IMAGING OF POLYMER FLOODING USING MRI

Sureerat Ongsurakul

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2008

512009

Thesis Title:	Imaging of Polymer Flooding using MRI
By:	Sureerat Ongsurakul
Program:	Petroleum Technology
Thesis Advisors:	Assoc. Prof. Thirasak Rirksomboon
	Assoc. Prof. Laura Romero-Zerón
	Prof. Bruce J. Balcom
	Prof. Frank R. Steward

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

>Nantage Janumet College Director (Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

(Assoc. Prof. Thirasak Rirksomboon)

.....

(Prof. Bruce J. Balcom)

(Prof. Somchai Osuwan)

pourla / Common

(Assoc. Prof. Laura Romero-Zerón)

Quert Roteward

(Prof. Frank R. Steward)

J.hr/

(Dr. Siriporn Jongpatiwut)

บทคัดย่อ

สุรีรัตน์ องค์สุรกุล: การสร้างภาพค้วยเรโซแนนซ์แม่เหล็กของการแทนที่ปีโตรเลียมค้วย พอลิเมอร์ในกระบวนการผลิตปีโตรเลียมขั้นตติยภูมิ (Imaging of Polymer Flooding using MRI) อ. ที่ปรึกษา: รศ. คร. ธีรศักดิ์ ฤกษ์สมบูรณ์, รศ. คร. ลอรา โรเมโร เซรอน, ศ. คร. บรูซ เจ บัลคัลม์, และ ศ. คร. แฟรงค์ อาร์ สจ๊วต, 112 หน้า

การสร้างภาพค้วยเรโซแนนซ์แม่เหล็ก(เอมอาร์ไอ)ถูกนำมาใช้เพื่อประเมินประสิทธิภาพ ของการแทนที่ระคับไมครอนของกระบวนการผลิตปีโตรเลียมขั้นตติยภูมิ (อีโออาร์) ในวัสคุร่วนรู พรุน ในงานวิจัยนี้ การสร้างภาพค้วยเทคนิค เซนตริกสแกนสไปรท์เอมอาร์ไอ ถูกนำมาใช้เพื่อฉาย ภาพและวิเคราะห์เชิงปริมาณของการแทนที่ปีโตรเลียมด้วยน้ำในขั้นทุติยภูมิ การแทนที่ปีโตรเลียม ้ด้วยโพลีเมอร์ในขั้นตติยภูมิ และการลดการแทรกผ่านในแบบจำลองทราย โพลีเมอร์ที่ใช้ใน ้งานวิจัยนี้ได้แก่ อัลโคฟลัด 935 ซึ่งเป็นโพลีอคริลามายค์แบบไฮโครไลท์เพียงบางส่วน เจลโพลีอก ้ริลามายค์แบบอ่อน ถูกนำมาใช้เป็นสิ่งกีคขวางเพื่อลคการแทรกผ่านในแบบจำลองทรายที่มีช่อง แก้วจำลองสำหรับการแทรกผ่านอย่างสูง การตรวจสอบความถูกต้องเชิงปริมาณค้วยวิธีการสสาร ้สัมพันธ์ ได้นำมาประยุกต์ใช้กับการสร้างภาพด้วยเรโซแนนซ์แม่เหล็ก งานวิจัยนี้ได้มีการศึกษา ้ผลกระทบของความสามารถในการคูดของเหลวไว้ที่ผิวของทราย และความเข้มข้นของโพลีเมอร์ ต่อการแทนที่ของน้ำมัน ความสามารถในการคูคของเหลวไว้ที่ผิวของทรายมีผลกระทบต่อการ กระจายตัวของของเหลวในแบบจำลองทราย ลักษณะการแทนที่ด้วยโพลีเมอร์ และผลได้ในการ ผลิตน้ำมัน การยึดเกาะและการเคลื่อนที่ของหยุดของเหลวผ่านช่องแก้วจำลองได้ถูกแสดงไว้ใน ้งานวิจัยนี้ แนวโน้มของผลได้ในการผลิตน้ำมันจากผลวิเคราะห์เชิงปริมาณ ด้วยการสร้างภาพ ด้วยเรโซแนนซ์แม่เหล็กให้ผลสอดคล้องกับวิธีการสสารสัมพันธ์ ภาพจากการสร้างภาพด้วยเร ์ โซแนนซ์แม่เหล็กเสริมสร้างความเข้าใจในกลไกการแทนที่ของของเหลวระคับไมครอนในวัสดุ ร่วนรูพรุน เทคนิคนี้ขังสามารถประขุกต์ใช้ได้กับการศึกษาการแทนที่ปีโตรเลียมในวัสดุแข็งรูพรุน ผลจากการทคลองซี้ให้เห็นว่า การสร้างภาพด้วยเรโซแนนซ์แม่เหล็กถือเป็นหนึ่งในเครื่องมือที่มี คุณประโยชน์อย่างสูงในการศึกษาการเคลื่อนที่ของน้ำมัน และการกระจายตัวของของเหลว ระหว่างกระบวนการแทนที่ของปีโตรเลียม

ABSTRACT

4873017063: Petroleum Technology Program
Sureerat Ongsurakul: Imaging of Polymer Flooding using MRI
Thesis Advisors: Assoc. Prof. Thirasak Rirksomboon, Assoc. Prof.
Laura Romero-Zerón, Prof. Bruce J. Balcom, and Prof. Frank R.
Steward, 112 pp.

