 935-ทองแดง-ดีบุก แสดงใน ตารางที่ 4.4

ตารางที่ 4.4 ค่าความแข็งแบบวิกเกอร์ (HV) เฉลี่ยเปรียบเทียบกับปริมาณส่วนผสมทางเคมีของเงิน สเตอร์ลิง 925 และเงินสเตอร์ลิง 935-ทองแดง-ดีบุก

โลหะผสมชุดที่	ส่วา	แผสมทางเคมี (w	t%)	ค่าความแข็งเฉลี่ย (HV)
	Cu	Sn	Ag	
1	7.35	_	Balance	63.5
2	6.36	_	Balance	56.0
3	5.95	0.31	Balance	58.8
4	5.85	0.38	Balance	62.7
5	5.78	0.43	Balance	62.9
6	5.74	0.50	Balance	61.7
7	5.68	0.54	Balance	61.2
8	5.61	0.63	Balance	60.5

โลหะเงินผสมทั้ง 8 ชุด มีค่าความแข็งแบบวิกเกอร์แสดงไว้ในตารางที่ 4.4 จะพบว่าค่าความ แข็งแบบวิกเกอร์ของเงินสเตอร์ลิงที่ไม่เติมดีบุก (Ag-7.35%Cu) มีค่าสูงสุด คือ 63.5 HV เนื่องจากมี ปริมาณทองแดงสูง และค่าความแข็งแบบวิกเกอร์ของโลหะเงินสเตอร์ลิง 935-ทองแดง ที่ไม่เติมดีบุก (Ag-6.36%Cu) มีค่าต่ำสุด คือ 56.0 HV จากตารางที่ 4.4 พบว่าการเติมดีบุกส่งผลต่อค่าความแข็ง เพิ่มขึ้นเพียงเล็กน้อยประมาณไม่เกิน 12% ความแข็งที่เพิ่มขึ้นน่าจะมาจากสาเหตุสามประการคือ ประการแรก ดีบุกเข้าไปละลายอยู่ในเนื้อ Matrix ในลักษณะสารละลายของแข็ง(Solid Solution Strengthening) ประการที่สองดีบุกเข้าไปอยู่ในเฟสที่มีทองแดงสูง(Second phase) ทำให้มีความแข็ง เพิ่มขึ้น ประการที่สามโครงสร้างที่อยู่โดยรอบโครงสร้างยูเทคติคที่มีลักษณะเล็กละเอียดโดยเฉพาะ เมื่อมีดีบุก 0.38%โดยน้ำหนัก และ 0.43%โดยน้ำหนัก (ดูรูปที่ 4.1(ซ)และ 4.1(ญ)) ทำให้มีความแข็ง สูงที่สุดในชุดโลหะเงินสเตอร์ลิง 935

4.3.2 ผลทดสอบแรงดึง (Tensile Test)

ทดสอบแรงดึงตามมาตรฐาน ASTM E 8M-96 ด้วยเครื่องทดสอบแรงดึงระบบอัตโนมัติ ขนาด 150 kN รุ่น seriesIX โดยบริษัท Instron Corporation ด้วยความเร็วแรงดึง 0.5 มิลลิเมตรต่อ นาที ได้ค่าความต้านทานแรงดึงสูงสุด (Ultimate tensile strength; UTS) ค่าความเค้นจุดคราก(Yield strength;σ_y) ค่ามอดุลัสยืดหยุ่น (Young's Modulus; E) และค่าเปอร์เซ็นต์การยืดตัว (%Elongation) ซึ่งแสดงไว้ในตารางที่ 4.5 และเมื่อนำมาวาดกราฟแสดงความสัมพันธ์ต่าง ๆ จะได้กราฟดังรูป 4.3 และ 4.4

โลหะผสม ๓ดที่	ส่วนผสมทางเคมี (wt%)		(wt%)	ความเค้นจุด คราก(MPa)	ความต้านทาน แรงดึงสงสด	มอดุลัส ยืดหย่น	เปอร์เซ็นต์ การยืดตัว
	Cu	Sn	Ag		(MPa)	(GPa)	(%)
1	7.35	_	Balance	90.9	199.6	54.5	19.7%
2	6.36	_	Balance	82.7	183.4	48.6	22.2%
3	5.95	0.31	Balance	84.1	187.6	55.5	24.1%
4	5.85	0.38	Balance	85.3	189.5	54.1	24.3%
5	5.78	0.43	Balance	87.8	195.7	57.4	28.4%
6	5.74	0.50	Balance	82.2	179.2	49.4	34.3%
7	5.68	0.54	Balance	83.2	184.0	51.7	27.1%
8	5.61	0.63	Balance	88.0	187.5	51.4	25.0%

ตารางที่4.5 ผลการทดสอบแรงดึงของเงินสเตอร์ลิง 925 และเงินสเตอ์ลิง 935-ทองแดง-ดีบุก

รูปที่ 4.3 กราฟความสัมพันธ์ระหว่างสมบัติทางกลของโลหะเงินสเตอร์ลิง 925 และโลหะเงินสเตอร์ลิง 935-ทองแดง–ดีบุก ในสภาพหล่อกับชุดโลหะผสม

ตารางที่ 4.4 แสดงค่าความต้านทานแรงดึงสูงสุด ค่าความเค้นจุดคราก ค่ามอดุลัสยืดหยุ่น และค่าเปอร์เซ็นต์การยืดตัว เมื่อน้ำค่าทั้งหมดมาวาดกราฟแท่งแสดงความสัมพันธ์ระหว่างค่าความ เค้น ค่ามอดุลัสยืดหยุ่นและค่าเปอร์เซ็นต์การยืดตัวกับชุดโลหะเงินผสม จะได้กราฟดังรูป 4.3 ค่าความ ต้านทานแรงดึงสูงสุดที่โลหะจะทนได้ก่อนที่จะขาดออกจากกันและค่าความเค้นจุดครากของโลหะเงิน สเตอร์ลิง Ag-7.35%Cu พบว่ามีค่าสูงที่สุด คือ 199.6 MPa และ 90.9 MPa ตามลำดับ ซึ่งมาจาก อิทธิพลของธาตุทองแดง ตามที่กล่าวไว้ในบทที่ 1(รูปที่1.1 กราฟผลของธาตุต่าง ๆ ในเงิน) แต่มีค่า ความเหนียวต่ำที่สุดเมื่อเปรียบเทียบกับเงินสเตอร์ลิง 935 ที่ส่วนผสมอื่น ๆ

รูปที่ 4.4 ผลของธาตุทองแดงและดีบุกในเงินสเตอร์ลิง 935-ทองแดง–ดีบุก ในสภาพหล่อที่มีต่อความ ต้านทานแรงดึงสูงสุด ความเค้นจุดคราก ค่ามอดุลัสยืดหยุ่นและความเหนียว

สำหรับค่าความต้านทานแรงดึงและค่าความเค้นจุดครากของเงินสเตอร์ลิง Ag-6.36%Cu และเงินสเตอร์ลิง 935 ที่เติมดีบุกตั้งแต่ 0.31–0.63 เปอร์เซ็นต์โดยน้ำหนัก จะมีแนวโน้มเพิ่มขึ้นเมื่อ ปริมาณดีบุกเพิ่มขึ้นดังแสดงในรูปที่ 4.4

แนวโน้มที่เพิ่มขึ้นของค่าความต้านทานแรงดึงและค่าความเค้นจุดครากของเงินสเตอร์ลิง 935-ทองแดง-ดีบุก เมื่อมีดีบุกเพิ่มขึ้นเปรียบเทียบกับเงินสเตอร์ลิง 935 ที่ไม่เติมดีบุก Ag-6.36%Cu นั้นสามารถอธิบายได้เช่นเดียวกับที่อธิบายในค่าความแข็งก่อนหน้านี้

