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APPENDIX A
BUFFERS AND REAGENTS

Lysis Buffer 1

Sucrose 109.54 0
1.0 MTris- HCl (pH 7.5) 10 m
1.0 M MgCI2 5 m
Triton X - 100 (pure) 10 m
Distilled water to 1,000 m

Sterilize the solution by autoclaving and store in a refrigerator (at 4°C)

Lysis Buffer 2

5.0 M NaCl 15 ml
0.5 M EDTA (pH 80) 18 m
Distilled water to 1,000 m

Sterilize the solution by autoclaving and store at room temperature.

. 10% SDS solution
Sodium dodecyl sulfate 10 0
Distilled water to 100 ml

Mix the solution and store at room temperature.
.20 mg/ml Proteinase K

Proteinase K 2 mg



Distilled water to 1 m

Mix the solution and store in a refrigerator (at -20°C).

. 1.0MTris - HCl

Tris base 1211 g
Dissolve in distilled water and adjusted pH to 7.5 with HC

Distilled water to 100 m
Sterilize the solution by autoclaving and store at room temperature.
. 0.5 MEDTA (pH 8.0)

Disodium ethylenediamine tetraacetate.2H2) 186.6
Dissolve in distilled water and adjusted pH to 8.0 with NaOH
Distilled water to 1,000

Sterilize the solution by autoclaving and store at room temperature.

. 1.0 M MgCI2solution
Magnesium chloride.6H2) 20.33
Distilled water to 100

Dispense the solution into aliquots and sterilize by autoclaving.
.5 M NaCl solution

Sodium chloride 29.25
Distilled water to 100

Dispense the solution into aliquot and sterilize by autoclaving.
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9. 10X Tris borate buffer (LOXTBE buffer)

Tris - base 100 g
Boric acid 5 g
0.5 M EDTA (pH 8.0) 40 m

Adjust volume to 1,000 ml with distilled water. The solution was mixed and
store at room temperature.

6X loading dye

Bromphenol blue 0.25 0
Xylene cyanol 0.25 0
Glycerol 50 m
IMTris (pH 8.0) 1 m
Distilled water until 100 m

Mixed and stored at 4°c

7.5 M Ammonium acetate (CHICOONHJ

Ammoniurp acetate 57.81 0
Distilled water 80 m
Adjust volume to 100 ml with distilled water and sterilize by autoclaving.
25:24:1 (vlv) Phenal-chloroform-isoamyl alcohol

Phenol 25 volume
Chloroform 24 volume

Isoamyl alcohol 1 volume



Mix the reagent and store in a sterile bottle kept in a refrigerator.

13. 12% Non-denature acrylamide gel (wiv)

40%acrylamide: Bis (19:1) 3
5X TBE 1
10% ammoniumpersulfate 105
TEMED 8
hd) 6

Dissolve by heating in microwave oven and occasional mix,

14. TE buffer
Tris base 2
5M EDTA 200

Adjust pH to 7.5 with conc.HCL and adjust volume to 1.0 litre with H2).

15. 3 M Sodium acetate (CHCOONH4
Sodium acetate 40.82
dH20 80
adjust the pH to 5.3 by adding cone. HCI

Adjust volume to 100 ml with dH2), and sterile by autoclaving

16. LB broth
Tryptone 10
Yeast extract 5

92

fil

fil

fil

m



17

19,

NaCl 10

Adjust the pH to 7.0 by adding 5N NaOH

93

Adjust volume to 10 litre with dHZ with sterile water, and sterilize by

autoclaving

LB agar

Tryptone 10
Yeast extract 5
NaCl 10
Agar 10

Adjust the pH to 7.0 by adding 5N NaOH

Adjust volume to 10 litre with dH2) with sterile water, and sterilize by

autoclaving

Sodium Bisulfite

Sodium Bisuffite 3.76
dHD 10

adjust the pH 5.0 by adding 10 M NaOH

Hydroquinone
Hydroquinone 554
dHZ) 50

protected from light by cover with foil

ml

mg

m



APPENDIX B
Sequence of CCNAL and primer

Human ccNAL ACCESSION AL 359767 (5'llTR)