Keywords: Enhanced Oil Recovery (EOR)/ Porous media/ SPRITE MRI/ Waterflooding/ Polymer flooding/ In-situ permeability reduction/ Wettability/ Channel/ Mobility control

Magnetic Resonance Imaging (MRI) was used to evaluate the microscopic displacement efficiency of Enhanced Oil Recovery (EOR) processes in unconsolidated porous media. In this work, the centric scan SPRITE imaging technique was used to visualize and quantify the dynamic displacement of waterflooding, polymer flooding and in-situ permeability reduction through a model sand-pack. Alcoflood 935, a partly hydrolyzed polyacrylamide, was the polymer used in this study. A weak polyacrylamide gel was applied into a high-permeability glass channel in the sand matrix model as a permeability-reducing agent. MRI measurements were validated macroscopically by mass balance. The effects of sand wettability and polymer concentration on residual oil displacement were investigated. Wettability of the sand affected the distribution of fluid saturations within the sand-pack, polymer flooding characteristics, and residual oil recovery. Trapping and mobilization of nonwetting phase drops through the channel were visualized. The oil recovery profiles obtained from MRI showed an agreement with mass balance measurements. Visualizations from MRI allow better understanding of the dynamic microscopic mechanisms of fluid displacement through unconsolidated porous media. This technique also showed preliminary studies for flooding experiment in consolidated rocks. The experimental results demonstrated that MRI is a powerful tool to investigate the residual oil mobilization and in-situ fluid saturations during flood testing processes.

ACKNOWLEDGEMENTS

First of all I would like to sincerely thank to my advisors, Assoc. Prof. Thirasak Rirksomboon, Assoc. Prof. Laura Romero-Zerón, Prof. Bruce J. Balcom, and Prof. Frank R. Steward for their supervision, understanding, encouragement, and patient throughout the course of this research. Their useful guidance contributed significantly to inspiring and maintaining my enthusiasm in this field. This research would not have been possible without all the opportunities from Chemical Engineering Department and MRI Centre, Physics Department, University of New Brunswick (UNB). I am also deeply indebted to Prof. Somchai Osuwan and Dr. Siriporn Jongpatiwut for their kind advice and for being the thesis committee.

I am grateful for the partial scholarship and partial funding of the research provided by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium). This research is also partially funded by NSERC/PRAC/ACOA CRD, Schlumberger SDR, SCR and CFI/AIF – Institute for Materials Visualization and Analysis.

Special gratitude is expressed to my colleague, Linqing Li, for his assistance, support, and friendship. I had the most enjoyable time working with him. I also greatly appreciate all technicians and staff at UNB and Petroleum and Petrochemical College for their generous help.

Ultimately, extreme appreciation is forwarded to my brother, my family and my friends for all their supports, genuine patient, constant encouragement, and cheerfulness during my studies and research work.

TABLE OF CONTENTS

			PAGE
	Title	Page	i
	Abstr	act (in English)	iii
	Abstr	ract (in Thai)	iv
	Ackn	owledgements	v
	Table	e of Contents	vi
	List c	of Tables	x
	List c	of Figures	xii
CH	артен	2	
	I	INTRODUCTION	1
	II	THEORETICAL BACKGROUND AND	
		LITERATURE REVIEW	3
		2.1 Enhanced Oil Recovery	3
		2.2 Core Analysis	4
		2.3 Petrophysical Properties	5
		2.3.1 Porosity	5
		2.3.2 Permeability	6
		2.3.3 Wettability	8
		2.3.4 Capillary Pressure Characteristics	11
		2.4 Mobility Ratio	16
		2.5 Phase Trapping	19
		2.5.1 Trapping in a Single Capillary – Jamin Effect	20
		2.5.2 Trapping in a Single Capillary with Fluid Bypassing	22
		2.6 Polymer Flooding	22
		2.6.1 Polymer Types	22
		2.6.2 Polymer Functions	23
		2.6.3 Polymer Applications	24

. .

	2.7	Polymer Gel Treatment	27
		2.7.1 Gel Treatment Functions	27
		2.7.2 Cr(III)-Carboxylate/Acrylamide-Polymer (CC/AP) Gel	
		Technology	28
	2.8	Principles of Magnetic Resonance Imaging (MRI)	30
		2.8.1 Relaxation	34
		2.8.1.1 Transverse Relaxation	35
		2.8.1.2 Longitudinal Relaxation	36
		2.8.2 Spatial Encoding and Image Field of View (FOV)	37
		2.8.3 Centric Scan SPRITE MRI Technique	39
	2.9	Centric Scan SPRITE MRI Application in Porous Media	45
III	EX	PERIMENTAL	47
	3.1	Materials	47
		3.1.1 Porous Media	47
		3.1.2 Fluids and Chemicals	47
	3.2	Equipments	47
	3.3	Methodology	48
		3.3.1 Analysis of Ottawa Sand Properties	48
		3.3.1.1 Sand Grain Size Analysis	48
		3.3.1.2 Silica Sand Wettability Alteration	48
		3.3.2 Analysis of Fluid Properties	49
		3.3.2.1 Fluid Density Determination by Pycnometer	49
		3.3.2.2 Fluid Viscosity Determination by Viscometer	50
		3.3.3 Polymer Preparation	51
		3.3.4 Polymer-Gel Preparation	52
		3.3.5 Analysis of Porous Media Properties	52
		3.3.5.1 Porosity Determination by	
		the Liquid Saturating Method	54

