ADSORPTIVE REMOVAL OF SULFUR COMPOUNDS FROM TRANSPORTATION FUELS BY USING ZEOLITIC ADSORBENTS

.

Ho Ngoc Linh

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2008 512003

Thesis Title:	Adsorptive Removal of Sulfur Compounds from		
	Transportation Fuels by Using Zeolitic Adsorbents		
By:	Ho Ngoc Linh		
Program:	Petrochemical Technology		
Thesis Advisors:	Asst. Prof. Pomthong Malakul		
	Dr. Sophie Jullian		

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantayo Jammet College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

(Asst. Prof. Pomthong Malakul) (Dr. Sophie Jullian) J. hin'

(Dr. Siriporn Jongpatiwut)

litt ty

(Assoc. Prof. Metta Chareonpanich)

1000

บทคัดย่อ

โฮ งอบ ลึน: การกำจัดสารประกอบกำมะถันจากน้ำมันเชื้อเพลิงที่ใช้ในการขนส่งโดย ใช้ซีโอไลต์เป็นตัวดูดซับ (Adsorptive Removal of Sulfur Compounds from Transportation Fuels by Using Zeolitic Adsorbents) อ. ที่ปรึกษา : ผศ. คร. ปมทอง มาลากุล ณ อยุธยา, ดร.มิเชล โทมัส, คร. โซเฟีย จูเลียน และ ราฟาเอล ฮอยเก 120 หน้า

ในงานวิจัยนี้ ซีโอไลต์ NaX และ NaY ถูกแลกเปลี่ยนประจุกับไอออนประจุบวก Ni²⁺ และ Cu⁺ โดยวิธี LPIE และ SSIE ซึ่งซีโอไลต์ที่ผ่านการแลกเปลี่ยนประจุแล้วนั้นถูกใช้เป็นตัว ดูคซับสารประกอบกำมะถัน โดยประเมินประสิทธิภาพการดูคซับจากการกำจัด 3-MT และ BT ในระบบที่มีสองและสามองค์ประกอบของ ไอโซออกเทน และเบนซึน (หรือโทลูอืน) เป็น แบบจำลองของน้ำมันเชื้อเพลิง จากการทคลองพบว่า NaX แลกเปลี่ยนไอออนได้ร้อยละ 85 และ NaY แลกเปลี่ยนไอออนได้ร้อยละ 68 โดยวิธี LPIE นอกจากนี้แล้วอุณหภูมิที่เหมาะสมในการ แลกเปลี่ยนไอออุนโลหะด้วยวิธีนี้สำหรับ NaX และ NaY คือ 45 และ135 องศาเซลเซียส ตามลำคับ เมื่อเปรียบเทียบกับวิธี LPIE แล้ว วิธี SSIE สามารถแลกเปลี่ยนไอออนได้ถึงร้อยละ 100 จากการศึกษาการดูคซับพบว่า การดูคซับสารประกอบกำมะถันทั้งสองชนิคนั้นมีปริมาณ เพิ่มขึ้นตามถำดับ ดั้งนี้ NiY (LPIE ที่ 135 องศาเซลเซียส) < NiX (LPIE ที่ 45 องศาเซลเซียส) <NiY (SSIE) นอกจากนี้แล้ว ผลการดูคซับสารประกอบกำมะถันในไอโซออกเทนและในเบน ซีน แสดงให้เห็นว่า อัตราการกำจัดและปริมาณการดูดซับโดยรวมของสารประกอบกำมะถันบน ้ตัวคูดซับลดลงอย่างมีนัยสำคัญในเบนซีน ทั้งนี้เนื่องจากเบนซีนสามารถแข่งขันกับสารประกอบ กำมะถันในการเกิด π-complexation กับตัวดูดซับได้ จากการดูดซับ 3-MT ที่สภาวะสมดุลมี ความสามารถในการคูดซับตามลำคับคังนี้ NaY < NiY < NiX < NaX < Cu^(I)Y ในขณะที่ ความเฉพาะเจาะจงในการคูดซับ 3-MT ในโทลูอื่นมีตั้งนี้ NaY < NiY < NaX < NiX < Cu^mY นอกจากนี้แล้วยังพบว่า น้ำที่ถูกคูคซับก่อนในตัวดูคซับนั้นขัดขวางการเกิด π-complexation ระหว่างตัวดูดซับและสารประกอบกำมะถัน

ABSTRACT

4971007063: Petrochemical Technology Program
Ho Ngoc Linh: Adsorptive Removal of Sulfur Compounds from
Transportation Fuels by Using Zeolitic Adsorbents
Thesis Advisors: Asst. Prof. Pomthong Malakul and Dr. Michel
Thomas, Dr. Sophie Jullian, and Mr. Raphael Huyghe 120 pp
Keywords: Adsorption, zeolite, ion exchange, desulfurization, π-complexation
adsorbents.

