บทที่ 4

การออกแบบและศึกษาผลการทำงานของโปรแกรม

4.1 ออกแบบส่วนติดต่อกับผู้ใช้ (User Interface)

การออกแบบส่วนที่ติดต่อกับผู้ใช้ สำหรับโปรแกรมนี้ จะแบ่งออกเป็น 4 ส่วนหลักๆ คือ ส่วนแรกเป็นส่วนของการเลือกใช้หน่วยในการคำนวณ (ดังรูปที่ 4.1) ส่วนที่สองจะเป็นส่วนของ การเลือกวิธีในการวิเคราะห์ ซึ่งแบ่งออกเป็น 3 วิธี ตามทฤษฎีในบทที่ 2 และมีส่วนเพิ่ม การ คำนวณน้ำหนักของตัวดาดอุโมงค์เอง (Self Weight) อยู่ในหัวข้อนี้ด้วย (ดังรูปที่4.2) ส่วนที่สาม เป็นการรับข้อมูล (Input Data) คุณสมบัติของดิน(Soil property), อุโมงค์ (Support property) และ ระดับน้ำ (Water table level) ดังแสดงในรูปที่ 4.3 และส่วนที่สี่ เป็นการนำข้อมูลในส่วนที่ 3 มาคำนวณ และประมวลผลออกมาทางจอภาพ ในรูปตาราง และกราฟ (ดังรูปที่ 4.4) และ สามารถนำผลการคำนวณในหัวข้อนี้ เชื่อมต่อไปแสดงผลข้อมูล ทางหน้าจอโปรแกรม Excel โดย เลือกที่คำสั่ง Export to MS Excel ในหัวข้อ File บนเมนูหลัก (ดูการใช้งานได้จากภาคผนวก ก.) เพื่อเก็บค่าการประมวลผล หรือ พิมพ์ผลออกมาผ่านโปรแกรม Excel

Plea	se select unit of calculate	
	SI Units	
	C English Units	
	C Metric Ton (ton.)	
	0)	<

รูปที่ 4.1 หน้าต่างการเลือกหน่วยคำนวณ

รูปที่ 4.3 ส่วนของปุ่มคำสังการรับข้อมูล

รูปที่ 4.4 หน้าต่างพื้นที่แสดงกราฟและตาราง

4.2 ทดสอบโปรแกรมส่วนต่างๆ จากตัวอย่าง

ในการวิเคราะห์แรงภายในดาดอุโมงค์ด้วยโปรแกรมAFT-LINER2005 จะวิเคราะห์ผลกระทบที่เกิด ขึ้นกับดาดอุโมงค์ ได้แก่ แรงในแนวแกน (Axial force),โมเมนต์ดัด(Bending moment)และ แรง เฉือน (Shear force) ที่กระทำต่อดาดอุโมงค์ โดยในการวิเคราะห์จะใช้ทฤษฎีของ Einstein, JSCE และ Muir Wood เป็นพื้นฐานในการคำนวณและ คิดผลเนื่องจากการเหลื่อมกันของดาดอุโมงค์

4.2.1 ข้อมูลดาดอุโมงค์ (Seament Linina)

อุโมงค์ที่ใช้ในการวิเคราะห์เป็นอุโมงค์คอนกรีตเสริมเหล็ก มีขนาดเส้นผ่านศูนย์กลางภายใน 5 เมตร หนา 0.25 เมตร ประกอบด้วยขึ้นส่วนของดาดอุโมงค์(segment lining,N)7 ขึ้น กำลัง ประสัยคอนกรีต(f_c') 40 MPa ปัวซองคอนกรีต(**v**_s) 0.2 และวางตัวอยู่ในชั้นดินเหนียวแข็งที่ระดับ ความสูงจากผิวดินถึงตำแหน่งผิวบนสุดของอุโมงค์(crown)เท่ากับ 20.00 เมตร

