รายการอ้างอิง

1. <u>How does the fuel cell ?</u> (Online). Available from :

http://www.celanese.de/ab2002/ en/ magazine/arowth/02.

- Appleby, A.J., and Foulkes, F.R. <u>Fuel cell handbook (fifth etditon)</u> New York: Van Nostrand Reinhold 2000.
- Larminie, J., and Dick, A. <u>Fuel cell systems explained</u> Chichester: John Wiley & Sons LTD. 2000.
- รู้ติกร วาสนาเพียรพงศ์. <u>การจำลองเซลล์เชื้อเพลิงแบบเยื่อแผ่นแลกเปลี่ยนโปรตอน</u>.
 วิทยานิพนธ์ปริญญามหาบัณฑิต คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย, 2546.
- 5. เทคโนโลยีพระจอมเกล้าธนบุรี, มหาวิทยาลัย และ นโยบายพลังงานแห่งชาติ, สำนักงานคณะ กรรมการ เอกสารประกอบการประชุมผู้เชี่ยวชาญ เซลล์ เชื้อเพลิง ครั้งที่ 1, 21 มีนาคม 2543 ณ มหาลัยเทคโนโลยีพระจอมเกล้าธนบุรี.
- 6. Bard, A.J., and Faulkner, L.R. <u>Electrochemical Methods: Fundamental and</u> <u>Application.</u> New York : John Wiley & Sons. 2000.
- Mann, R.F., Amphlett, J.C., Hooper, M.A., Jensen, H.M., Peppley, B.A., Roberge, P.R. Development and application of a generalized steady-state electrochemical model for PEM fuel cell, <u>Journal of Power Sources</u> 86 (2000) : 178-180.
- Pathapati, P.R., Xue, X., Tang, J. A new dynamic model for predicting transient phenomena in a PEM fuel cell system, <u>Renewable Energy</u> 30 (2005) : 1-22.
- Arriagada J., Olausson P., Selimovic A. Artificial neural network simulator for SOFC performance prediction, <u>Journal of Power Sources</u> 112 (2002) : 54-60.
- Won-Yong L., Gu-Gon P., Tea-Hyun Y., Young-Gi Y., Chang-Soo K. Empirical modeling of polymer electrolyte membrane fuel cell performance using artificial neural networks, <u>International Journal of Hydrogen Energy</u> 29 (2004) : 961-966.
- Jemei S., Hissel D., Pera M.C., Kauffmann J.M. On-board fuel cell power supply modeling on the basis of neural network methodology, <u>Journal of Power Sources</u> 124 (2003) : 479-486.

- Martins F.G., Manuel A.N. Application of feedforward artificial neural networks to improve process control of PID-based control algorithms, <u>Computers &</u> <u>Chemical Engineering</u> 24 (2000) : 853-858.
- Yerramalla S., Davari A., Feliachi A., Biswas T. Modeling and simulation of the dynamic behavior of a polymer electrolyte membrane fuel cell, <u>Journal of Power</u> <u>Sources</u> 124 (2003) : 104-113.
- Tao, S., Guang-yi, C., Xin-jian, Z. Nonlinear modeling of PEMFC based on neural networks identification, <u>Journal of Zhejiang University SCIENCE</u> 5 (2005) : 365-370.
- 15. Haykin S. <u>Neural Networks A Comprehensive Foundation</u>. Macmillan Collage Publishing Company 1995.
- 16. Martin T. Hagan, Howard B. Demuth, Mark Beale <u>Neural Network Design</u>. PWS Publishing Company 1996.
- พรพจน์ เปี่ยมสมบูรณ์. <u>พลศาสตร์กระบวนการ : การควบคุมกระบวนการ</u>. กรุงเทพฯ :
 ท.วัฒนาการพิมพ์. 2543.
- พัฒนพงษ์ สงวนรักษ์. <u>การออกแบบหน่วยทดสอบเซลล์เชื้อเพลิงแบบเยื่อแผ่นแลกเปลี่ยน</u> <u>โปรตอน</u>. วิทยานิพนธ์ปริญญามหาบัณฑิต คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย, 2545.

