
C hapter 3
The Q uantum -Classical B oundary

3.1 The Classical Limit for a H eavy M ass
In 1961. Aharonov and Bohm [26] considered the time-energy uncertainty 

relation. They discussed the nature of time in quantum mechanics and cleaned 
up many misconceptions on the time-energy uncertainty relation by using the 
variables determining the time of measurement, called the quantum-mechanical 
side of the cut which now we call the quantum-classical boundary. Aharonov and 
Bohm introduced these variables into the wave function, so that they are in this 
way led to a many-body SE. It implies that an additional observing apparatus 
on the classical side of the cut, with the aid of the many-body system under 
discussion can be observed. The probabilities for the result of such observations 
are determined by the wave function, which takes the form

T = T(x, y, 2, t )  (3.1)

where 2 represents the apparatus variable on the quantum-mechanical side of the 
cut (which includes those describing the time of measurement), X  represents the 
coordinate of the observed particle, and y  that of the test particle. Aharonov and 
Bohm stated that:

1) The time of measurement พลร determined by an interaction between the 
test particle and the observed particle which was assumed to last for some interval 
A t.

2) If there is ล time-dependent interaction between apparatus and observed 
system which last for an interval A t .  then the SE will have to have a corresponding
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potential, which represents this interaction. The form of this potential will depend 
on where we place “the cut”, 2.

3) If the apparatus determining the time of interaction is taken to be on the 
classical side, then the potential will be a certain well defined function of time, 
which is nonzero only in the specified interval of length A t .  We may write this 
potential as

V ( x , y , z ) —>■ V ( x , y ,  z ( t ) )  =  V ( x . y , t ) .  (3.2)

4) If. on the other hand, the variable determining the time of interaction 
are placed on the quantum mechanical side of the cut then we cannot regard the 
potential as a well-defined function of time. Instead, we must write V  =  V (.X . y.  ะ).

5) If the particles determining (or the apparatus) the time of interaction 
are heavy enough, then they will move in an essentially classical way. very nearly 
following a definite orbit. 2 =  z { t ) .

To the extent that, this happens, we obtain, as a good approximation.

V { x , y , z )  ^  V { x . y , z ( t ) ) .  (3.3)

To treat this problem mathematically. Aharonov and Bohm started with the SE 
for the whole system.

/7 ^ T (x , y, 2. t )  =  [H ()+ H ;v+ H .4 +  V ( x .  y, z)} จ ( x .  y .  ะ. t) (3.4)

where Ho represents the Hamiltonian of the observed particle. H,, that of the 
test particle. แ 4 that of the time determining variable, 2 (or the apparatus) and 
V ( x . y .  ะ) represents the interaction potential.

They simplify this problem by letting the time determining variable be rep
resented by a heavy free particle mass M . for which we have
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and suppose that the initial state of the time-determining variable can be rep
resented by a wave packet narrow enough 111 2 space, so that A t  =  A 2/I2I can 
be made as small as necessary. This procedure is similar to those developed bv 
Armstrong in 1957 [39]. The wave packet is

$ o ( z , t )  =  J > z exp
p2

z P 2 fit2 M (3.6)

where P z is the momentum of the apparatus system. Because M  is very large, 
the wave packet will spread very slowly, and to a good approximation. The wave 
packet becomes

<I>o(2, t )  =  <f>(2 -  V  21) exp I  l- ( ท  ิy -y

2 M  ' (3.7)

where V2, =  ๆ^ is the mean velocity, p 2 is the mean momentum and $(2 — V21) is 
just a form factor for the wave packet which is. in general, a fairly regular function 
which varies slowly in comparison with the wavelength of the apparatus system.