<u>4.2.2 ข้อมูลดิน(Soil Profiles Data)</u>

ในการวิเคราะห์กำหนดให้มีแรงกระจายที่ผิวดิน(Surface surcharge)ขนาด 20 กิโลนิวตันต่อ ตารางเมตร มีระดับน้ำอยู่ที่ -1.50 เมตร จากผิวดิน และอุโมงค์วางตัวอยู่ในระดับขั้นดินดินเหนียว แข็ง ที่มีค่าความหนาแน่นของดินเท่ากับ 20 กิโลนิวตันต่อลูกบาศก์เมตร ค่าปัวซองของดิน(V) เท่ากับ 0.5 สัมประสิทธิ์แรงดันด้านข้างเท่ากับ(K) 0.5 สัมประสิทธิ์แรงต้านทานมวลดิน(k) 3x10⁴ กิโลนิวตันต่อตารางเมตรต่อเมตร กำลังรับแรงเฉือนแบบไม่ระบายน้ำ 100 กิโลนิวตันต่อตาราง เมตร และโมดูลัสยืดหยุ่นแบบไม่ระบายน้ำ 4.8 x10⁴กิโลนิวตันต่อตารางเมตร ส่วนดินชั้นด้านบน ของอุโมงค์พิจารณาได้จากรูปที่ 4.5

รูปที่ 4.5 รูปตัดชั้นดิน

<u>4.2.3 แรงภายในที่เกิดขึ้นจากข้อมูลการวิเคราะห์ในหัวข้อ 4.2.1-4.2.2 โดยการวิเคราะห์จากทั้ง3</u> วิ<u>ธี</u>

จากการวิเคราะห์จะพบว่าค่าแรงในแนวแกนของวิธี Muir Wood จะให้ค่ามากที่สุด เนื่องจากวิธีนี้ คิดผลของความเค้นที่ไม่เท่ากันทุกทิศทาง(Anisotropic stress) ของดินเข้ามาพิจารณาด้วย ซึ่งวิธี นี้จะให้ค่าแรงในแนวแกนเพิ่มขึ้นต่างกันเพียงเล็กน้อยตามองศา(ตั้งแต่ศูนย์องศา)จนมากสุดที่90 องศา(Spring line) และที่90-180 องศาค่าจะสมมาตรกับช่วง0-90 องศา ดังรูปที่4.6 ส่วนค่า โมเมนต์ดัดจากด้วอย่างนี้ วิธีของ Einstein:No-Slip จะให้ค่ามากสุด ดังรูปที่4.7 และค่าแรงเลือน มากสุดกับวิธี JSCE ดังรูปที่4.8

**ทั้งนี้ค่าแรงภายในมากสุดที่เกิดขึ้นในแต่ละวิธีนั้น ก็ขึ้นอยู่กับค่าพารามิเตอร์และปัจจัยอื่นๆ ที่แต่ละวิธีได้อ้างอิงตามสมมติฐานของแต่ละทฤษฎี

Angle	Einstein Method								
from	Full-	Slip	No-Slip		JSCE N	JSCE Method		Muir Wood Method	
crown	Axial Force (kN/m)								
(Degree)	lo	1	lo	1	lo	1	lo	1	
0	736.315	813.592	379.305	379.300	891.342	917.518	1281.855	1298.855	
10	744.196	816.812	408.716	408.712	897.099	922.877	1290.038	1306.012	
20	766.889	826.085	493.403	493.399	913.583	938.180	1313.599	1326.622	
30	801.656	840.292	623.151	623.146	938.529	961.198	1349.697	1358.197	
40	844.304	857.720	782.310	782.306	968.473	988.525	1393.977	1396.929	
50	889.690	876.265	951.684	951.679	883.316	860.511	1441.100	1438.148	
60	932.338	893.693	1110.843	1110.839	908.090	880.795	1485.380	1476.881	
70	967.105	907.900	1240.591	1240.586	945.791	920.739	1521.478	1508.456	
80	989.798	917.173	1325.278	1325.273	993.873	978.200	1545.040	1529.065	
90	997.679	920.393	1354.689	1354.685	1047.365	1047.365	1553.222	1536.223	
100	989.798	917.173	1325.278	1325.273	994.534	978.861	1545.040	1529.065	
110	967.105	907.900	1240.591	1240.586	945.492	920.440	1521.478	1508.456	
120	932.338	893.693	1110.843	1110.839	905.300	878.006	1485.380	1476.881	
130	889.690	876.265	951.684	951.679	876.863	854.058	1441.100	1438.148	
140	844.304	857.720	782.310	782.306	957.728	977.780	1393.977	1396.929	
150	801.656	840.292	623.151	623.146	923.509	946.179	1349.697	1358.197	
160	766.889	826.085	493.403	493.399	894.950	919.548	1313.599	1326.622	
170	744.196	816.812	408.716	408.712	876.057	901.835	1290.038	1306.012	
180	736.315	813.592	379.305	379.300	869.455	895.631	1281.855	1298.855	
Мах	997.679	920.393	1354.689	1354.685	1047.365	1047.365	1553.222	1536.223	