ภาคผนวก

ภาคผนวก ก

การคำนวณค่าตัวแปรสำหรับนำไปฝึกในนิวรอลเน็ตเวิร์ก

กำหนดสภาวะที่ใช้สำหรับการจัดทำข้อมูล		
อุณหภูมิการทำงานของเซลส์	333.15	องศาเคลวิน
ความดันย่อยทางด้านขั้วแอโนด	1.8689	บรรยากาศ
ความดันย่อยทางด้านขั้วแคโทด	2.3914	บรรยากาศ
พื้นที่ในการทำปฏิกิริยาของเซลล์	5	ดารางเซนติเมตร
กระแสที่เซลล์ให้ได้สูงสุด	1	แอมแปร์

สามารถคำนวณค่าศักย์ไฟฟ้าต่าง ๆ ที่เกิดขึ้นในเซลล์เชื้อเพลิงได้ดังนี้

<u>ศักย์ไฟฟ้าทางเทอร์โมไดนามิกส์</u>

$$E_{Nernst} = 1.229 - 0.85 \times 10^{-3} \cdot (T - 298.15) + 4.31 \times 10^{-5} \cdot T \cdot \left[\ln(p_{H_2}) + \frac{1}{2} \cdot \ln(p_{O_2}) \right]$$

จากสมการจะได้ค่าศักย์ไฟฟ้าทางเทอร์โมไดนามิกส์เท่ากับ 1.2145 โวลต์

ศักย์ไฟฟ้าเกินตัวเนื่องจากปฏิกิริยาเคมี

$$\eta_{act} = -(\xi_1 + \xi_2 T + \xi_3 T [\ln(C_{O_2})] + \xi_4 T [\ln(i)])$$

เมื่อ $\xi_1 = -0.948, \xi_2 = 0.00248, \xi_3 = 0.000076, \xi_4 = -0.000193$ และ $C_{O_2} = 1.056 \times 10^{-7}$ ดังนั้นค่าศักย์ไฟฟ้าเกินด้วเนื่องจากปฏิกิริยาเคมีเท่ากับ 0.5283 โวลต์

3. ศักย์ไฟฟ้าเกินตัวเนื่องจากความต้านทานไฟฟ้า

$$\eta_{ohmic} = \eta_{ohmic}^{C} + \eta_{ohmic}^{M} = i(R_{C} + R_{M})$$

เมื่อ R_{c} = 0.0003 Ω , R_{M} = 0.0205 Ω

โวลต์

0.0208

ศักย์ไฟฟ้าเกินตัวเนื่องจากความเข้มข้น

$$\eta_{conc} = -B \ln \left(1 - \frac{j}{j_{\max}} \right)$$

เมื่อ B = 0.016 โวลด์, j = 0.2 แอมแปร์ต่อตารางเซนติเมตร

j_{max} = 0.2 แอมแปร์ต่อตารางเซนติเมตร

เนื่องจากคำนวณที่กระแสสูงสุดมีค่าความหนาแน่นและความหนาแน่นกระแสสูงสุดเท่า กันดังนั้นจึงไม่นำค่ามารวมในสมการหาค่าศักย์ไฟฟ้ารวม ดังนั้นค่าศักย์ไฟฟ้ารวมทั้งหมดของ เซลล์เชื้อเพลิงที่มีขนาดเซลล์เดียวจะมีค่าดังสมการ

$$E_{FC} = E_{Nernst} - \eta_{act} - \eta_{ohmic} - \eta_{conc}$$

ซึ่งค่าศักย์ไฟฟ้ารวมจะมีค่าเท่ากับ	0.6654	โวลต์
และให้ค่ากำลังไฟฟ้าเท่ากับ	0.6654	วัตต์

5. อัตราการใหลของแก๊สไฮโดรเจนขาเข้า

$$\left(\frac{V_a}{RT}\right)\frac{dP_{H_2}}{dt} = k_{up,a}(P_s - P_a) - k_{down,a}(P_a - P_{atm}) - \frac{i}{2F}$$