taccaacttcttaatatttacctcaactgcaa gctttcaacc gC cttttgttagaat
actactatcttcccattaaagca tCcacactcagtitgc lg aaqadtgttaata
aC cacactta?aaaaac? at accgtt Ctt ataaa g ccattt aatagac
tttggatctgat ta?agat d ? g '['[tt aaaaaa? aaagt faa q
aclatagc ttgtg adt % tafatacatattattlttaaaadaataaaqt
gatta fcac cttgttagt

acctatge cgtctgageccccggqgtttcca
tgatast?ttactataaattctaattg%%tat%a i
immeapling ol o
cCe caaggacccccgcgatggagacgcgacactﬁ ac ég g §§
gggg ggg gcgtccca cegecttecygeaggaageqtagot tg? 88
%%c%a%ctgactct(:ccc?[a ccagg

gat ttta% ‘gggt%

gagcegac
tictcaggagce gygcegegeaggagacgttaga

I aggggtagg

t CCa(g tC ccat C g{:CC;aCCtCCng[C @ac s cC
g agtca ga Ca gthgCgC t at C 8 gg g% % g CCthC
) ggm %aa“ta agt%tatgfaa g i ctaag cgifcee
9%& g[ tCCt?CCC gCCCC cccttcent C% tqCccttcee CC%?ICCCC

gCC '[gCCCC (a] CCC%q CCng?CCC'[gCC a CCCthCCC?CCCt cceccqagccca

ccacCtett atec CC&% cactt(?cc qtt% tCth acacataqga

: atatg“; t %%3 e

ol %at o 9 dedaei

accyqg gctcc attic tct 8gt St tt A tatcccg ct

CC$ tCtt tcagaatotttctctectt ca ccCaacacda g%}; at aaaaaq

ttca ataactgttttga tcagaé;caactt

cgcacct CC ttca ccccaatdattact atcagcaattggt ttg chg
{t Ct'[% gCtCtCCC ccta? % ticgct ggad
d {C d '[C'[
gctggtta a CC CCC
cca atccc C

e tg a cee
tcgactdadcagettgtctgt tttccct ta cd ca
Cé tgcactgca caaccctaa agtg
gtca atactcaccagagece
ta gt Cthact caaat g2 act
¢4 cctg gtgc a gctttt

tgagaatg tgctt ga aaca ct

tcgg ccagcgtgqgcagggcgccgcagcc%cgcagccccqaggal
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Original sequence 681 to 604 bp before start site (C in upper panel)

ccagegtgggeagggegecgeagectgegeageecegaggacceegegtegeteteccgagecagggttete
aggage

Méthylation sequence after bisulfite

TTagcgtgggTagggcgTegTagTTtgegTagTTTegaggalTTegegtegTtTtTTegagTTagggttTtTag
gage

Non méthylation sequence after bisulfite

TTagTgtgggTagggTgTTgTagTTtgTgTagTTTTgaggal TTTgTgtTgTtTtTTTgag T TagggttTtT
aggagT

T represent - >T after bisulfite treatment
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APPENDIX ¢
Oligonucleotide sequences for HPV detection

Primers and probes for HPV typing
MY09
MY11
MY12
MY13
MY14
14
WD126
WD128
MY16
MY59

MY18
MY46

5'CTGTGGTAGATACCACWCGCAGTAC3r

MY/
WD147

5'CTGTAGTGGACACTACCCGCAGTAC3'
LL primer 66
67
12
76
154

E6 primer

E6 probe

5'CGTCCMARRGGAWACTGATCS'
5'GCMCAGGGWCATAAYAATGG3'
,CATCCGTAACTACATCTTc c A3’
5TCTGTGTCTAAATCTGCTACA3'
5TCTGTGTCTAAATCTGCTACA3'
5'GGATGCTGCACCGGCTCA3'
5'CCAAAAGCCCAAGGAAGATC3'
TTGCAAACAGTGATACTACATT3
,CACACAAGTAACTAGTGACAG3*
5'AAAAACAGTACCTCCAAAGGAS'
CTGTTGTTGATACTACACGCAGTACSf