แสดงว่าเมื่อดีบุกเพิ่มขึ้นจะทำให้ค่าความแข็ง ค่าความต้านทานแรงดึงและค่าความเค้นจุด ครากเพิ่มขึ้น ยกเว้นเมื่อมีดีบุก 0.38-0.43% จะมีค่าดังกล่าวสูงที่สุด เพราะมีโครงสร้างที่อยู่โดยรอบ โครงสร้างยูเทคติคที่เล็กละเอียด

ค่ามอดุลัสยึดหยุ่น จากรูปที่ 4.3 และ 4.4 แสดงให้เห็นว่าเงินสเตอร์ลิง Ag-7.35%Cu และ โลหะผสมเงิน 935 ที่ไม่เติมดีบุกและเติมดีบุกจะมีค่ามอดุลัสยืดหยุ่นที่คงที่ ค่าเปอร์เซ็นต์การยึดตัวจะลดลงเมื่อปริมาณดีบุกเพิ่มมากขึ้น 4.4 ผลทดสอบความแข็งแบบวิกเกอร์ (Vickers Hardness Test) ภายหลังจากผ่าน กระบวนการทางความร้อนที่อุณหภูมิและเวลาต่าง ๆ

เนื่องจากขึ้นงานสำหรับทดลองมีจำนวนจำกัด ดังนั้นจึงจำเป็นต้องศึกษาหาตัวแปร การบ่มเพิ่มความแข็งที่เหมาะสมเสียก่อน ซึ่งได้แก่ อุณหภูมิการบ่มและระยะเวลาการบ่ม สำหรับ งานวิจัยนี้จะใช้อุณหภูมิที่อบให้เป็นเนื้อเดียวกันที่ 750 °C เป็นเวลา 1 ชั่วโมง ซุบอย่างรวดเร็วในน้ำ และทดลองบ่มเพิ่มความแข็งที่อุณหภูมิ 260 °C และ 350 °C ตามลำดับ ส่วนระยะเวลาเท่ากับ 0, 7, 15, 30, 60, 120 และ 240 นาที ตามลำดับ จากนั้นนำชิ้นงานมาขัดเพื่อเอาชั้นออกไซด์ที่เกิดขึ้นจาก การอบออกไป โดยความลึกที่ขัดออกไปไม่ต่ำกว่า 200 μm (รายละเอียดเกี่ยวกับชั้นออกไซด์อยู่ใน หัวข้อ4.5)แล้วจึงวัดค่าความแข็งแบบวิกเกอร์ โดยทั่วไปสมบัติด้านความต้านทานแรงดึงที่สูงจะมีค่า ความแข็งสูงด้วย

เหตุผลที่เลือกใช้อุณหภูมิ 260 °C เนื่องจากมีงานวิจัยของ Eagerและคณะ(22) แสดง ให้เห็นว่าอุณหภูมิที่เหมาะสมในการบ่มเพิ่มความแข็งเงินสเตอร์ลิง 925 ที่เติมทองแดง ดีบุกและ ลิเธียม คือ 260 °C

4.4.1 ผลการทดสอบความแข็งแบบวิกเกอร์ของโลหะเงินสเตอร์ลิง 925 และโลหะ เงินสเตอร์ลิง 935-ทองแดง-ดีบุก ในสภาพอบให้เป็นสารละลายของแข็งเนื้อ เดียวกันที่อุณหภูมิ 750°C

4.4.1.1 โลหะเงินสเตอร์ลิงที่ไม่ได้เติมดีบุก Ag-7.35%Cu และ Ag-6.36%Cu มีค่า ความแข็งแบบวิกเกอร์เท่ากับ 56.3 HV และ 55.4 HV (จากตาราง4.6)ตามลำดับ ซึ่งค่าความแข็งที่ได้ มีค่าต่ำกว่าชิ้นงานในสภาพหล่อ เนื่องจากโครงสร้างยูเทคติคละลายกลับเข้าไปในโครงสร้างเนื้อพื้น ทำให้ความแข็งลดลง เมื่อตรวจสอบดูโครงสร้างจุลภาคของชิ้นงานหลังจากกัดกรด พบว่าโครงสร้าง เดนไดรท์ที่พบในชิ้นงานสภาพหล่อจะถูกขจัดหมดไปและไม่ปรากฏให้เห็นแต่จะเห็นโครงสร้างของ โลหะเกิดการก่อตัวเป็นเกรนขึ้นแทน ส่วนโครงสร้างยูเทคติคยังมีหลงเหลืออยู่บ้าง แสดงดังรูป 4.5(n) ค่าความแข็งของโลหะเงินสเตอร์ลิง Ag-6.36%Cu มีค่าต่ำกว่าค่าความแข็งของเงินสเตอร์ลิง Ag-7.35%Cu สาเหตุมาจากมีปริมาณทองแดงน้อยกว่า เมื่อดูโครงสร้างจุลภาคของชิ้นงานหลังจากetch จะพบว่ามีลักษณะโครงสร้างแบบเดียวกับโลหะเงินสเตอร์ลิงที่ไม่ได้เติมดีบุก แต่โครงสร้างยูเทคติคที่ หลงเหลืออยู่มีปริมาณน้อยกว่า เพิ่มขึ้นจะทำให้ปริมาณทองแดงลดลง เมื่อพิจารณาจากภาพโครงสร้างจุลภาคที่ถ่ายด้วยกล้อง จุลทรรศน์แบบส่องกวาดของเงินสเตอร์ลิง Ag-5.74%Cu-0.50%Sn ยังไม่etch ดังรูปที่ 4.5 จะไม่พบ โครงสร้างโดยรอบโครงสร้างยูเทคติคและโครงสร้างยูเทคติคที่หลงเหลืออยู่จะมีขนาดเล็กลง ชิ้นงาน หลังจาnetch แสดงดังรูป ที่ 4.6(ข)และ(ค) พบว่าโครงสร้างเดนไดรท์จะไม่ปรากฏให้เห็นแต่จะเห็นเป็น ลักษณะของเกรนและเกรนจะมีขนาดใหญ่ขึ้นเมื่อมีดีบุกเพิ่มขึ้น

รูปที่ 4.5 โครงสร้างจุลภาคถ่ายด้วยกล้องจุลทรรศน์แบบส่องกวาดของเงินสเตอร์ลิง Ag-5.74%Cu-0.50%Sn ยังไม่etch กำลังขยาย 3500 เท่า

4.4.2 ผลการทดสอบความแข็งแบบวิกเกอร์ของโลหะเงินสเตอร์ลิง 925 และโลหะ เงินสเตอร์ลิง 935-ทองแดง-ดีบุก หลังผ่านการบ่มเพิ่มความแข็งโดยการ ตกตะกอนที่อุณหภูมิ 260 °C