เมื่อ k_{up.a} = 0.0017769 mol/atm.s, P_s = 2.4 atm, P_a = 1.8689 atm ดังนั้นอัตราการไหลของแก๊สไฮโดรเจนที่จะเข้าไปทำปฏิกิริยาเท่ากับ 0.000944 โมลต่อวินาที

6. <u>อัตราการไหลของแก๊สออกซิเจนขาเข้า</u>

$$\left(\frac{V_c}{RT}\right)\frac{dP_{O_2}}{dt} = k_{up,c}\left(P_s - P_c\right) - k_{down,c}\left(P_c - P_{atm}\right) - \frac{i}{4F}$$

ເມື່ອ $k_{up,c} = 1.13 \times 10^{-2}$ mol/atm.s, $P_s = 2.4$ atm, $P_c = 2.3914$ atm

ดังนั้นอัตราการไหลของแก๊สออกซิเจนที่จะเข้าไปทำปฏิกิริยาเท่ากับ 9.67x10⁵ โมลต่อวินาที

<u>อัตราการเกิดน้ำจากปฏิกิริยา</u>

$$\dot{m}_{H_2O} = \frac{i \cdot n}{2F}$$

เมื่อกำหนดค่ากระแสสูงสุดที่ได้จากเซลล์เชื้อเพลิงมีค่าเท่ากับ 1 แอมแปร์ ดังนั้นน้ำที่เกิด ขึ้นเนื่องจากปฏิกิริยาเท่ากับ 5.18x10⁻⁶ โมลต่อวินาที

ดังนั้นค่าตัวแปรที่ได้จากการคำนวณเพื่อนำข้อมูลไปฝึกในนิวรอลเน็ตเวิร์กจะมีค่าดังแสดง ในตารางที่ 1ก

ตารางที่ 1ก ตัวอย่างข้อมูลที่นำไปฝึกนิวรอลเน็ตเวิร์ก

Temperature	Pressu	re (atm)	current	current density	m _{H2,in}	m _{O2,in}	water production	E _{Nemst}	V _{act}	Vohmic	Vconc	V _{FC}	P _{FC}
(K)	anode	cathode	(A)	(A/cm ²)	(mole.s ⁻¹)	(mole.s ⁻¹)	(mole.s ⁻¹)	(\)	(V)	(V)	(V)	(V)	(watt)
335.92115	0.73649	1.39320	0.00000	0.00000	0.00296	0.01133	0.00000	1.19487	#NUM!	0.00000	0.00000	#NUM!	#NUM!
349.68517	0.55108	1.86187	0.00200	0.00040	0.00329	0.00605	0.00000	1.18090	0.18957	0.00004	0.00003	1.07910	0.00216
326.78856	0.99337	2.28726	0.00400	0.00080	0.00250	0.00127	0.00000	1.21039	0.16109	0.00009	0.00006	0.97295	0.00389
334.59758	1.65723	2.20044	0.00600	0.00120	0.00132	0.00225	0.00000	1.21099	0.21574	0.00013	0.00010	0.92756	0.00557
327.76648	1.28894	1.40820	0.00800	0.00160	0.00197	0.01116	0.00000	1.20983	0.23485	0.00014	0.00013	1.00848	0.00807
327.51499	0.10858	1.21833	0.01000	0.00200	0.00407	0.01329	0.00000	1.17409	0.30199	0.00022	0.00016	0.94899	0.00949
337.59702	1.65525	1.68567	0.01200	0.00240	0.00132	0.00804	0.00000	1.20660	0.22798	0.00021	0.00019	0.83913	0.01007
330.44241	0.32388	0.83868	0.01400	0.00280	0.00369	0.01756	0.00000	1.18424	0.26955	0.00027	0.00023	0.88834	0.01244
332.47706	0.88124	1.40113	0.01600	0.00320	0.00270	0.01124	0.00000	1.20043	0.33388	0.00028	0.00026	0.88336	0.01413
324.68915	1.00162	2.29282	0.01800	0.00360	0.00248	0.00121	0.00000	1.21227	0.29063	0.00036	0.00029	0.89937	0.01619
352.80264	1.01730	0.08960	0.02000	0.00400	0.00246	0.02599	0.00000	1.16447	0.28416	0.00036	0.00032	0.93497	0.01870
340.09023	1.51150	1.54305	0.02200	0.00440	0.00158	0.00964	0.00000	1.20259	0.28950	0.00041	0.00036	0.86941	0.01913
336.52870	0.84231	0.16778	0.02400	0.00480	0.00277	0.02511	0.00000	1.18094	0.28436	0.00049	0.00039	0.89654	0.02152
327.41456	1.11841	1.15600	0.02600	0.00520	0.00228	0.01400	0.00000	1.20673	0.30884	0.00052	0.00042	0.89761	0.02334
345.33396	1.44585	0.43348	0.02800	0.00560	0.00170	0.02212	0.00000	1.18816	0.26607	0.00055	0.00045	0.89955	0.02519
350.55861	0.95174	0.12607	0.03000	0.00600	0.00257	0.02558	0.00000	1.16806	0.29511	0.00051	0.00049	0.81788	0.02454
342.30182	1.70845	1.34754	0.03200	0.00640	0.00123	0.01184	0.00000	1.20157	0.37117	0.00062	0.00052	0.87995	0.02816
348.06554	0.43176	2.30537	0.03400	0.00680	0.00350	0.00106	0.00000	1.18024	0.32989	0.00068	0.00055	0.75660	0.02572