ตารางที่4.1 แสดงผลการคำนวณค่า Axial Force (T) ของวิธีEinstein, JSCE และ Muir Wood

รูปที่ 4.6 ความสัมพันธ์ของแรงในแนวแกน (Axial Force,T(Io)) ทั้ง 3 วิธี

Angle	Einstein Method								
from	Full-	Slip	No-Slip		JSCE N	JSCE Method		Muir Wood Method	
crown	Bending Moment (kN-m/m)								
(Degree)	lo		lo	I	lo		lo		
0	-114.347	-46.726	273.868	273.868	66.760	43.636	51.64 1	20.475	
10	-107.451	-43.908	257.351	257.351	60.966	38.885	48.527	19.240	
20	-87.595	-35.794	209.795	209.795	44.763	25.783	39.560	15.685	
30	-57.17 3	-23.363	136.934	136.934	21.484	7.565	25.821	10.238	
40	-19.856	-8.114	47.557	47.557	-3.975	-11.024	8.967	3.555	
50	19.856	8.114	-47.557	-47.557	-25.993	-24.572	-8.967	-3.555	
60	57.173	23.363	-136.934	-136.934	-40.325	-29.489	-25.821	-10.238	
70	87.595	35.794	-209.795	-209.795	-45.662	-25.794	-39.560	-15.685	
80	107.451	43.908	-257.351	-257.351	-43.695	-16.984	-48.527	-19.240	
90	114.347	46.726	-273.868	-273.868	-38.534	-9.133	-51.641	-20.475	
100	107.451	43.908	-257.351	-257.351	-34.086	-7.375	-48.527	-19.240	
110	87.595	35.794	-209.795	-209.795	-28.898	-9.030	-39.560	-15.685	
120	57.173	23.363	-136.934	-136.934	-20.805	-9.969	-25.821	-10.238	
130	19.856	8.114	-47.557	-47.557	-8.935	-7.515	-8.967	-3.555	
140	-19.856	-8.114	47.557	47.557	5.995	-1.054	8.967	3.555	
150	-57.173	-23.363	136.934	136.934	21.621	7.703	25.821	10.238	
160	-87.595	-35.794	209.795	209.795	34.984	16.003	39.560	15.685	
170	-107.451	-43.908	257.351	257.351	43.890	21.809	48.527	19.240	
180	-114.347	-46.726	273.868	273.868	47.007	23.883	51.64 1	20.475	
Max	114.347	46.726	273.868	273.868	66.760	43.636	51.641	20.475	

ตารางที่ 4.2 แสดงผลการคำนวณค่า Bending Moment (M) ของวิธีEinstein , JSCE และ Muir Wood

รูปที่ 4.7 ความสัมพันธ์ของโมเมนต์ดัด(Bending Moment,M(Io)) ทั้ง 3 วิธี

Angle	JSCE Method		Muir Wood Method		
from crown	Shear Force (kN/m)				
(Degree)	lo		lo		
0	0.000	0.000	0.000	0.000	
10	-24.857	-20.311	-12.845	-5.093	
20	-44.640	-35.687	-24.141	-9.572	
30	-55.171	-42.083	-32.526	-12.896	
40	-53.887	-37.061	-36.987	-14.665	
50	-40.726	-20.842	-36.987	-14.665	
60	-21.376	-0.654	-32.526	-12.896	
70	-2.554	15.483	-24.141	-9.572	
80	9.599	20.704	-12.845	-5.093	
90	10.944	10.944	0.000	0.000	