5'CTGTGGTAGATACCACACGTAGTACS'

AGCATGCGGTATACTGTCTC3f

WGCAWATGGAWWGCYGTCTCH
5'CGGTCGGGACCGAAAACGG3r
5'CGGTTSAACCGAAAMCGG3'
5TCCGTGTGGTGTGTCGTCCC!
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L1 probe WD133 5'ACACCTAAAGGTCCTGTTTC3'
WD134 ACACTCTGCAAATTCAGTGC3f
WD103 ,CAACAGTTACTGCGACG3r

WD170 5'Gc AAGACATAGAAATAA3'
WD132 5'GACAGTATTGGAACTTACAGS'
WD165 5'AAATCCTGCAGAAAGACCTC3'
WD166 5'AGCATGCGGTATACTGTCTC3'
RR1 5'GTACTGCACGACTATGTS'
RR2 ACCTTTGCAACGATCIG3"

Primers of £2 gene for detect HPV morphology

Consensus primer for HPV 16/18 5' ATGAAAATGAYAGTAMAGAC 3'
E2 primer HPV-16 5 ¢cAGTAGACACTGTAATAG 3'
E2 primer HPV-18 5' CATTGTCATGTATCCCACC 3'

Primers of housekeeping gene for internal control

P-globin primer PCO4 ,CAACTTCATCCACGTTCACC3f
GH20

5'GAAGAGCCAAGGACAGGTAC3'

HAT exond primer  Forward ,GGATGGTGAAAAATTGTCAT3/

Reverse STTGGTAAACTTGAGGGATATS'
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Oligonucleotide sequences and conditions for CCNA1 PCR analyses

Primer

CCNAL eff
CCNAImetR
CCNAIlunmetF
CCNAL unmetR
CCNAIcloningF
CCNAIcloningR
CCNAICDNAF
CCNAICDNAR
GAPDHF
GAPDHR

M13 F

M13 R

Sequence

TTTCGAGGATTTCGCGTCGT
CTCCTAAAAACCCTAACTCGA
TTAGTGTGGGTAGGGTGIT
CCCTAACTCAAAAAAACAACACA
TGGGTAGGGCGTCGTAGTT
GCCCCCGACCTAAAAAAA
ATTCATTAAGT GAAATTGTGC
CTTcc ATTCAGAAACTTATTG
GTGGGCAAGGTATCCCTG
GATTCAGTGTGGTGGGGGAC
GTAAAACGACGGCCAGT
GGAAACAGCTATGACCATG

Amplicon
size (bp)

46

6/

196

170

460

Annealing
temperature (°C)
53
53
55
AT

5

60



Stage

Stage 0
Stage 1

Stage |

Stage I

Stage IV
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APPENDIX E
Modification of FIGO staging of carcinoma of the cervix uteri

Description

Preinvasive carcinoma (CIN [l, carcinoma in situ)
Carcinoma strictly confined to the cervix (extension to the corpus should be
disregarded)
la. Preclinical carcinomas of the cervix, that is, those diagnosed only by
Microscopy
lal. Minimal microscopically evident stromal invasion
la2. Lesions detected microscopically that can be measured. The upper
limits of the measurement should not show a depth of invasion of
more than 5 mm taken from the base of the epithelium, either
surface or glandular, from which it originates; and a second
dimension, the horizontal spread, must not exceed 7 mm. Larger
lesions should be staged as b
lb. Lesions of greater dimensions than stage 2, whether seen clinically or not.
Preformed space involvement should not alter the staging but should be
recorded specifically to determine whether it should affect treatment
decisions in the future
Invasive carcinoma that extends beyond the cervix but has not reached either
lateral pelvic wall; involvement of the vagina is limited to the upper two thirds
Invasive carcinoma that extends to either lateral pelvic wall and/or the lower third
of the vagina
Invasive carcinoma that envolves urinary bladder and/or rectum or extends
beyond the true pelvis
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Abstract

Background: The aim of this study was to evaluate epigenetic status of cycrin a1 in human
papillomavirus-associated cervical cancer. Y. Tokumaru et ai.., cancer res 064, 5982-7
(Sep 1, 2004)demonstrated in head and neck squamous-cell cancer an inverse correlation
between cyciin a1 promoter hyperméthylation and tess mutation. Human papillomavirus-
associated cervical cancer, however, is deprived of TP53 function by a different mechanism.
Therefore, it was of interest to investigate the epigenetic alterations during multistep cervical
cancer development.