107

การคำนวณค่าพารามิเตอร์สำหรับเครื่องควบคุม

รูปที่ 2ข การตอบสนองต่อการเปลี่ยนแปลงแบบขั้นบันไดของตัวแปรขาเข้า

เมื่อ t₁ = เวลาที่การตอบสนองเปลี่ยนแปลงไป 28.3 % ของการเปลี่ยนแปลงทั้งหมด t₂ = เวลาที่การตอบสนองเปลี่ยนแปลงไป 63.2 % ของการเปลี่ยนแปลงทั้งหมด จากรูปที่ 1ข การเปลี่ยนแปลงของตัวแปรขาเข้าเท่ากับ 50 จากรูปที่ 2ข จะได้ t₁ = 0.3 และ t₂ = 0.7

คำนวนหาค่าอัตราการขยายเชิงสถิต
$$K = rac{(y_\infty - y_0)}{M}$$

เมื่อ y_{∞} เป็นค่า y เมื่อกระบวนการเข้าสู่สภาวะคงตัว y_0 เป็นค่า y ที่เวลา t=0

ค่าอัตราการขยายเชิงสถิตเท่ากับ
$${(0.5369-0.45206)\over 0.08484}=1$$

ค่าคงที่ของกระบวนการ $\tau = \frac{3}{2} (t_2 - t_1) = 0.6$

ค่าเวลาหน่วงของกระบวนการ
$$t_d = t_2 - \tau = 0.1$$

ทรานส์เฟอร์ฟังก์ชันของกระบวนการอันดับที่หนึ่งรวมค่าเวลาหน่วง $G_{prc}(s) = rac{Ke^{-t_ds}}{\pi s+1}$

ดังนั้นทรานส์เฟอร์ฟังก์ชันของกระบวนการอันดับที่หนึ่งรวมค่าเวลาหน่วง

$$G_{prc}(s) = \frac{1e^{-0.1s}}{0.6s + 1}$$

<u>การปรับแต่งเครื่องควบคุมโดยวิธีวงควบคุมแบบเปิด (Ziegler & Nichols)</u> เลือกใช้เครื่องควบคุมแบบพีไอดีซึ่งมีทรานส์เฟอร์ฟังก์ชันดังนี้

$$G(s) = K_c \left(1 + \frac{1}{\tau_I s} + \tau_D s \right)$$

เมื่อ
$$K_c' = \left(\frac{1.2}{K}\right) \left(\frac{\tau}{t_d}\right), \qquad \tau_I' = 2.0t_d, \qquad \tau_D' = 0.5t_d$$