In this study, the ion-exchanged zeolites were prepared by exchanging NaX and NaY zeolites with Ni²⁺ and Cu⁺ cations using both LPIE and SSIE methods. These adsorbents were evaluated for their efficiency in removing 3-MT and BT in both binary and ternary systems of isooctane and benzene (or toluene) as model fuels. The results showed only 85% exchange in NaX and 68% exchange in NaY zeolites by LPIE technique. The optimum temperature for achieving a sufficient amount of metal loading by this technique on NaX and NaY was found to be 45°C and 135°C, respectively. In comparison with LPIE, the SSIE technique obtained 100% ionexchange. In the static adsorption, the sulfur adsorption capacity increased in the order NiY (LPIE at 135°C) < NiX (LPIE at 45°C) < NiY (SSIE) for both sulfur compounds. Furthermore, the adsorption data of sulfur compounds in isooctane and benzene revealed that the removal rate and the overall sulfur uptake capacity of the adsorbents were significantly reduced when benzene was used, which can be attributed to the competitive π -complexation forming with the adsorbent between the aromatic (benzene) and sulfur compound. The equilibrium capacity under dynamic conditions for 3-MT adsorption increased in the order of NaY < NiY < NiX < NaX < Cu⁽¹⁾Y; while the selectivity for 3-MT over toluene exhibited the following trend NaY < NiY < NaX < NiX < Cu⁽¹⁾Y. In addition, the pre-adsorbed water was found to have detrimental effect on the π -complexation bonding between adsorbent and sulfur compounds.

ACKNOWLEDGEMENTS

I would like to sincerely express my thanks and gratitude to the following people and organization. Without their help, this thesis could not be very fruitful.

First of all, I would sincerely like to thank my Chief Advisors, Asst. Prof. Pomthong Malakul and Dr. Michel Thomas, for their help and guidance on a day to day basis during my doing research at the Petroleum and Petrochemical College and Institut Français du Pétrole (IFP). I would really appreciate their advice, suggestions, and comments, good or bad because I am in a learning stage and would love to be corrected.

I would like to give special thanks to Dr. Sophie Jullian, Dr. Cecile Barrere-Tricca, and Mr. Raphael Huyghe, for their kindly helping and assisting me during my period time at Institut Français du Pétrole (IFP).

I would really appreciate Dr. Siriporn Jongpatiwut and Assoc.Prof. Metta Chareonpanich, for kindly serving on my thesis committee.

I would also like to thank all my professors who guided me through their courses, giving me a chance to get knowledge about my thesis.

This thesis work is partially funded by the National Excellence Center for Petroleum, Petrochemicals, and Advanced Materials, Ministry of Education, Thailand.

I would also like to express my special thank to the Ratchadapisek Research Funding of Chulalongkorn University for financial support and funding from the Institut Français de Pétrole (IFP) during I stayed in France.

Thanks to Ms. Michèle Maricar-Pichon, Ms. Sandra Montpeyroux, Ms. Aurélie Marsallon, Ms. Christine Bounie, the IFP's technicians; and all the graduate students at PPC, who helped me over the year.

Finally, special thanks to my parents for all their patience and understanding through my research time. Without their support this project would not have been possible.

I have tried my level best to complete the project, hope you will like it.

TABLE OF CONTENTS

PAGE

Title Page	e	i
Abstract	(in English)	iii
Abstract	(in Thai)	iv
Acknowle	edgements	v
Table of (Contents	vi
List of Ta	ables	ix
List of Fig	gures	xi
CHAPTER		
I IN	TRODUCTION	1
	ITERATURE REVIEW	3
2.	1 Transportation Fuels and Sulfur Compositions	3
2.	2 Classification of Desulfurization Technologies	6
	2.2.1 Conventional HDS	9
	2.2.2 Desulfurization by adsorption	11
	2.2.3 Adsorbents and their applications in sulfur removal	12
	2.2.3.1 Molecular Sieve Zeolites	15
	2.2.3.2 Application of adsorbent for sulfur removal	
	process	18
	2.2.4 Fixed Bed Adsorption	20
III E	XPERIMENTAL	23
3.	1 Materials	23
3.2	2 Equipments	24
3.3	3 Methodology	24
	3.3.1 Experimental Procedures	24