Â = h / p 2. (3.8)

If the interaction. V (:c, y 1 2) is neglected, a solution for the whole problem will be

จ { x , y - z , t )  =  4>o(2.t)^o(:c,y,t) (3.9)

where t > o ( x .  y .  t ) is a solution of the equation

i h ^ - p Q{ x .  y .  t )  =  ( H o + H y) !/>o(x, y ,  t ) .  (3 .1 0 )

When this interaction is taken into account, the general solution will, take the 
form

T(.r. y .  z . t )  =  y~] C„<I>n(2. t - ) w „ ( x .  y . t  ) (3.11)
ท

where c „  is the coefficients of the expansion. The sum is taken over the respective 
eigenfunctions. <br,(2.t) and </;„(;c. y .  t )  of H .4 and ( H 0-|-H ,y) respectively.
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6) If the mass M ,  of the time determining particle is great enough, so that 
the potential V ( x , y . z )  does not significant variation in the wave-length. A = 
h / p 21 then, as is well known, the adiabatic approximation will be applied. In this 
case, one can obtain a simple solution, consisting of a single product, even when 
interaction is taken into account. Aharonov and Bohm obtain the solution in the 
form

^(x, y, z, t )  =  $o(z, y, z, t ) .  (3.12)
When this function is substituted into the SE, Eq.(3.4), the result is

i h ^ ( x ,  y, z, t )  =  ( H o + H y + V ( x ,  y, z) -  In % ^  -  1 ^ )  v ( x ,  y .  z ,  t ) .

(3.13)
If M  is large and if the potential dose not vary very rapidly as a function of 
z. the last term on the right-hand side of Eq.(3.13) in the above equation can 
be neglected, if V ( x . y . z )  varies very rapidly, then 2 M g ^ i p 0 ( x , y , z , t )  will not be 
negligible, even when M  is large. Moreover.

A  In <I>0 = 1 dP z +  h —  111 $(z — v z t) (3.14)

Because <l>(z — v z t )  does not vary significantly in a wave-length, this term also can 
be neglected in the above equation, and we obtains

d  {  Ô \■ ih— xp{x1 y. z . t )  =  ( H o + H y  + V (X . y .  z )  — i h v , —  J Ii>(x. y, z. t ) .  (3.15)

Aharonov and Bohm then make the substitution. v z t  =  น and

พ่ ' ( x .  y. น. t ) = ไเ}(:V. y .  z .  t) =  ใ]]( x ,  y. น + v : t.  t ) .  (3.16)

With the relation
du:'  O v  d w  
~dT =  ~ d t +  d z ' ( 3 . r

we have

i h ^ ÿ / ( x .  y. น. t) = [H ()+ H y  + V ( x .  y. น. + v-t)] (/.’(.(;. y. น +  e t .  t). ( 3 . 1 8 )
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Note that this equation does not contain derivatives of น, so that, น can be given 
a definite value in it.

The complete wave function is. of course, obtained by multiplying ■ พ1 ( x ,  y .  น. t)  

by <5>(z — v z t )  = (น). Now. this was assumed to be a narrow packet centering at
น = 0, such that, the spread of น can be neglected. As a result, we can write น =  0 
in the above equation. The result is

i h ^ x j j ' ( x ,  y ,  น =  0,f) =  [H0+ H y + V ( x , y , v z t)] i k ( x , y , t ) .  (3.19)

In this way. we have obtained the SE for X ,  y ,  with the appropriate time-dependent 
potential V (X . y , v z , t ) ,  the relationship between the time parameter t  and the time 
determining variable 2 being, in this case, t  —  z / v z .

Above is a discussion as the same what Mandelstamm and Tamm had done 
in 1945 [40] who had formulated for the justification of the time-energy uncertainty 
relationship. Mandelstamm and Tamm considered an arbitrary operator A. which 
is a. function of the time (e.g., the location of the needle on a clock dial or the
position of a free particle in motion) and which can therefore be used to indicate

r ~  7 โโ2โtime. If A A = y  ((A — (A)) ) is the uncertainty in A, then the uncertainty in
time is

A t  = A A
À (3.20)

provided that À does not change significantly during the time period. A t .  and
that A A j is negligible. From the relation

A A A E  >  |(A. H)| = (3.21)

where H represents the Hamiltonian of the isolated system and A E  =  \ J ( (H — (H))') 
is the uncertainty in energy of the system. We obtain the time-energy uncertainty
relation

, ' 1 A E  =  A t A E  > h.A
(3.22)
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