÷

ดังนั้นจะได้ทรานส์เฟอร์ฟังก์ชันเป็น

$$G(s) = 7.2 \left(1 + \frac{1}{0.2s} + 0.05s \right)$$

ภาคผนวก ค

T(°C)	E (V)	abs(i)	j(A/cm²)	P=IV	$\rm H_{2}$ flow	O ₂ flow	H₂O
60	0.8994	0.075900	0.015180	0.068264	112.7197	121.3074	3.93E-07
60	0.8994	0.001709	0.000342	0.001537	154.7424	149.3225	8.86E-09
60	0.8994	0.002106	0.000421	0.001894	162.2681	157.6904	1.09E-08
60	0.8994	0.002228	0.000446	0.002004	164.5020	160.4919	1.15E-08
60	0.8994	0.002228	0.000446	0.002004	166.6992	162.3047	1.15E-08
60	0.8994	0.002228	0.000446	0.002004	169.2261	164.2822	1.15E-08
60	0.8994	0.002197	0.000439	0.001976	171.8262	166.0950	1.14E-08
60	0.8994	0.002197	0.000439	0.001976	172.2107	166.7908	1.14E-08
60	0.8994	0.002167	0.000433	0.001949	172.1008	167.4500	1.12E-08
60	0.8994	0.002106	0.000421	0.001894	170.7642	166.9373	1.09E-08
60	0.8994	0.002075	0.000415	0.001866	169.2444	165.8569	1.08E-08
60	0.8994	0.002045	0.000409	0.001839	171.7896	167.0837	1.06E-08
60	0.8994	0.002014	0.000403	0.001811	176.4404	170.5078	1.04E-08
60	0.8994	0.002014	0.000403	0.001811	174.6826	170.0500	1.04E-08
60	0.8994	0.001984	0.000397	0.001784	176.8250	171.3684	1.03E-08
60	0.8994	0.001923	0.000385	0.00173	174.7925	170.8740	9.96E-09
60	0.8994	0.001892	0.000378	0.001702	172.9248	169.6472	9.8E-09
60	0.8994	0.001862	0.000372	0.001675	174.4995	170.3247	9.65E-09
60	0.8994	0.001831	0.000366	0.001647	176.5137	171.1304	9.49E-09
60	0.8994	0.001831	0.000366	0.001647	177.4109	172.2290	9.49E-09
60	0.8994	0.001831	0.000366	0.001647	175.7996	171.4600	9.49E-09
60	0.8994	0.001801	0.00036	0.00162	174.9573	171.2219	9.33E-09
60	0.8994	0.001770	0.000354	0.001592	173.8770	170.4529	9.17E-09
60	0.8994	0.001770	0.000354	0.001592	177.7039	172.4121	9.17E-09
60	0.8994	0.001740	0.000348	0.001565	177.5940	172.6685	9.02E-09

ตารางที่ 1ค ตัวอย่างข้อมูลที่ได้มาจากการทดลองเพื่อนำไปฝึกนิวรอลเน็ตเวิร์ก

รูปที่ 1ค ความสัมพันธ์ระหว่างความหนาแน่นกระแสและค่าศักย์ไฟฟ้าที่ได้จากการทดลอง

รูปที่ 2ค ความสัมพันธ์ระหว่างความหนาแน่นกระแสและค่ากำลังไฟฟ้าที่ได้จากการทดลอง

รูปที่ 3ค ความสัมพันธ์ระหว่างความหนาแน่นกระแสและค่าอัตราการเกิดน้ำที่ได้จากการทดลอง

รูปที่ 4ค ความสัมพันธ์ระหว่างความหนาแน่นกระแสและค่าอัตราการไหลของแก๊สไฮโดรเจนและ แก๊สออกซิเจนที่ได้จากการทดลอง