ตารางที่ 4.6 โลหะเงินสเตอร์ลิงที่ไม่ใส่ดีบุก Ag-7.35%Cu ได้ค่าความแข็งสูงสุดคือ 139.80 HV ซึ่งใช้เวลาในการบ่ม 240 นาที ส่วนโลหะผสมเงิน Ag-6.36%Cu ให้ความแข็งสูงสุดที่ 133.80 HV โดยใช้เวลา 120 นาที สำหรับโลหะผสมเงินที่เติมดีบุก 0.31 และ 0.38 เปอร์เซ็นต์โดย น้ำหนัก จะใช้ระยะเวลาสั้นที่สุดในการบ่มเพิ่มความแข็งด้วยเวลา 60 นาที และค่าความแข็งที่ได้ของ โลหะผสมเงินที่มีดีบุก 0.38 เปอร์เซ็นต์โดยน้ำหนักยังมีค่าสูงที่สุดถึง 140.60 HV เมื่อพิจารณาค่า ความแข็งของโลหะเงินสเตอร์ลิงทุกๆส่วนผสมแล้ว พบว่าที่ระยะเวลา 120 นาที ค่าความแข็งของโลหะ ผสมเงินทุกส่วนผสมจะมีค่าที่ใกล้เคียงกันดังรูป 4.7 ดังนั้นระยะเวลาที่จะใช้ในการบ่มเพิ่มความแข็ง สำหรับอุณหภูมิ 260 °C นี้คือ 120 นาที

- รูปที่ 4.6 โครงสร้างจุลภาคของโลหะเงินสเตอร์ลิง 925 และโลหะเงินสเตอร์ลิง 935-ทองแดง-ดีบุก ใน สภาพอบเป็นสารละลายของแข็งเนื้อเดียวที่ 750 °C เวลา 1 ชม. ถ่ายด้วยกล้องจุลทรรศน์ แบบแสงกำลังขยาย 100 เท่า หลัง etch (50%NH₄OH+25%H₂O₂+25%H₂O)
 - 4.6(n) Ag-7.35%Cu
 - 4.6(ป) Ag-5.78%Cu-0.43%Sn
 - 4.6(P) Ag-5.68%Cu-0.54%Sn

ชุด	ส่วนผ	สมทางเค	มี (wt%)			ค่าความแ	เข็งแบบวิก	เกอร์ (HV)			
โลหะ						ι	วลา(นาที)			
ผสม	Cu	Sn	Ag	0	7	15	30	60	120	240	
1	7.35	_	Balance	56.3	64.4	83.8	123.2	127.8	134.5	<u>139.8</u>	
2	6.36	-	Balance	55.6	61.5	72.8	111.8	125.4	<u>133.8</u>	132.8	
3	5.95	0.31	Balance	55.5	78.5	83.3	133.4	<u>138.2</u>	135.0	126.2	
4	5.85	0.38	Balance	55.1	96.4	108.2	134.9	<u>140.6</u>	134.4	128.5	
5	5.78	0.43	Balance	54.9	62.4	68.9	122.6	132.3	<u>134.6</u>	124.4	
6	5.74	0.50	Balance	54.5	59.4	74.4	108.6	129.6	<u>132.6</u>	127.4	
7	5.68	0.54	Balance	54.3	63.0	71.6	104.5	115.0	128.0	<u>132.0</u>	
8	5.61	0.63	Balance	53.8	67.6	92.8	118.8	129.3	130.6	<u>137.4</u>	

ตารางที่4.6 ค่าความแข็งแบบวิกเกอร์หลังจากการอบให้เป็นเนื้อเดียวกันที่ 750 °C และบ่มเพิ่มความ แข็งโดยการตกตะกอนที่ 260 °C ที่เวลา 0, 7, 15, 30, 60, 120 และ 240 นาที

รูปที่ 4.7 ค่าความแข็งแบบวิกเกอร์หลังจากบ่มเพิ่มความแข็งโดยการตกตะกอนที่อุณหภูมิ 260 °C ที่ เวลา 0, 7, 15, 30, 60, 120 และ 240 นาที

4.4.3 ผลการทดสอบความแข็งแบบวิกเกอร์ของโลหะเงินสเตอร์ลิง 925 และโลหะ เงินสเตอร์ลิง 935-ทองแดง-ดีบุก หลังผ่านการบ่มเพิ่มความแข็งโดยการ ตกตะกอนที่อุณหภูมิ 350 °C

จากตาราง 4.7 โลหะเงินสเตอร์ลิงที่ไม่ใส่ดีบุก Ag-7.35%Cu ได้ค่าความ

แข็งสูงสุดคือ 146.6 HV ซึ่งใช้เวลาในการบ่ม 15 นาที ส่วนโลหะผสมเงิน Ag-6.36%Cu ให้ความแข็ง สูงสุดที่ 144.4 HV โดยใช้เวลา 15 นาทีเช่นกัน สำหรับโลหะผสมเงินที่เติมดีบุกตั้งแต่ 0.31 –0.63 เปอร์เซ็นต์โดยน้ำหนัก ค่าความแข็งสูงสุดของแต่ละส่วนผสมจะมีแนวโน้มลดลง เมื่อพิจารณาค่า ความแข็งของโลหะผสมเงินทุกๆส่วนผสมแล้ว พบว่าที่ระยะเวลา 30 นาที ค่าความแข็งของโลหะผสม เงินทุกส่วนผสมจะมีค่าใกล้เคียงกันดังรูป 4.8 ดังนั้นระยะเวลาที่จะใช้ในการอบเพิ่มความแข็งสำหรับ อุณหภูมิ 350 °C นี้คือ 30 นาที

นุด	ส่วนผ	สมทางเค	มี (wt%)) ค่าความแข็งแบบวิกเกอร์(HV)							
โลหะ						L	วลา(นาที)			
ผสม	Cu	Sn	Ag	0	7	15	30	60	120	240	
1	7.35	-	Balance	56.3	144.2	<u>146.6</u>	140.6	135.4	126.4	113.9	
2	6.36	_	Balance	55.6	142.6	<u>144.4</u>	137.7	135.7	134.6	127.5	
3	5.95	0.31	Balance	55.5	133.5	136.8	143.6	<u>145.8</u>	131.2	130.1	
4	5.85	0.38	Balance	55.1	<u>140.0</u>	137.3	130.2	125.8	125.1	119.3	
5	5.78	0.43	Balance	54.9	<u>140.1</u>	135.1	125.6	124.5	123.4	114.5	
6	5.74	0.50	Balance	54.5	119.3	121.9	<u>137.2</u>	128.6	125.2	120.6	
7	5.68	0.54	Balance	54.3	108.3	114.6	<u>136.5</u>	114.8	115.0	108.8	
8	5.61	0.63	Balance	53.8	127.0	127.3	130.0	132.5	135.1	114.5	

ตารางที่4.7 ค่าความแข็งแบบวิกเกอร์หลังจากการอบให้เป็นเนื้อเดียวกันที่ 750 °C และบ่มเพิ่มความ แข็งโดยการตกตะกอนที่ 350 °C ที่เวลา 0, 7, 15, 30, 60, 120 และ 240 นาที

จากรูปที่ 4.7 และ 4.8 พบว่าค่าความแข็งสูงสุดของโลหะเงินผสมแต่ละ ส่วนผสมจะเกิดที่เวลาแตกต่างกัน ซึ่งอาจจะเป็นผลมาจากธาตุทองแดงและดีบุกร่วมกัน

รูปที่ 4.8 ค่าความแข็งแบบวิกเกอร์หลังจากบ่มเพิ่มความแข็งโดยการตกตะกอนที่อุณหภูมิ 350 °C ที่ เวลา 0, 7, 15, 30, 60, 120 และ 240 นาที

รูปที่ 4.9 ภาพโครงสร้างจุลภาคของเงินสเตอร์ลิง Ag-5.78%Cu-0.43%Sn ถ่ายด้วย กล้องจุลทรรศน์แบบส่องกวาดยังไม่ etchในสภาพอบเป็นสารละลายของแข็งเนื้อเดียวที่ 750 °C เวลา 1 ซม.และภายหลังบ่มเพิ่มความแข็งที่อุณหภูมิ 260 °C เวลา 120 นาที จะไม่พบโครงสร้างโดยรอบ โครงสร้างยูเทคติคและโครงสร้างยูเทคติคจะมีขนาดเล็กลงซึ่งแตกต่างจากงานหล่อและจะไม่เห็น อนุภาคตกตะกอน เนื่องจากมีขนาดเล็กมาก รูปที่4.10(ก)และ(ข) แสดงภาพโครงสร้างจุลภาค ภายหลังetch แล้ว