Methods: In this study, we performed duplex methylation-specific PCR and reverse
transcriptase PCR on several cervical cancer cell lines and microdissected cervical cancers.
Furthermore, the incidence of cyciin o+ méthylation was studied in 43 samples of white blood
cells, 25 normal cervices, and 24, 5 and 30 human papillomavirus-associated premalignant,
microinvasive and invasive cervical lesions, respectively.

Results: We demonstrated cyciin a1 méthylation to be commonly found in cervical cancer, both
in vitro and in vivo, with its physiological role being to decrease gene expression. More
important, this study demonstrated that not only iS cyciin a1 promoter hyperméthylation
strikingly common in cervical cancer, but is also specific to the invasive phenotype in
comparison with other histopathological stages during multistep carcinogenesis. None of the
normal cells and low-grade squamous intraepithelial lesions exhibited méthylation. In contrast,
36.6% , 60% and 93.3% of high-grade squamous intraepithelial lesions, microinvasive and
invasive cancers, respectively, showed méthylation.

Conclusions: This méthylation study indicated that cyciin A7 is a potential tumor marker for

early diagnosis of invasive cervical cancer.
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Background

Cervical cancer (CC) is an important health problem and is a leading cause of cancer
mortality worldwide in women.[L] When exposed to and infected by one of the high-risk human
papillomaviruses (HPV), vulnerable cervical epithelium may enter a complex multistep process
and develop an invasive carcinoma.[2-4] The spectrum of histologic alterations during the
intricate processes of multistep carcinogenesis can be classified as premalignant lesions,
including low-grade and high-grade squamous intraepithelial lesions (SILs), and malignant
invasive cervical cancers.[5] Despite its strong association with CC, HPV infection alone is not
sufficient for the cervical epithelium to fully develop an invasive cervical cancer. Persistent HPV
infection contributes to the development of SILs, with viral oncoproteins facilitating the
dysrégulation of cellular proliferation and the apoptotic process. However, additional
accumulation of mutations, as well as epigenetic alterations in the crucial oncogenes and tumor
suppressor genes, is required before these premalignant lesions fully transform into invasive
cancers.[6]

The aim of this study was to evaluate DNA méthylation status of cyctin a1 (ccnat)in
HPV-associated CC. ccnar, asecond A-type cyclin, has been shown to be essential for entry
into metaphase of male meiosis 1.(7, 8] Consistent with this function, cc~a1 is highly expressed
in testis and hematopoietic progenitor cells, but is present at low levels in most other tissues.{9]
No phenotype other than male infertility has been reported in mice lacking CC7VAT7.[10]
Surprisingly, several lines of evidence suggest that cc~na1 may be a potential epithelial tumor
suppressor gene. First, the expression of ccn~a1 has been demonstrated to be downregulated in
several cancers, such as nasopharyngeal carcinoma and head and neck squamous-cell cancer
(HNSCC).[11-13] Second, CCNATI plays an important role in DNA double-strand break repair

following radiation damage by activation of the non-homologous end-joining process that
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previously described.[19, 20] Cervical tissues were obtained by punch biopsy of lesions under
direct visualization or under colposcopic examination. Specimens were divided in two. The first
sample was submitted to routine histological examination, and the second was reserved for DNA
isolation. Blood samples were obtained by venipuncture from cC patients and healthy blood
donors. AIl HPV-positive premalignant lesions were exfoliated cells, selected from routine
cytological screening. In brief, cervical cells were collected with a cervical sampler (Digene
Corporation, Gaithersburg, MD, USA) using the cervical cytobrush technique, and were divided
into three parts. The first was reserved for routine cytological diagnosis. The second was tested
for the presence of high-risk HPV (types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 68)
DNA by Hybrid Capture 2 (Digene Corporation, Gaithersburg, MD, USA).[21] In cases of
positive high-risk HPV and com plete histological tissue evaluation, the third part was subjected
to ccna1 méthylation analysis. DN A extraction was performed using Tris/SDS and proteinase
K at 50 oCovernight, followed by phenolichloroform extraction and ethanol precipitation.