ตารางที่ 4.3 แสดงผลการคำนวณค่า Shear Force (S) ของวิธี JSCE และ Muir Wood

100	9.547	-1.558	12.845	5.093
110	13.910	-4.128	24.141	9.572
120	21.744	1.022	32.526	12.896
130	29.828	9.944	36.987	14.665
140	34.547	17.721	36.987	14.665
150	32.584	19.496	32.526	12.896
160	24.947	15.995	24.141	9.572
170	13.446	8.900	12.845	5.093
180	0.000	0.000	0.000	0.000
Мах	34.547	20.704	36.987	14.665

ตารางที่4.3 (ต่อ) แสดงผลการคำนวณค่า Shear Force (S) ของวิธี JSCE และ Muir Wood

<u>4.2.4 ตำแหน่งการเกิดแรงในแนวแกน โมเมนต์ดัด และแรงเฉือนของทั้ง 3 วิธี ดังรูปที่ 4.9</u>

รูปที่4.9 ภาพตัดขวางและตำแหน่งของดาดอุโมงค์ จากข้อมูลในตารางและกราฟในหัวข้อที่ 4.2.3 เมื่อใช้โปรแกรมวิเคราะห์และแสดงผลเป็นกราฟ วงกลมดังนี้

• แรงในแนวแกน (Axial Force ,T)

วิธีEinstein : Full-Slip , No-Slip , JSCE และ วิธี Muir Wood จะให้ค่าแรงในแนวแกนมา สุดบริเวณ 90 องศา(Spring line) ดั้งรูปที่ 4.10 – 4.13

รูปที่ 4.10 กราฟการกระจายของแรงในแนวแกนรอบดาดอุโมงค์โดยวิธีEinstein แบบ Full-Slip

รูปที่ 4.11 กราฟการกระจายของแรงในแนวแกนรอบดาดอุโมงค์โดยวิธี Einstein แบบ No-Slip

ร**ูปที่ 4.12** กราฟการกระจายของแรงในแนวแกนรอบดาดอุโมงค์โดยวิธี JSCE

ร**ูปที่** 4.13 กราฟการกระจายของแรงในแนวแกนรอบดาดอุโมงค์โดยวิธี Muir Wood

• โมเมนต์ดัด (Bending Moment, M)

วิธี Einstein : No-Slip , JSCE และ Muir Wood จะมีค่าโมเมนต์มากสุดบริเวณ crown และ บริเวณ Invert ของอุโมงค์ ดังรูปที่ 4.14-4.16 ส่วนวิธี Einstein : Full-Slip จะมีโมเมนต์มากสุด บริเวณ Spring line ดังรูปที่ 4.17

รูปที่ 4.14 กราฟการกระจายของโมเมนต์รอบดาดอุโมงค์โดยวิธี Einstein แบบ No-Slip

รูปที่ 4.15 กราฟการกระจายของโมเมนต์รอบดาดอุโมงค์โดยวิธี JSCE

รูปที่ 4.16 กราฟการกระจายของโมเมนต์รอบดาดอุโมงค์โดยวิธี Muir Wood

รูปที่ 4.17 กราฟการกระจายของโมเมนต์รอบดาดอุโมงค์โดยวิธี Einstein แบบ Full-Slip

• แรงเฉือน (Shear Force , S)

วิธี JSCE จะให้ค่าแรงเฉือนมากสุดบริเวณมุม 30 องศา ดังรูปที่4.18 และวิธี Muir Wood จะให้ ค่าแรงเฉือนมากสุด ที่มุม 40,50 องศาและ 130,140 องศา ในทิศที่เป็น ลบและบวกคนละด้าน ดัง รูปที่4.19

รูปที่ 4.18 กราฟการกระจายของแรงเฉือนรอบดาดอุโมงค์โดยวิธี JSCE

รูปที่ 4.19 กราฟการกระจายของแรงเฉือนรอบดาดอุโมงค์โดยวิธี Muir Wood

<u>4.2.5 แรงภายในที่เกิดขึ้นเนื่องจาก(Self weight of concrete segment)จากข้อมูลการ</u> วิเคราะห์ในหัวข้อ4.2.1-4.2.2