รูปที่ 4.9 โครงสร้างจุลภาคของเงินสเตอร์ลิง Ag-5.78%Cu-0.43%Sn ถ่ายด้วยกล้องจุลทรรศน์แบบ ส่องกวาดยังไม่etchในสภาพอบเป็นสารละลายของแข็งเนื้อเดียวที่ 750 °C เวลา 1 ชม.และ ภายหลังบ่มเพิ่มความแข็งที่อุณหภูมิ 260 °C เวลา 120 นาที กำลังขยาย 3500 เท่า

- รูปที่ 4.10 โครงสร้างจุลภาคของโลหะเงินสเตอร์ลิง 935-ทองแดง-ดีบุก ในสภาพอบเป็นสารละลาย ของแข็งเนื้อเดียวที่ 750°C เวลา 1 ชม.และภายหลังบ่มเพิ่มความแข็งที่อุณหภูมิ 260°C เวลา 120 นาที ถ่ายด้วยกล้องจุลทรรศน์แบบแสงที่กำลังขยาย 100 เท่า หลัง etch (50%NH₄OH+25%H₂O₂+25%H₂O)
 - 4.10(ก) Ag-5.78%Cu-0.43%Sn ที่ผ่านการอบให้เป็นสารละลายเนื้อเดียว
 - 4.10(ข) Ag-5.78%Cu-0.43%Sn ที่ผ่านการบ่มเพิ่มความแข็ง

4.5 ผลการตรวจสอบสีผิวหลังอบให้ความร้อน

จากการอบชิ้นงานให้เป็นสารละลายของแข็งเนื้อเดียวที่ 750°C เวลา 1 ซม แล้วซุบลงในน้ำจะ พบว่าลักษณะสีผิวของชิ้นงานจะมีสีผิวค่อนข้างดำ และก่อนจะวัดความแข็งต้องขัดชั้นผิวสีดำนี้ออกไป ไม่ต่ำกว่า 200 μm ดังนั้นจึงได้ทดลองทำการทดสอบอบชิ้นงานเพื่อดูลักษณะสีผิวโดยจะอบชิ้นงานให้ เป็นสารละลายของแข็งเนื้อเดียวที่อุณหภูมิ 750 °C เป็นเวลา 1 ซม. แล้วปล่อยให้เย็นตัวในอากาศ พบว่าลักษณะสีผิวของขึ้นงานโลหะเงินสเตอร์ลิง 925 และโลหะเงินสเตอร์ลิง 935-ทองแดง-ดีบุก ที่ได้ แสดงไว้ดังรูปที่ 4.11

รูปที่ 4.11 ลักษณะสีผิวของชิ้นงานหลังอบที่อุณหภูมิ 750 °C เป็นเวลา 1 ชั่วโมง

4.11(n) Ag-7.35%Cu 4.11(1) Ag-6.36%Cu 4.11(1) Ag-5.95%Cu-0.31%Sn 4.11(1) Ag-5.78%Cu-0.43%Sn 4.11(1) Ag-5.68%Cu-0.54%Sn

จากรูปที่ 4.11 จะพบว่าผิวของโลหะเงินสเตอร์ลิงที่ไม่เติมดีบุก (Ag-7.35%Cu) จะมีสีดำที่สุด ส่วนในกลุ่มโลหะเงินสเตอร์ลิง 935 จะสังเกตเห็นว่า โลหะเงินสเตอร์ลิง Ag-6.36%Cu จะมีสีผิวดำ ที่สุดในกลุ่ม และเมื่อเติมดีบุกเข้าไปจะทำให้สีผิวเป็นสีเทาขาว สีผิวจะขาวมากขึ้นเมื่อปริมาณดีบุกที่ เติมเข้าไปเพิ่มขึ้น

ลักษณะสีผิวของโลหะเงินสเตอร์ลิงที่ไม่เติมดีบุก(Ag-7.35%Cu)ที่พบนี้เกิดจากการแพร่ของ ทองแดงจากบริเวณใจกลางขึ้นงานไปยังผิวของขึ้นงานแล้วทำปฏิกิริยาออกซิเดชันในบรรยากาศ เกิด เป็นพีล์มของสารประกอบออกไซด์ปกคลุมบนผิวหน้า จากการศึกษาทฤษฎีในเรื่องคุณสมบัติของพีล์ม พบว่าสารประกอบคอปเปอร์ออกไซด์ที่มีสีเทาดำจะเรียกว่า Cupric oxide (CuO) ส่วนสีชมพูจะ เรียกว่า Cuprous oxide (Cu₂O) โดยปฏิกิริยาออกซิเดชันนี้จะเกิดขณะให้ความร้อนแก่โลหะที่ อุณหภูมิ 600-800 °C ในสภาวะบรรยากาศ ส่วนโลหะเงินสเตอร์ลิง Ag-6.36%Cu ก็อธิบายได้ใน ลักษณะเดียวกันแต่สีผิวของซิ้นงานที่มีสีอ่อนกว่าก็เนื่องมาจากปริมาณทองแดงมีน้อยกว่าในเงิน สเตอร์ลิงที่ไม่เติมดีบุก Ag-7.35%Cu การที่ทองแดงทำปฏิกิริยาออกซิเดชันที่ผิวจะเป็นสาเหตุให้ ปริมาณทองแดงในขึ้นงานลดลงได้ รูปที่ 4.12 แสดงภาพโครงสร้างจุลภาคของซิ้นงานที่ผ่านการอบ

4.12(n)

4.12(ฃ)

รูปที่ 4.12 โครงสร้างจุลภาคของชิ้นงานที่ผ่านการอบที่อุณหภูมิ 750 °C เวลา 1 ซม. ถ่ายด้วยกล้อง จุลทรรศน์แบบแสง กำลังขยาย 200 เท่า ยังไม่ etch 4.12(n) Ag-7.35%Cu ชั้นออกไซด์หนาประมาณ 117 μm 4.12(ข) Ag-5.61%Cu-0.63%Sn ชั้นออกไซด์หนาประมาณ 100 μm

จากรูป 4.12 จะเห็นว่ามีสารประกอบเกิดขึ้นและจากการตรวจสอบส่วนผสมทางเคมีโดย EDX ดังแสดงในตารางที่ 4.8 และรูปที่ 4.13 พบว่าสารประกอบที่เกิดขึ้นในเงินสเตอร์ลิง Ag-7.35%Cu จะเป็นสารประกอบระหว่างธาตุออกซิเจน, ทองแดงและเงิน ส่วนในเงินสเตอร์ลิง Ag-5.61%Cu-0.63%Sn จะเป็นสารประกอบระหว่างธาตุออกซิเจน, ทองแดง เงินและดีบุก อนุภาค สารประกอบจะมีธาตุทองแดงเป็นส่วนประกอบที่สูงมาก ชั้นสารประกอบของเงินสเตอร์ลิง Ag-7.35%Cu จะหนากว่าชั้นสารประกอบของเงินสเตอร์ลิง Ag-ของสารประกอบจะหยาบกว่า