Cervical hiopsy specimens and Papanicolaou smears were examined and reviewed by at
least two gynecologic pathologists to ensure good quality control of the find pathology results.
All CCs contained 20-95% malignant cells. The histological diagnoses distinguished among
normal epithelium, low-grade SILs, high-grade SILs, microinvasive and invasive cancer. In case
of invasive cancer, only those samples classified as squamous-cell lesions were used for further
analysis.

Additional six OTC-embedded frozen CCs and five normal cervices, obtained from
hysterectomy specimens, were microdissected as previously described.22 Histologically normal
epithelium, connective tissue and malignant cells were subjected to ccnax méthylation and

expression studies.
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HPV detection and typing

HPV LI, E6 gene amplification and dot blot hybridization were performed as previously
described.[19, 22, 23] Briefly, each LI amplification reaction contained the LI degenerate
primers MY11 and MY09. The E6 reactions contained WD72, WD66, WD154, WD67 and
WD76. Both reactions were used to amplify genomic DNA during 40 PCR cycles. To analyze
the amplicons for the presence of high-risk HPV, we applied dot blot hybridization using the
HPV type-specific oligo probes, WD170, WD132, RR1, RR2, WD103, WD165, WD, consensus
LI, MY12/13, WD126, WD128, MY16, WD133/134, MY14 and WD174. The membranes were
subjected to analysis by a phosphoimager. Results for LI and E6 dot blots were scored
independently. Duplicate filters were prepared for all specimens.

Sodium hisulfite modification and duplex methylation-pecific PCR (MSP)

The DNA samples were subjected to bisulfite treatment. [24, 25] Briefly, 2 [ig of genomic
DNA was denatured with NaOH (final concentration 0.2 M). Subsequently, 10 mM
hydroquinone and 3 M sodium bisulfite were added and incubated at 50 °c for 16 h. The
modified DNA was then purified using Wizard DNA purification resin (Promega, Madison, W,
USA) followed by ethanol precipitation. Duplex MSPs were performed to identify the CCNAL
méthylation status of all samples. The duplex PCR mixtures contained 10x PCR buffer (Qiagen,
Chuo-ku, Tokyo), deoxynucleotide triphosphates (0.2 mM), primers CCNAImetF,
CCNAImetR, CCNAlunmetF and CCNAlunmetR (final concentration 0.4 pM each per
reaction) (Table 1), 1  of HotStarTaq (Qiagen, Chuo-ku, Tokyo) and bisulfited DNA (80 ng).
The amplification reaction was carried out for 30 cycles in a 2400 Perkin Elmer thermal cycler.
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Then 10-pi aliquots of the PCR products were stained with cyber green, run on an 8% non-

denaturing polyacrylamide gel. The band intensity was visualized and measured by using a
phosphoimager.

RNA preparation aru[ analysis

Expression of CCNAL in the cc cell lings was examined by RT-PCR. Total RNA was
extracted using the TRIZOL reagent (Invitrogen, Singapore) according to the manufacturer’s
specifications and 5 pg of each sample was subjected to cDNA synthesis using MMLV reverse
transcriptase (Fermentas, Hanover, MD, USA). PCR mixtures contained |Ox PCR hbuffer, 0.2
mM dNTPs, 0.4 pM each of primers CCNAICDNAF and CNAICDNAR, 1 of HotStartag and
80 ng cDNA. GAPDH served as the internal control (Table 1). Aliquots of 10 p] of the PCR
products were subjected to electrophoresis on a 2% agarose gel stained with ethidium bromide
on preparation, and were visualized by a uv trans-illuminator.

Bisulfite genome sequence analysis

Some CCNAL methylation-positive CCs were selected for sequence analysis. The
bisulfited DNAs were amplified using CCNAlcloningF and CCNAlcloningR (Table 1). The
amplified fragments were cloned using the PGemT easy vector and sequenced.
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of the méthylation status and correlation with expression in ¢ ¢ cell lings, normal cervix and CC;
and finally, investigation of the frequency of méthylation in normal tissues, high-risk HPV-
associated low SILs, high SILs, microinvasive and invasive squamous cell CC.