PAGE

CHAPTER

IV

technique in a batch reactor	26	
3.3.3 Preparation of the ion-exchanged zeolites using LPIE		
technique in a fixed-bed column	27	
3.3.4 Preparation of the ion-exchanged zeolites using STIE		
technique	29	
3.3.5 Characterization of adsorbents	30	
3.3.6 Preparation of the simulated transportation fuels	30	
3.3.7 Static adsorption experiment	30	
3.3.8 Sulfur compounds analysis	32	
3.2.9 Adsorption isotherm of sulfur compounds	32	
3.3.10 Model of adsorption isotherm on sorbents	32	
3.2.11 Fixed bed adsorption	33	
3.2.12 Calculation method of the Breakthrough Curve	35	
3.2.12.1 Definitions of the different Volumes in the		
Column	36	
3.2.12.2 Porosity Levels in the Column	36	
3.2.12.3 First Moment of the Breakthrough Curve (μ)	38	
RESULTS AND DISCUSSION	41	
4.1 Adsorbent Modification and Characterizations	41	
4.1.1 Ni-exchanged zeolites prepared by liquid phase		
ion-exchanged technique in a batch reactor	41	
4.1.1.1 Effect of temperature on metal loading	41	
4.1.1.2 Effect of the amount of metal ions on		
4.1.1.2 Effect of the amount of metal ions on metal loading	43	
4.1.1.2 Effect of the amount of metal ions on metal loading4.1.1.3 Ion-exchange isotherm	43 44	

4.1.2 Ni-exchanged zeolites prepared by SSIE technique 46

CHAPTER					PAGE
		4.1.3	Characte	erization adsorbents	48
	4.2	Static	Adsorpt	ion of Sulfur Compounds in Simulated Fuels	50
		4.2.1	Static ac	dsorption in a binary system	50
			4.2.1.1	Static adsorption of sulfur compounds in	
				Isooctane	50
			4.2.1.2	Adsorption of sulfur compounds in benzene	54
4.2.2 Static adsorption of sulfur compounds in ternary syst			n 57		
			4.2.2.1	Effect of aromatic content on sulfur compound	ds
				Adsorption	57
			4.2.2.2	Competitive adsorption between sulfur	
				compounds and benzene on zeolite	59
		4.2.3	Effect of	f exchanged techniques in static adsorption	62
	4.3	Dynan	nic Adso	orption of Sulfur Compounds in Simulated Fuel	s 66
		4.3.1	Breakth	rough adsorption on Y-type and X-type zeolite	s 66
		4.3.2	Effect of	f pre-adsorbed water on zeolite on sulfur	
			compou	inds adsorption	73
V	CO	NCLU	SIONS	AND RECOMMENDATIONS	78
	RE	FERE	NCES		80
	API	PENDI	ICES		85
Appendix A Calculation and Samples of Calculation		85			
	Арр	endix	B Expe	erimental data	97
	CU	DICI			100
	UU	KKIU	ULUNI	VIIAL	120

LIST OF TABLES

TABL	Æ		PAGE
2.1	Typical compositions of transportation fuels (vol %)		3
2.2	Example of heteroatom contents in the FCC gasoline		5
2.3	Typical organosulfur compounds and their hydrotreating	r 9	
	pathway		10
2.4	Correlations used to represent the adsorption isotherm		12
2.5	Adsorbents in commercial adsorption separations	÷.,	13
3.1	Physical properties of sulfur compounds and simulated	,	
	transportation fuels	÷.,	21
3.2	GC conditions for the analysis	·.	31
4.1	The BET surface area of sorbents	· ·	42
4.2	Metal ion-exchange and surface area of samples betweer	n two	
	methods .		48
4.3	Properties of adsorbents by using the Nitrogen adsorption	on /	
	desorption methods		49
4.4	Properties of adsorbents by using the Mercury porosime	try	49
4.5	Langmuir parameters of the adsorption of 3-MT in isooc	tane	
	by NiX zeolite		53
4.6	Langmuir parameters of the adsorption of BT in isooctat	ne by	
	NiX zeolite		53
4.7	Langmuir parameters of the adsorption of 3-MT in benze	ene	
	by NiX zeolite		57
4.8	Langmuir parameters of the adsorption of BT in benzene	e by	
	NiX zeolite		57
4.9	Selectivity factors of 3-MT over benzene in ternary syste	em	
	using NiX (7.48%wt Ni) and NaX zeolites.		62
4.10	Selectivity factors of BT over benzene in ternary system		
	using NiX (7.48%wt Ni) and NaX zeolites		62

4.11	Langmuir parameters of the adsorption of 3-MT and BT in	
	isooctane solution by various zeolite adsorbents	66
4.12	Langmuir parameters of the adsorption of 3-MT and BT in	
	benzene solution by various zeolite adsorbents	66
4.13	Breakthrough capacity of different adsorbents for 3-MT and	
	toluene	71
4.14	The breakthrough capacity of different adsorbents with pre-	
	adsorbed water for 3-MT and Toluene	75
Al	Breakthrough curve without adsorbent	93