ดังนั้นขั้นสารประกอบที่เกิดขึ้นนี้ก็คือ ขั้นคอปเปอร์ออกไซด์ ซึ่งเกิดขึ้นในขณะอบขิ้นงานใน บรรยากาศ โดยออกซิเจนในบรรยากาศจะแพร่เข้าไปทำปฏิกิริยาออกซิเดชั่นกับทองแดงที่แพร่ออกมา ที่ผิวของขิ้นงาน และพบว่าพื้นที่ข้างเคียงอนุภาคออกไซด์จะไม่พบธาตุทองแดงเลย เนื่องจากทองแดง จะถูกดึงมาทำฏิกิริยาออกซิเดชั่น จากตาราง 4.8 เมื่อเปรียบเทียบปริมาณทองแดงที่เป็นส่วนประกอบ ในอนุภาคออกไซด์ระหว่างโลหะเงินสเตอร์ลิง Ag-5.61%Cu-0.63%Sn และ Ag-7.35%Cu จะพบว่า อนุภาคออกไซด์ของโลหะเงินสเตอร์ลิง Ag-5.61%Cu-0.63%Sn จะมีทองแดงเป็นส่วนประกอบต่ำ กว่าในโลหะเงินสเตอร์ลิง Ag-7.35%Cu และมีดีบุกเป็นส่วนประกอบอยู่ด้วย เพราะฉะนั้นจึงเป็นไปได้ ที่ดีบุกจะมีส่วนช่วยลดการสูญเสียทองแดงอันเนื่องมาจากการเกิดปฏิกิริยาออกซิเดชั่นได้ ส่วนบริเวณ เนื้อพื้นข้างในจะไม่พบธาตุออกซิเจนเลย

4.13(ก) Ag-7.35%Cu

4.13(ข) Ag-5.61%Cu-0.63%Sn

ตารางที่ 4.8 ปริมาณธาตุผสมในชั้นสารประกอบของเงินสเตอร์ลิง 925 และเงินสเตอร์ลิง 935-

୍ୟୁଡ	ครั้ง	สว	านผสมทา	เงเคมี				ขั้นสารประ	ะกอบ					เนื้อพื้น	ข้างใน	
โลหะ	ที่					อนุภาคส	ารประกอเ	J	Ľ	นื้อพื้นข้	างอนุภาค					
ผสม									สารประกอบ							
		Cu	Sn	Ag	Cu	Sn	Ag	0	Cu	Sn	Ag	0	Cu	Sn	Ag	0
	1				68.22	_	11.87	19.91	0.41	_	99.59	_	4.59	-	95.41	-
1	2	7.35	-	Balance	66.99	_	12.88	20.13	0.39	_	99.61	-	4.29	-	95.71	-
	3				71.58	-	9.16	19.26	0.37	_	99.63	_	5.03	-	94.97	-
	1				43.40	2.25	31.89	22.47	1.52	-	98.48	-	3.93	0.60	95.47	-
8	2	5.61	0.63	Balance	47.79	1.39	28.59	22.23	1.85	-	98.15	-	4.02	0.54	95.44	-
	3				56.33	1.55	21.58	20.54	1.98	_	98.02	-	4.05	0.62	95.33	_

ทองแดง-ดีบุก ตรวจสอบด้วยกล้องจุลทรรศน์แบบสองกวาด(SEM)

เมื่อนำชิ้นงานเดิมที่อบแล้วมาผ่าครึ่งแล้วนำไปอบที่อุณหภูมิ 750 °C เวลา 1 ชม. เช่นเดิม จะ ได้ลักษณะผิวดังรูปที่ 4.14 รูปที่ได้แสดงให้เห็นว่าที่ขอบของชิ้นงานจะเป็นสีขาว เนื่องจากทองแดงที่ แพร่มาที่ผิวเกิดเป็นออกไซด์ไปหมดตั้งแต่การอบครั้งแรกซึ่งได้อธิบายไว้ช้างต้นแล้ว เมื่ออบครั้งที่ 2 จึง ไม่มีทองแดงที่ผิวที่จะทำปฏิกิริยาออกซิเดชั่น ทำให้ไม่เกิดคอปเปอร์ออกไซด์สีเทาดำที่ขอบของชิ้นงาน ชั้นออกไซด์จะมีส่วนในการลดความแข็งแรงของโลหะเงินสเตอร์ลิงในกรณีที่ไม่มีการนำชิ้นงานไปไส หรือกลึงผิวภายหลัง จากอบออกก่อนที่จะนำชิ้นงานไปทดสอบหรือใช้งานในด้านต่าง ๆ

รูปที่ 4.14 ลักษณะสีผิวของขึ้นงานที่ผ่าครึ่งหลังอบที่อุณหภูมิ 750 °C เป็นเวลา 1 ชั่วโมง

- 4.14(n) Ag-7.35%Cu 4.14(1) Ag-6.36%Cu 4.14(*n*) Ag-5.95%Cu-0.31%Sn 4.14(1) Ag-5.78%Cu-0.43%Sn
- 4.14(**ຈ**) Ag-5.68%Cu-0.54%Sn

ในโลหะเงินสเตอร์ลิง 935 ที่เติมดีบุก ลักษณะสีผิวที่ได้จะมีสีเทาขาวและสีจะขาวมากขึ้นเมื่อ ปริมาณดีบุกเพิ่มขึ้น นั่นคือขณะอบชิ้นงานที่อุณหภูมิ 750 °C จะเกิดปฏิกิริยาออกซิเดชั่นของดีบุกที่ผิว เป็นส่วนใหญ่ ส่วนปฏิกิริยาออกซิเดชั่นของทองแดงจะเกิดขึ้นบ้างเล็กน้อย เมื่อนำชิ้นงานไปผ่าครึ่ง และอบที่ 750 °C จะพบว่าสีขาวที่ขอบของชิ้นงานที่เติมดีบุกจะมีน้อยมาก ดังรูปที่ 4.14 แสดงว่ามี การสูญเสียทองแดงน้อยลงด้วย

เนื่องจากสีผิวของเครื่องประดับมีความสำคัญมาก การที่สีผิวเปลี่ยนมากจะทำให้เกิดความ หมองขึ้นซึ่งไม่เป็นที่ต้องการ ถึงแม้ว่าการเติมทองแดงเพียงอย่างเดียวจะมีความแข็งสูงขึ้นมากก็ ตามแต่สีผิวจะดำคล้ำ ดังนั้นจึงต้องมีการเติมดีบุกเข้าไปด้วยเพื่อช่วยให้ผิวของชิ้นงานไม่เป็นสีดำและ ลดการสูญเสียทองแดงขณะอบ

4.6 ผลทดสอบแรงดึง (Tensile Test) ภายหลังจากทำกระบวนการบ่มเพิ่มความแข็งโดย การตกตะกอน

จากตารางที่ 4.6 และ 4.7 ตัวแปรต่าง ๆ ที่เหมาะสมสำหรับทำกระบวนการเพิ่มความแข็งโดย การตกตะกอน มีดังนี้คืออบขึ้นงานให้เป็นเนื้อเดียวกันที่อุณหภูมิ 750 °C เป็นเวลา 1 ชั่วโมง หลังจาก นั้นชุบอย่างรวดเร็วลงในน้ำเย็น ต่อมาบ่มเพิ่มความแข็งที่อุณหภูมิ 350 °C และ 260 °C เป็นเวลา 30 นาที และ 120 นาที ตามลำดับ ผลทดสอบแรงดึงหลังจากบ่มเพิ่มความแข็งโดยการตกตะกอน แสดงไว้ในตารางที่ 4.9 และรูปที่ 4.15, 4.16 และ 4.17