CCNAL méthylation inc ¢ cell lines

Duplex MSP for CCNAL was designed according to the sequence in Figure 1A The
methylated sequence comprised of 46 bp and the non-methylated sequence, 67 bp, shown as the
lower and the upper amplicons, respectively.

Previously, Carsten Muller-Tidow et al.[26, 27] extensively studied the role of CCNAL
méthylation and found that CCNAL was methylated in several non-expressing tumor cell lines,
including HeLa. To confirm this particular finding in CC cell lines, we investigated méthylation
and expression in HeLa and SiHa cells. Our preliminary study in HelLa, HeLa(S), revealed
complete non-méthylation, which contradicts the previous report (Fig. IB). To settle this
controversy, we attempted to further evaluate additional CC cell lings, including HeLa(K) grown
in a different laboratory, and SiHa. The result confirmed the Carsten Miller-Tidow et al.[26, 27]
finding, in that the majority of Hela(K) cells, as well as all SiHa cells, were hypermethylated.
CCNAL RT-PCR confirmed the inverse relation between DNA méthylation and gene expression,
CCNAL RNA levels were high, intermediate and low in HeLa(S), HeLa(K) and SiHa cells,
respectively (Fig. 1). These data indicate that CCNAL méthylation is common in CC cell lings
and its physiological role is to decrease gene expression. The absence of méthylation in HeLa(S)
might indicate a déméthylation process that occurs under different cell culture and maintenance
conditions.
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We validated the reliability of this duplex MSP by performing calibration experiments
using SiHa mixed with HeLa(S), CCNAL completely hypermethylated and non-methylated cells,
respectively (Fig. 2A). With at least three replicates for each experiment, the result demonstrates
the consistency of the current approach, with minimal intra- and inter-assay variations (Fig. 2B).
It is noteworthy that the correlation between measured and actual CCNAL méthylation
percentages was not linear, but exponential.

CCNAL methylation and expression in cervical tissues

The discovery of an inverse correlation between CCNAL méthylation and expression in
cc lines suggested possibility of the same situation in vivo. To test this hypothesis, we evaluated
the epigenetic control in vivo. Six frozen OTC-embedded CCs and five normal cervices were
microdissected and subjected to duplex MSP and CCNAL RT-PCR. Figure 3 shows examples of
typical in vivo results. First, whereas no méthylation could be observed, CCNAL mRNA was
discoverable by RT-PCR in normal cervix from both epithelium and connective tissue cells (Fig.
3A). In contrast, epigenetic control was detectable in cervical epithelia of ¢ ¢ patients from both
malignant cells and adjacent histologically normal cervical epithelia. Nonetheless, in matched
cases, a higher degree of méthylation could be demonstrated in cancer than in normal cells. From
all CCs, no CCNAL mRNA was detectable. Interestingly, even if méthylation was detected,
CCNAL was expressed in malignancy-adjacent histologically normal cervical tissues. Moreover,
an inverse correlation between the méthylation level and mRNA quantity was observed. CCNAL
expression in methylated malignancy-adjacent  tologically normal cervical epithelium may be
due to normal cell contamination or partial méthylation at the promoter according to c¢
multistep progression. Whereas complete méthylation could be observed in most cancer cells,
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partial and non-methylated CCNAL was discovered in the adjacent epithelia (Fig. 3B). In
conclusion, this experiment evaluating cervical tissue in vivo led to three conclusions. First,
CCNAL méthylation was exclusively associated with cervical carcinogenesis. Second, the
epigenetic alteration occurred earlier than morphological transformation of the cellular
phenatype. Finally, méthylation may play arole in this gene inactivation.