T(°C)	E (V)	Current (A)	j A/cm2)	P=IV	H ₂ flow	O ₂ flow	PO ₂ (psi)	H ₂ O
60	0.8994	0.1515	0.0303	0.136259	93.545	107.56	20.631	7.85E-07
60	0.8994	0.003784	0.000757	0.003403	124.56	121.96	19.473	1.96E-08
60	0.8994	0.00351	0.000702	0.003157	130.41	127.40	19.638	1.82E-08
60	0.8994	0.003204	0.000641	0.002882	133.01	130.15	19.990	1.66E-08
60	0.8994	0.002991	0.000598	0.00269	135.00	132.00	19.389	1.55E-08
60	0.8994	0.002838	0.000568	0.002552	135.91	133.04	19.990	1.47E-08
60	0.8994	0.002716	0.000543	0.002443	135.78	133.18	20.098	1.41E-08
60	0.8994	0.002625	0.000525	0.002361	136.27	133.32	20.341	1.36E-08
60	0.8994	0.002533	0.000507	0.002278	136.52	133.75	19.768	1.31E-08
60	0.8994	0.002441	0.000488	0.002195	137.21	134.30	19.331	1.26E-08
60	0.8994	0.00235	0.00047	0.002114	136.3	133.81	20.857	1.22E-08
60	0.8994	0.002289	0.000458	0.002059	136.46	134.06	20.341	1.19E-08
60	0.8994	0.002258	0.000452	0.002031	135.84	133.78	19.711	1.17E-08
60	0.8994	0.002228	0.000446	0.002004	137.07	134.56	20.341	1.15E-08
60	0.8994	0.002197	0.000439	0.001976	137.59	134.55	19.059	1.13E-08
60	0.8994	0.002136	0.000427	0.001921	137.80	134.79	20.205	1.10E-08
60	0.8994	0.002075	0.000415	0.001866	138.19	135.32	19.672	1.07E-08

ตารางที่ 2ค ตัวอย่างข้อมูลที่ได้มาจากการทดลองเพื่อนำไปฝึกนิวรอลเน็ตเวิร์กมีเพิ่มค่าความดัน

รูปที่ 5ค ความสัมพันธ์ระหว่างความหนาแน่นกระแสและค่าศักย์ไฟฟ้าที่ได้จากการทดลอง

รูปที่ 6ค ความสัมพันธ์ระหว่างความหนาแน่นกระแสและค่ากำลังไฟฟ้าที่ได้จากการทดลอง

รูปที่ 7ค ความสัมพันธ์ระหว่างความหนาแน่นกระแสและค่าอัตราการเกิดน้ำที่ได้จากการทดลอง

รูปที่ 8ค ความสัมพันธ์ระหว่างความหนาแน่นกระแสและค่าอัตราการไหลของแก๊สไฮโดรเจนและ แก๊สออกซิเจนที่ได้จากการทดลอง

รูปที่ 9ค ความสัมพันธ์ระหว่างความหนาแน่นกระแสและค่าความดันแตกต่างทางด้านแคโทด

ภาคผนวก ง

การทำ Normalization ข้อมูลก่อนการฝึกเน็ตเวิร์ก

Normalization

ใช้คำสั่งของโปรแกรม matlab คือ premnmx Algorithm

$$xn = 2 * (x - \min x) / (\max x - \min x) - 1$$

De-normalization

ใช้คำสั่งของโปรแกรม matlab คือ premnmx

Algorithm

$$x = 0.5(xn + 1) * (\max x - \min x) + \min x$$

ประวัติผู้เขียนวิทยานิพนธ์

นางสาววราภรณ์ เริงฤทธิ์ เกิดวันที่ 8 พฤศจิกายน พ.ศ. 2522 ที่จังหวัดชัยภูมิ สำเร็จการ ศึกษาปริญญาตรีวิศวกรรมศาสตรบัณฑิต คณะวิศวกรรมศาสตร์ สาขาวิศวกรรมเคมี มหาวิทยาลัยศรีนครินทรวิโรฒ ในปีการศึกษา 2544 และเข้าศึกษาต่อในหลักสูตรวิทยาศาสตร มหาบัณฑิต สาขาเคมีเทคนิค ภาควิชาเคมีเทคนิค คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย เมื่อ พ.ศ. 2545