				ความ	เค้นจุด	ความต้	์านทาน	มอดุลัส	ยืดหยุ่น	เปอร์เซ็นต์	
				คร	ำก	แรงดึง	งสูงสุ ด	(G	Pa)	การส์	ไดตัว
				(M	Pa)	(M	Pa)			(%)	
โลหะ	ส่วนผ	ส่วนผสมทางเคมี (wt%)		อุณหภูมิบ่มเพิ่ม		อุณหภูมิบ่มเพิ่ม		อุณหภูมิบ่มเพิ่ม		อุณหภูมิบ่มเพิ่ม	
ผสม				ความ	มแข็ง	ควา	ความแข็ง		ความแข็ง		มแข็ง
ชุดที				(°	C)	(°	C)	(°C)		(°	C)
	Cu	Sn	Ag	260*	350**	260*	350**	260*	350**	260*	350**
1	7.35	-	Balance	215.8	275.4	301.6	380.9	2.8	3.6	14.7	15.0
2	6.36	_	Balance	156.7	252.3	261.3	353.9	2.8	3.4	17.3	18.3
3	5.95	0.31	Balance	281.5	258.0	398.4	353.5	3.8	3.4	17.7	15.7
4	5.85	0.38	Balance	281.5	248.7	382.5	341.2	3.6	3.4	13.3	15.2
5	5.78	0.43	Balance	272.2	252.0	365.1	351.6	4.2	3.7	11.8	15.8
6	5.74	0.50	Balance	268.5	234.3	357.7	325.3	4.2	3.7	11.0	12.1
7	5.68	0.54	Balance	250.0	226.0	356.0	336.3	5.0	3.4	12.7	11.4
8	5.61	0.63	Balance	275.9	224.0	365.8	329.5	3.6	3.6	12.3	10.0

	4			· · · · · · · · · · · · · · · · · · ·	
ตารางท 4 9	แลการทดสคาแรงดง	าของเงนลเตอรล	ง 925 และเลหะเง	นลเตกรลง 935-	ทคงแดง-ดาเก
110 1411 1.0					

* ระยะเวลาที่ใช้ในการบ่มเพิ่มความแข็งที่อุณหภูมิ 260 °C คือ 120 นาที

** ระยะเวลาที่ใช้ในการบ่มเพิ่มความแข็งที่อุณหภูมิ 350 °C คือ 30 นาที

รูปที่ 4.15 ค่าความเค้นจุดครากของชิ้นงานในสภาพหล่อ ,บ่มที่ 260 °C เวลา 120 นาที และ บ่มที่ 350 °C เวลา 30 นาที ของชิ้นงานทุกส่วนผสม

รูปที่ 4.16 ค่าความต้านทานแรงดึงของขึ้นงานในสภาพหล่อ, บ่มที่ 260°C เวลา 120 นาที และ บ่มที่ 350 °C เวลา 30 นาที ของขึ้นงานทุกส่วนผสม

รูปที่ 4.17 ค่ามอดุลัสยืดหยุ่นของชิ้นงานในสภาพหล่อ, บ่มที่ 260 °C เวลา 120 นาทีและ บ่มที่ 350 °C เวลา 30 นาที ของชิ้นงานทุกส่วนผสม

4.6.1 ผลทดสอบแรงดึง (Tensile test) ภายหลังจากทำกระบวนการบ่มเพิ่มความ แข็งโดยการตกตะกอนที่อุณหภูมิ 260 °C เวลา 120 นาที

จากรูปที่ 4.15 และ 4.16 ความเค้นจุดครากและความต้านทานแรงดึงภายหลังจากบ่ม เพิ่มความแข็งจะมีค่าเพิ่มสูงขึ้นมากเมื่อเทียบกับขึ้นงานในสภาพหล่อ เงินสเตอร์ลิง 935 ที่มีดีบุกทุก ขุดส่วนผสม จะมีค่าความเค้นจุดครากและความต้านทานแรงดึงสูงกว่าเงินสเตอร์ลิง Ag-7.35%และ Ag-6.36%Cu แต่เมื่อปริมาณดีบุกเพิ่มขึ้นค่าความต้านทานแรงดึงสูงกว่าเงินสเตอร์ลิง Ag-7.35%และ Ag-6.36%Cu แต่เมื่อปริมาณดีบุกเพิ่มขึ้นค่าความต้านทานแรงดึงสูงกว่าเงินสเตอร์ลิง Ag-7.35%และ Ag-6.36%Cu แต่เมื่อปริมาณดีบุกเพิ่มขึ้นค่าความต้านทานแรงดึงสูงกว่าเงินสเตอร์ลิง Ag-7.35%และ Ag-6.36%Cu แต่เมื่อปริมาณดีบุกเพิ่มขึ้นค่าความต้านทานแรงดึงสูงที่สุด คือ 398.4 MPa ส่วนค่า โลหะผสมเงิน Ag-5.95%Cu-0.31%Sn จะมีค่าความต้านทานแรงดึงสูงที่สุด คือ 398.4 MPa ส่วนค่า ความเค้นจุดครากมีค่า 281.5 MPa ซึ่งมีค่าเท่ากับค่าความเค้นจุดครากของโลหะผสมเงิน Ag-5.85%Cu-0.38%Sn และมีค่าสูงที่สุดด้วย สาเหตุที่ค่าความเค้นจุดครากและค่าความต้านทานแรงดึง ในโลหะเงินสเตอร์ลิง Ag-7.35% และ Ag-6.36%Cu มีค่าต่ำกว่าโลหะเงินสเตอร์ลิงที่เติมดีบุก ก็ เนื่องมาจากมีหลายปัจจัยที่ล่งผลให้ค่าดังกล่าวลดลง ปัจจัยแรกคือการสูญเสียทองแดงไปขณะทำการ อบที่อุณหภูมิ 750 °C ดีบุกจะมีส่วนช่วยให้การสูญเสียทองแดงขณะอบน้อยลง ดังนั้นการไม่เติมดีบุก จะทำให้มีการสูญเสียทองแดงไป เนื่องจากทองแดงมีบทบาทสำคัญในการเพิ่มความแข็งแรงในโลหะ เงินและกระบวนการบ่มเพิ่มความแข็ง ดังนั้นเมื่อปริมาณทองแดงลดลงไปอาจจะทำให้การตกตะกอน น้อยลงไปด้วย ส่งผลให้ค่าความแข็งแรงต่างๆลดลงไปด้วย ปัจจัยที่สองซึ่งจะมีผลบ้างเล็กน้อยก็คือชั้น ออกไซด์ที่เกิดขึ้นที่ผิวของเงินสเตอร์ลิงหลังจากอบที่ 750°C เนื่องจากไม่มีการนำชิ้นงานไปกลึงผิวออก หลังจากอบ ทำให้บริเวณที่เกิดชั้นออกไซด์มีสมบัติทางกลลดลงดังนั้นขณะดึงชิ้นงานบริเวณผิวของ ชิ้นงานจะรับแรงได้ไม่ดี

ส่วนในกรณีของเงินสเตอร์ลิงที่เติมดีบุกพบว่าเมื่อปริมาณดีบุกเพิ่มขึ้นค่าความเค้นจุด ครากและความต้านทานแรงดึงกลับมีแนวโน้มลดลง ก็เนื่องมาจากปริมาณดีบุกที่เพิ่มขึ้นจะทำให้ ปริมาณทองแดงลดลงและยังมีการสูญเสียทองแดงไปบางส่วนขณะอบที่ 750 °C ด้วย ทำให้มีปริมาณ ทองแดงในชิ้นงานที่น้อยลงถึงแม้ว่าจะมีดีบุกมากขึ้นก็ตาม เนื่องจากอนุภาคตกตะกอนที่เป็นไปได้ที่ จะเกิดขึ้นคือ Cu-Ag, Cu-Sn และ Cu-Ag-Sn ซึ่งทุกชนิดจะต้องมีทองแดงเป็นองค์ประกอบ ดังนั้น ปริมาณทองแดงที่ลดลงจะทำให้การเกิดอนุภาคตกตะกอนลดลงและส่งผลให้สมบัติทางกลลดลงด้วย จากรูปที่ 4.15 และ 4.16 พบว่าปริมาณดีบุกที่เหมาะสมจะอยู่ในช่วง 0.31-0.38%โดยน้ำหนัก