CCNAL methylation incicence during nuctistep cervical carcinogenesis

Cervical intraepithelial neoplasia provides a crucial model to study the multistep process
of carcinogenesis. Therefore, we evaluated the frequency of CCNAL méthylation in several
cervical epithelial tissues with a distinctive degree of malignant transformation, norma] cervix,
CIN, microinvasive and cc, respectively. We selected 43, 25 and 30 cases of white blood cells
( BC), normal cervical hiopsies and invasive CCs, respectively (Table 2). Among these
samples, 13 WBC samples and 6 normal cervical samples, located at least 3 cm fromthe  mor
margin and showing the absence of HPV DNA, originated fromc ¢ patients. For all cases, when
a methylated amplicon was visible and the méthylation percentage measured exceeded 5%, the
test was deemed positive. All selected CCs were squamous and positive for HPV. Of the cases,
24 harbored HPV type 16, 4 had HPV type 18 and 2 cases displayed unclassifiable HPV types.
Interestingly, a high frequency of méthylation was exclusively present in CCs, i.e., 28 cases or
93.3% (Fig. 4A,B and Table 2). To reveal multistep carcinogenesis, we included 24 cases of
SILs and 5 microinvasive cancers from exfoliated cervical cells. All cases were positive for
oncogenic HPV, analyzed by Hybrid Capture 2. Whereas 60% and 36.6% of the microinvasive
cancers and high SILs, respectively, demonstrated CCNAL méthylation, none of the HPV-
associated low SILs exhibited these epigenetic changes (Fig. 4B and Table 2).
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protein function subsequent to E6 binding. We prefer the latter hypothesis, since TP53 and
CCNAI have been shown to augment each other’s expression.[13, 14] Consequently, the
CCNAL protein could help to increase physiologic TP53 to counter the function of E6, except for
cases of TP53 mutation. In other words, alterations of both CCNAI and TP53 in HNSCC will be
redundant. In contrast, in cc, a decrease in CCNAI protein should prevent the increment of
TP53 that would have compensated for the protein destruction by EG.

Multistep process analysis revealed that CCNAI méthylation is remarkably specific for
cervical carcinogenesis. The biological function of CCNAI is to activate DNA breakage repair
by mechanisms depending on CDK2 activity and Ku proteins.[14] Itis interesting to hypothesize
why the genomic instability, triggered by impairment of the CCNAI function, is crucial as an
early event in ¢ ¢ development. Perhaps the rate of spontaneous mutations in cervical epithelial
cells is too low to accumulate sufficient malignancy-transformation-dependent oncogene and
tumor suppressor gene mutations If the cells possess fully functional CCNAI. Therefore, the
frequency of invasive ¢ ¢ devoid of CCNAI méthylation is limited.

Conclusion

This study demonstrates the strong association between CCNAI - promoter
hyperméthylation and invasive HPV-associated ¢ ¢ indicates that thi gene could serve as an
effective molecular marker. Moreover, our finding, in comparison with previous reports,[13, 14]
also suggests that there is a possible molecular link between oncogenic HPVs, TP53 and CCNAI
promoter hyperméthylation.
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Figure legends

Fig. 1 Schematic representation of inverse correlation between promoter méthylation and
expression of CCNAL inc < cell lines. (A) Diagram of methylated and non-methylated
sequences after bisulfite modification covering the area of both primers (underlined) in the
promoter region of CCNAIL M, DNA size marker. Top panel, 10-bp ladder; bottom four panels,
100-bp ladder. Neg, negative. (B) Duplex MSP analysis of cell lines. Upper and lower arrows
indicate non-methylated and methylated amplicons, respectively. MSP, methylation-specific
PCR. (C-E) RT-PCR of the CCNAI gene after 28, 30 and 35 cycles, respectively. (F) RT-PCR
of the GAPDH gene as an internal control,