ตารางที่ 4.4 แสดงผลการคำนวณค่า Axial Force (T), Bending Moment(M)และค่า Shear Force(S) เนื่องจากSelf weight

Angle(Degree)	T(kN/m)	M(kN-m/m)	S(kN/m)
0	-2.506	13.606	0.000
10	-2.012	12.909	-3.019
20	-0.560	10.878	-5.788
30	1.766	7.680	-8.070
40	4.827	3.590	-9.651
50	8.440	-1.028	-10.353
60	12.382	-5.741	-10.042
70	16.403	-10.062	-8.637
80	20.238	-13.483	-6.113
90	23.615	-15.498	-2.506
100	25.569	-15.643	1.964
110	25.303	-13.682	6.543
120	23.042	-9.757	10.410
130	19.277	-4.354	12.904
140	14.688	1.792	13.606
150	10.042	7.817	12.382
160	6.085	12.866	9.391
170	3.436	16.217	5.058
180	2.506	17.389	0.000
Мах	25.569	17.389	13.606

รูปที่ 4.20 ความสัมพันธ์ของแรงในแนวแกน(T) เนื่องจากSelf weight of concrete segment

รูปที่ 4.21 กราฟการกระจายของแรงในแนวแกน(T) รอบดาดอุโมงค์เนื่องจากSelf weight of concrete segment

รูปที่ 4.22 ความสัมพันธ์ของโมเมนต์(M) เนื่องจากSelf weight of concrete segment

ร**ูปที่ 4.23** กราฟการกระจายของโมเมนต์ดัด(M) รอบดาดอุโมงค์เนื่องจากSelf weight of concrete segment

รูปที่ 4.24 ความสัมพันธ์ของแรงเฉือน(S) เนื่องจากSelf weight of concrete segment

รูปที่ 4.25 กราฟการกระจายของแรงเฉือน(S) รอบดาดอุโมงค์เนื่องจากSelf weight of concrete segment

<u>4.2.6 แสดงผลของการเหลื่อมกันของดาดอุโมงค์ที่มีผลมากกับค่าโมเมนต์ของการคำนวณทั้ง3วิธี</u> โดยใช้ข้อมูลในหัวข้อที่ <u>4.2.1-4.2.2</u>

4.2.6.1 การถ่ายแรงภายในดาดอุโมงค์ เนื่องจากผลของ Staggered โดยค่าโมเมนต์จากวิธี Einstein(Full-Slip) จากตารางที่ 4.2 (M(lo)=114.347 kN-m/m , M(l)= 46.726 kN-m/m)

รูปที่4.26 ค่าโมเมนต์ของวิธี Einstein:Full-Slipจากผลการเหลื่อมกันของดาดอุโมงค์

4.2.6.2 การถ่ายแรงภายในดาดอุโมงค์ เนื่องจากผลของStaggered โดยค่าโมเมนต์จากวิธี Einstein(No-Slip) จากตารางที่ 4.2 (M(Io)= 273.868 kN-m/m, M(I) = 273.868 kNm/m)

จะเห็นได้ว่าค่า M(lo) = M(l) จึงไม่ทำให้เกิด ∆M ทำให้ในการออกแบบนั้นวิธี No-Slip จะใช้ค่า M(lo) หรือM(l) ออกแบบได้เลย

4.2.6.3 การถ่ายแรงภายในดาดอุโมงค์ เนื่องจากผลของ Staggered โดยค่าโมเมนต์จากวิธี JSCE จากตารางที่ 4.2 (M(lo) = 66.76 kN-m/m , M(l) = 43.636 kN-m/m)

รูปที่4.27 ค่าโมเมนต์ของวิธี JSCEจากผลการเหลื่อมกันของดาดอุโมงค์

รูปที่4.28 ค่าโมเมนต์ของวิธีMuir Wood จากผลการเหลื่อมกันของดาดอุโมงค์