4.6.2 ผลทดสอบแรงดึง (Tensile test) ภายหลังจากทำกระบวนการบ่มเพิ่มความ แข็งโดยการตกตะกอนที่อุณหภูมิ 350 °C เวลา 30 นาที

จากรูปที่ 4.15 และ 4.16 ค่าความเค้นจุดครากและค่าความต้านทานแรงดึงที่ได้ ภายหลังบ่มเพิ่มความแข็งจะมีค่าสูงขึ้นมากจากสภาพหล่อ และพบว่าเงินสเตอร์ลิง Ag-7.35%Cu จะ มีค่าความต้านทานแรงดึงและค่าความเค้นจุดครากสูงที่สุด 380.9 MPa และ 275.4 MPa ตามลำดับ ส่วนโลหะผสมเงิน Ag-6.36%Cu จะให้ค่าความต้านทานแรงดึง 353.9 MPa ความเค้นจุดคราก 252.3 MPa ในโลหะเงินสเตอร์ลิงที่เติมดีบุกตั้งแต่ 0.31-0.63%โดยน้ำหนัก ทั้งค่าความต้านทานแรง ดึงและค่าความเค้นจุดครากจะต่ำกว่าในเงินสเตอร์ลิงที่ไม่เติมดีบุก(Ag-7.35%Cu และ Ag-6.36%Cu)และมีแนวโน้มลดลง รูปที่ 4.17 แสดงค่ามอดุลัสยืดหยุ่นซึ่งค่อนข้างคงที่

จากข้อมูลข้างต้นพบว่าเงินสเตอร์ลิง Ag-7.35%Cu และ Ag-6.36%Cu ที่บ่มเพิ่ม ความแข็งที่ 350°C เวลา 30 นาที จะให้ค่าความเค้นจุดครากและความต้านทานแรงดึงสูงกว่าที่บ่ม เพิ่มความแข็งที่ 260°C เวลา 120 นาที แต่เมื่อมีการเติมดีบุกเข้าไปในเงินสเตอร์ลิง 935 จะพบว่าเงิน สเตอร์ลิงที่บ่มเพิ่มความแข็งที่ 260°C จะมีค่าความเค้นจุดครากและความต้านทานแรงดึงสูงกว่าที่บ่ม เพิ่มความแข็งที่ 350 °C โดยค่าความเค้นจุดครากและค่าความต้านทานแรงดึงที่สูงขึ้นนี้อาจเป็นผลมา จากการตกตะกอนของ Cu-Ag, Cu-Sn และ Cu-Ag-Sn (ยังไม่ทราบว่าเป็นการตกตะกอนของอะไร เพราะไม่ได้มีการศึกษาในเรื่องนี้)ที่มีขนาดที่เหมาะสมกว่าและการกระจายตัวที่ดีกว่า นอกจากนี้ยังมีสี ผิวที่ดีกว่า แสดงว่าสเตอร์ลิงที่เติมดีบุกต้องบ่มเพิ่มความแข็งที่อุณหภูมิ 260 °C จึงจะเหมาะ สำหรับ เงิน สเตอร์ลิงที่ไม่เติมดีบุกเหมาะที่จะบ่มเพิ่มความแข็งที่อุณหภูมิ 350 °C

4.7 การพิจารณาหาส่วนผสมที่เหมาะสำหรับทำสปริง

จากข้อมูลสมบัติต่าง ๆ ที่ได้จากการทดสอบเราจะนำมาพิจารณาเพื่อหาส่วนผสมของโลหะที่ เหมาะสมต่อการนำมาทำลิ้นสปริง โดยค่าที่จะนำมาเป็นตัวบ่งชี้ถึงความเหมาะสม คือ ค่า σ_v²/E

ตารางที่ 4.10 แสดงค่า σ_y²/E ของโลหะผสมที่ส่วนผสมต่างๆในสภาพหล่อ ตารางที่ 4.11 แสดงค่า σ_y²/E ของโลหะผสมที่ส่วนผสมต่าง ๆ ที่บ่มเพิ่มความแข็งที่อุณหภูมิ 260 °C เวลา 120 นาที และตารางที่ 4.12 สำหรับโลหะผสมที่บ่มเพิ่มความแข็งที่อุณหภูมิที่ 350 °C เวลา 30 นาที ส่วนรูปที่ 4.18 กราฟแสดงความสัมพันธ์ระหว่างค่า σ_y²/E กับชุดโลหะผสมทั้ง 8 ชุด

โลหะ	สวนเ	งสมทางเครื	มี (wt%)	ความเค้น	มอดุลัส	σ_v^2/E	σ/E	เปอร์เซ็นต์
ผสมชุด				จุดคราก	ยืดหยุ่น	(MJm ⁻³)	(×10 ⁻³)	การยืดตัว
ที่	Cu	Sn	Ag	(MPa)	(GPa)			(%)
1	7.35	_	Balance	90.9	54.5	0.152	1.7	19.7
2	6.36	_	Balance	82.7	48.6	0.141	1.7	22.2
3	5.95	0.31	Balance	84.1	55.5	0.127	1.5	24.1
4	5.85	0.38	Balance	85.3	54.1	0.134	1.6	24.3
5	5.78	0.43	Balance	87.8	57.4	0.134	1.5	28.4
6	5.74	0.50	Balance	82.2	49.4	0.137	1.7	34.3
7	5.68	0.54	Balance	83.2	51.7	0.134	1.6	27.1
8	5.61	0.63	Balance	88.0	51.4	0.151	1.7	25.0

ตารางที่ 4.10 ค่า σ²/E ของโลหะเงินผสมที่ส่วนผสมต่าง ๆ ในสภาพหล่อ

โลหะ	ส่วนผสมทางเคมี (wt%)			ความเค้น	มอดุลัส	σ_y^2/E	σ,/Ε	เปอร์เซ็นต์
ผสมชุด				จุดคราก	ยืดหยุ่น	(MJm ⁻³)	(×10 ⁻²)	การยึดตัว
ที่	Cu	Sn	Ag	(MPa)	(GPa)			(%)
1	7.35	_	Balance	215.8	2.8	16.1	7.7	14.7
2	6.36	_	Balance	156.7	2.8	8.5	5.6	17.3
3	5.95	0.31	Balance	281.5	3.8	20.9	7.4	17.7
4	5.85	0.38	Balance	281.5	3.6	22.0	7.8	13.3
5	5.78	0.43	Balance	272.2	3.7	20.0	7.4	11.8
6	5.74	0.50	Balance	268.5	3.9	18.5	6.9	11.0
7	5.68	0.54	Balance	250.0	3.6	17.4	6.9	12.7
8	5.61	0.63	Balance	275.9	3.6	21.1	7.7	12.3

ตารางที่ 4.11 ค่า σ_y²/E ของโลหะเงินผสมที่ส่วนผสมต่าง ๆ ที่บ่มเพิ่มความแข็งที่อุณหภูมิ 260°C เวลา 120 นาที