Fig. 2 Intra- and inter-assay variation of the duplex MSP. (A) Duplex MSP of a mixture of
CCNAI complete and non-methylated ¢ cell lines, SiHa and HeLa(S), respectively. M, DNA
size marker; Neg, negative; 0, 25, 50, 75, 100 Met (%) represent the proportion of SiHa DNA in
the mixture, varied from 0 to 100%, respectively. The upper and lower bands are non-methylated
and methylated bands, respectively, indicated by labeled arrows. (B) Graphical comparison
between measured CCNAI méthylation, percentage intensity of méthylation amplicon (x-axis),
and actual méthylation, the proportion of SiHa DNA (y-axis). The bar height indicates the mean
and error bars, T, represent standard deviation (SD) across experiments.
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Fig. 3 CCNAL méthylation and expression in microdissected cervical tissues. (A) Duplex MSP
and CCNAL PCR; E and CNT are epithelium and connective tissue cells from normal cervix; N
and T are adjacent histological normal and cancer cervical epithelium from cc, respectively.
Arrows indicate non-methylated, methylated, CCNAL cDNA and GAPDH cDNA, respectively.
(B) Bisulfite sequencing at the CCNAL promoter, with circles denoting the méthylation status of
each selected clone. Black and white circles are methylated CG dinucleotides, and non-
methylated CpG dinucleotides and TG dinucleotides, respectively.

Fig. 4 Schematic representation of methylation-specific PCR incc. (A) PCR analysis of CC: m,
DNA size marker; Neg, water; N and T, matched normal cervices and tumors, respectively. (B)
Bar graph demonstrating the frequency of DNA méthylation. Numbers on the y-axis are the
percentage of positive méthylation cases. Sample types are on the x-axis. WBC, normal cervix,
Low-grade SIL, High-grade SIL, microinvasive cancer and squamous cell CCs number are 43,
25, 13, 11, 5 and 30, respectively. The méthylation frequencies of each tissue type are
represented by the height of each rectangular bar. (C) Sample of bisulfite CCNAL sequence from
CC. Each * indicates methylated CGs. PCR primer positions are underlined.
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Table 1 Oligonucleotide sequences and conditions for PCR ana yses

Primer Sequence Amplicon  Annealing
size (bp) tempg(r:ature

CCNAImetF TTTCGAGGATTTCGCGTCGT 46 53
CCNAImetR CTCCTAAAAACCCTAACTCGA
CCNAlunmetF  TTAGTGTGGGTAGGGTGTT 67 53
CCNAlunmetR_ CCCTAACTCAAAAAAACAACACA
CCNAlcloningF  TGGGTAGGGCGTCGTAGTT 19 55
CCNAlcloningR ~ GCCCCCGACCTAAAAAAA
CCNAICDNA ATTCATTAAGTGAAATTGTGC 170 47
CCNAICDNAR ~ CTTCCATTCAGAAACTTATTG
GAPDHF GTGGGCAAGGTATCCCTG 460 52
GAPDHR GATTCAGTGTGGTGGGGGAC

Table 2 CCNAL méthylation and clinico-pathological correlation o
Histological characteristics ~  Total number ~ CCNAL promoter hyperméthylation

of cases Absent Present
WBC _ 43 43 0
Normal cervix 25 25 0
Low-grade SIL 13 13 0
High-grade SIL i} 1 4
Microinvasive cancer 5 2 3
Squamous cell ¢ ¢ 30 2 28
FIGO stage I-11A 6 0 6
FIGO stage [1B-IV 24 2 2
Grade 1, Keratinized type 9 0 9
Grade 2, non-keratinized type 2 19

2
FIGO, International Federation of Gynecology and Obstetrics.
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Original: ccagcgtgggcagggcgcecgcagcectgegecagecccgaggaccccgegtegetetecccgagecagggttctcaggage
Met TTagcgtgggTagggcgTegTagTTtgegTagTITcgaggaT TTcegegtegTtTtT TcgagTTagggttTtTaggage

A Ne' TTagTgtgggTagggTgTTgTagTTtgTgTagTTTTgaggaTTTTgTotTgTtTtTTTgagTTagggttTtTaggag!

10bp Neg SiHa HeLa(K) HeLa(S)

N

T TN ek = Nonmet
T MSP CCNAL
: L e e . 4= Met
‘”’{%9-'“ : o

c (— RTPCR CCNAZ, 28 cycles
D  ,4-RTPCR CCNAL, 30 cycles

i) . -
E o «- RTPCR cCNAL, 35 cycles

o ;ﬁi_.muu
F o= -— @’&<—RTPCR GAPDH, 35 cycles

Figure 1
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