÷

•

÷

Ċ,

LIST OF FIGURES

FIGURE		
2.1	Examples of sulfur compounds in petroleum.	4
2.2	GC-FPD (flame photometric detector-for sulfur only)	
	chromatograms for three transportation fuels	6
2.3	Classification of desulfurization processes based on	
	organosulfur compound transformation	7
2.4	Desulfurization technologies classified by nature of a key	
	process to remove sulfur	8
2.5	Comparison of pore sizes of different framework structures	16
2.6	CBUs and framework structure of the zeolite X, Y, or	
*	faujasite (FAU)	17
2.7	(a) "unit cell" of types X and Y, or faujasite. (b) The cation	
	sites in the faujasite framework	18
2.8	Idealized breakthrough curve of a fixed bed adsorber	21
3.1	Schematic of the experimental procedures	23
3.2	Schematic of the synthetic procedure of the ion exchanged	. •
	FAU-type zeolites by LPIE method	26
3.3	Schematic of the synthetic procedure of the ion exchanged	
	FAU-type zeolites by LPIE method in a fixed bed reactor.	28
3.4	Furnace for activation	28
3.5	Schematic of the synthetic procedure of the ion exchanged	
	FAU-type zeolites by STIE method	29
3.6	Gas Chromatography	31
3.7	Support of Vials in Gas Chromatography	32
3.8	Schematic of the Fixed Bed Adsorption Breakthrough	34
3.9	Collector in the fixed bed adsorption model	34
3.10	The adsorber geometry	35

....

3.11	Characteristics of a typical adsorption breakthrough curve		38	
3.12	The first Moment of the Breakthrough Curve (μ)		39	
4.1	Effect of temperature on metal loading		41	
4.2	Effect of the amount of metal ions on metal loading		43	
4.3	Ion-exchange isotherm for the NiX (at 45°C) and the NiY			
	(at 135°C)		44	
4.4	Comparison of XRD pattern of (a) 13X, and (b) NiX			
	(7.48%wt Ni) at 45°C		46	
4.5	Comparison of XRD pattern of (a) NaY, and (b) NiY-SSIE			
	method (9.17%wt Ni)		47	
4.6	Adsorption isotherms of 3-methylthiophene in isooctane by			
	NiX zeolite with different amount of Ni ²⁺ loading. a) 3-MT			
	adsorbed per game of adsorbent, b) 3-MT adsorbed per cm ³			
· · · · ·	of micropore volume of adsorbent	4	51	
4.7	Adsorption isotherms of benzothiophene in isooctane by NiX			
	zeolite with different amount of Ni ²⁺ loading. a) BT adsorbed	•		
	per game of adsorbent, b) BT adsorbed per cm ³ of micropore			
	volume of adsorbent		52	
4.8	Adsorption isotherms with different sulfur compounds on			•
	NiX zeolite (7.48%wt Ni) in isooctane as the model fuel		54	
4.9	Adsorption isotherms of 3-methylthiophene in benzene by			
	NiX zeolite with different amount of Ni ²⁺ loading		56	
4.10	Adsorption isotherms of benzothiophene in benzene by NiX			
	zeolite with different amount of Ni ²⁺ loading		56	
4.11	Effect of aromatic content on 3-MT adsorption on NiX			
	(7.48%wt Ni) and NaX		58	
4.12	Effect of aromatic content on BT adsorption on NiX			
	(7.48%wt Ni) and NaX		59	
4.13	3-MT and benzene adsorption on (a) NiX (7.48%wt Ni), and			
	(b) NaX zeolites from different concentration of benzene		60	

¥1

4

4.14	BT and benzene adsorption on (a) NiX (7.48%wt Ni), and	
	(b) NaX zeolites from different concentration of benzene	61
4.15	Adsorption isotherms of (a) 3-MT, and (b) BT in isooctane	
	solution by various zeolite adsorbents	64
4.16	Adsorption isotherms of (a) 3-MT, and (b) BT in benzene	
	solution by various zeolite adsorbents	65
4.17	Breakthrough curve for the adsorptive removal of 3-MT and	
	Toluene on NaY	69
4.18	Breakthrough curve for the adsorptive removal of 3-MT and	
	Toluene on NiY	69
4.19	Breakthrough curve for the adsorptive removal of 3-MT and	
	Toluene on Cu ^(I) Y	70.
4.20	Breakthrough curve for the adsorptive removal of 3-MT and	
	Toluene on NaX	70
4.21	Breakthrough curve for the adsorptive removal of 3-MT and	
	Toluene on NiX	71
4.22	Nitrogen adsorption/desorption at 77 K of NiX	73
4.23	Effect of moisture on the desulfurization on NaX zeolite.	76

.