ตารางที่ 4.12 ค่า σ_y²/E ของโลหะเงินผสมที่ส่วนผสมต่าง ๆ ที่บ่มเพิ่มความแข็งที่อุณหภูมิ 350°C เวลา 30 นาที

โลหะ	ส่วนผสมทางเคมี (wt%)			ความเค้น	มอดุลัส	σ_y^2/E	σ _/ E	เปอร์เซ็นต์
ผสมชุด				จุดคราก	ยืดหยุ่น	(MJm ⁻³)	(×10 ⁻²)	การยืดตัว
ที่	Cu	Sn	Ag	(MPa)	(GPa)			(%)
1	7.35	_	Balance	275.4	3.6	21.1	7.7	15.0
2	6.36	-	Balance	252.3	3.4	18.7	7.4	18.3
3	5.95	0.31	Balance	258.0	3.4	19.6	7.6	15.7
4	5.85	0.38	Balance	248.7	3.4	18.2	7.3	15.2
5	5.78	0.43	Balance	252.0	3.7	16.9	6.8	15.8
6	5.74	0.50	Balance	234.3	3.7	14.8	6.3	12.1
7	5.68	0.54	Balance	226.0	3.4	15.0	6.6	11.4
8	5.61	0.63	Balance	224.0	3.6	13.9	6.2	10.0

57

รูปที่ 4.18 ความสัมพันธ์ระหว่างค่า **σ**²/Ε กับชุดโลหะผสมทั้ง 8 ชุด

จากรูปที่ 4.18 เมื่อน้ำค่าทั้งหมดมาเปรียบเทียบกันพบมีค่า σ_y²/E ของโลหะผสมเงินทุก ส่วนผสมในสภาพหล่อมีค่าต่ำที่สุดจึงไม่เหมาะสมที่จะนำมาทำสปริง ส่วนชุดโลหะเงินสเตอร์ลิง Ag-5.85%Cu-0.38%Sn ที่ทำการอบเพิ่มความแข็งที่ 260 °C เป็นเวลา 120 นาที มีค่า σ_y²/E สูงที่สุด คือ 22 MJm⁻³ การเลือกส่วนผสมที่เหมาะสมสำหรับลิ้นสปริงสามารถพิจารณาได้อีกวิธี คือ เมื่อทราบขนาด ของสปริง สำหรับในงานวิจัยนี้ลิ้นสปริงตัวอย่างมีลักษณะดังรูป 2.10 และมีขนาดดังนี้คือ t =0.7 มม. b = 3.8 มม. l = 5.1 มม. และ δ = 1.7 มม.

รูปที่ 2.10 รูปคาน cantilever

จากสมการ

$$\frac{\sigma_{y}}{E} > \frac{3\delta t}{2l^{2}}$$
(4.1)

แทนค่า t, I และ δ ลงในสมการ (4.1)

$$\frac{\sigma_{y}}{E}$$
 > $\frac{3\delta t}{2l^{2}}$ = $\frac{3 \times 1.7 \times 0.7}{2 \times 5.1 \times 5.1}$ = 6.9×10^{-2}

จากค่าที่คำนวณได้ข้างต้นทำให้เราทราบว่าส่วนผสมที่เหมาะสมสำหรับทำลิ้นสปริงตัวอย่าง (ขนาดของสปริงเป็นไปตามข้อมูลข้างต้น) จะต้องมีค่า σ_y/E > 6.9 × 10⁻² ดังนั้นส่วนผสมที่เหมาะคือ ส่วนผสมที่มีค่า σ_y /E ที่สูงจึงจะดีที่สุดเนื่องจากจะต้องเผื่อค่า safety factor ด้วย และจากตารางที่ 4.9, 4.10 และ 4.11 จะพบว่าค่า σ_y /E ที่สูงที่สุด คือ 7.8 × 10⁻² ซึ่งเป็นโลหะผสมเงิน Ag-5.85%Cu-0.38Sn% ที่ทำการบ่มเพิ่มความแข็งที่ 260°C เป็นเวลา 120 นาที จะสังเกตเห็นว่าเมื่อค่า σ_y²/E สูงค่า σ_y/E ก็จะสูงด้วยเช่นกัน

4.8 ผลการตรวจสอบช่วงอุณหภูมิหลอมเหลว

ทดสอบวัดช่วงอุณหภูมิหลอมเหลวด้วยเครื่อง DTA (Differential Thermal Analysis) ซึ่งผลที่ ได้แสดงไว้ในตาราง 4.13 และรูปที่ 4.19

โลหะผสมชุดที่	ส่วนผสมทางเคมี (wt%)		จุดเริ่มหลอมเหลว (Solidus)	จุดหลอมเหลว สมบรถม์ (Liquidus)	
Cu Sn Ag		(°C)	(°C)		
1	7.35	_	Balance	932.7	940.3
2	6.36	_	Balance	937.7	944.2
3	5.95	0.31	Balance	937.4	944.8
4	5.85	0.38	Balance	937.9	944.8
5	5.78	0.43	Balance	933.0	941.5
6	5.74	0.50	Balance	934.1	941.6
7	5.68	0.54	Balance	936.3	944.0
8	5.61	0.63	Balance	936.7	944.4

1	
ตารา.เพื่ / 13	แสดงขอกกรุงเดสองเช่กงอกเหกงิหอองแหลก
MI 14 IN M 4.13	PENNAMULI I NAMADTI I A DEPANSINA NA DA PARA I

รูปที่ 4.19 ความสัมพันธ์ระหว่างปริมาณทองแดงและดีบุกกับช่วงอุณหภูมิหลอมเหลว

จากตารางที่ 4.13 และรูปที่ 4.19 ข้างต้นจะพบว่าช่วงอุณหภูมิของโลหะเงินสเตอร์ลิง 925 และโลหะเงินสเตอร์ลิง 935-ทองแดง-ดีบุก จะมีอุณหภูมิ ณ จุดที่เริ่มมีการหลอมเหลว (Solidus) ในช่วง 932.7 - 937.9 °C และอุณหภูมิ ณ จุดที่มีการหลอมเหลวสมบูรณ์(Liquidus)ในช่วง 940.3 -944.8 °C

จุดเริ่มมีการหลอมเหลว(Solidus) และจุดหลอมเหลวสมบูรณ์(Liquidus)จากการทดลองจะมี ค่าสูงกว่าค่าที่ได้จาก Phase Diagram ดังรูป 4.20 โดย จุด ♦ เป็นจุด Liquidus ของโลหะผสมเงิน Ag-6.36%Cu ที่อุณหภูมิประมาณ 905 °C และจุด ■ เป็นจุด Liquidus ของโลหะเงินสเตอร์ลิง Ag-7.35%Cu ที่อุณหภูมิประมาณ 896 °C ส่วนในวงรีเป็นจุด Liquidus ของโลหะเงินสเตอร์ลิงที่เติมดีบุก ทุกส่วนผสม ซึ่งมีค่าต่ำกว่าค่าที่ได้จากการทดลอง สาเหตุก็เนื่องมาจากในการหล่อไม่สามารถควบคุม ให้การแข็งตัวของน้ำโลหะเป็นไปอย่างสมดุลได้ และจากรูป 4.19 พบว่าทั้งจุด Solidus และ Liquidus ของโลหะเงินสเตอร์ลิงทุกส่วนผสมมีแนวโน้มค่อนข้างคงที่ จึงเป็นไปได้ว่าดีบุกไม่มีผลต่อจุด Solidus และจุด Liquidus

รูปที่ 4.20 แผนภูมิสมดุล Liquidus line ระหว่างเงิน-ทองแดง-ดีบุก