CHAPTER

PAGE

	3.3.5.2 Absolute Permeability Measurement of Water	55
	3.3.6 Visualization of Porous Media during	
	Core-Flood Test by MRI	55
	3.3.6.1 MRI Machine Specification	56
	3.3.6.2 MRI Parameters and Data Processing	56
IV	RESULTS AND DISCUSSION FOR	
	UNCONSOLIDATED POROUS MEDIA	58
	4.1 Analysis of Sand Properties	58
	4.1.1 Sand Grain Size Distribution	58
	4.1.2 Silica Sand Wettability Alteration	59
	4.2 Analysis of Fluid Properties	59
	4.3 Waterflooding Process	60
	4.4 Polymer Flooding Process	63
	4.4.1 Water-wet sand	64
	4.4.2 Oil-wet sand	69
	4.5 Channel System	73
	4.5.1 No channel sample	74
	4.5.2 Channel sample # 1: Effect of air drop in the channel	76
	4.5.3 Channel sample # 2: Effect of irreducible water	
	saturation	79
	4.5.4 Channel sample # 3: Effect of oil drop in the channel	82
	4.5.5 Comparison of the channel system	85
v	RESULTS AND DISCUSSION FOR	
	CONSOLIDATED ROCK	90
	5.1 Rock Characteristic	90
	5.2 Waterflooding Process	91
	5.2.1 Fluorolube Oil Experiments	91
	5.2.2 Dodecane Experiments	93

PAGE

CHAPTER

VI

CONCLUSIONS AND RECOMMENDATIONS	
6.1 Conclusions	95
6.2 Recommendations	
REFERENCES	97
APPENDICES	
Appendix A Sand-pack Calculations for Sand pack	
Without Channel	100
A.1 Pore Volume and Porosity Calculations	100
A.2 Permeability Calculations	103
A.3 Fluid Saturations in Sample	105
Appendix B Sand-pack Calculations for Channel sample # 1	
B.1 Pore Volume and Porosity Calculations	107

- B.2 Permeability Calculations 108
- CURRICULUM VITAE 111

LIST OF TABLES

TABLE

PAGE

2.1	Comparison of waterflooding and polymer flooding	4
2.2	Wetting Index indicated by contact angle	9
2.3	Screening criteria for polymer flooding	26
2.4	Properties of some NMR-active nuclei	33
3.1	Instruments and models used in this work	47
3.2	Factor for viscosity calculation	51
4.1	Properties of sand pack sample before waterflooding tests	60
4.2	Images of porous media during waterflooding tests	61
4.3	Properties of sand pack samples before flood testing for	
	water-wet sand	64
4.4	Residual oil saturation (S_{or}) after flood testing for water-wet sand	65
4.5	Images of porous media during flood testing for water-wet sand	67
4.6	Properties of sand pack samples before flood testing for	
	oil-wet sand	69
4.7	Residual oil saturation (S_{or}) after flood testing for oil-wet sand	70
4.8	Images of porous media during flood testing for oil-wet sand	72
4.9	Images of porous media during waterflooding for	
	Channel sample # 1	78
4.10	Images of porous media during waterflooding for	
	Channel sample # 2	81
4.11	Images of porous media during waterflooding for	
	Channel sample # 3	84
4.12	Properties of sand pack sample before flood testing for channel	
	system	86
4.13	Oil saturation, Volume of flooding and Residual oil saturation	
	(Sor) after flood testing for channel system	87

TABLE PAGE 5.1 Sandstone properties 90 5.2 Images of waterflooding test for fluorolube oil experiments in sandstone 92

LIST OF FIGURES

FIGURE	IGURE	
2.1	Interfacial tensions for water-oil-solid system at equilibrium	9
2.2	Contact angle for water-oil-solid system	9
2.3	Microscopic fluid distribution for (a) water-wet	
	and (b) oil-wet system	10
2.4	Capillary pressure resulting from interfacial forces in	
	a capillary tube	11
2.5	Water entrapments between two spherical sand grains	
	in a water-wet reservoir	13
2.6	Hysteresis in contact angle in a water-wet reservoir	
	(a) Imbibition and (b) Drainage	14
2.7	Capillary pressure curves for a water-wet reservoir	15
2.8	The idealized porous medium with decreasing size pores	15
2.9	Typical IR nonwetting phase saturation curves	16
2.10	Water saturation distribution as a function of distance	
	between injection and production wells (a) Ideal or piston-like	
	displacement (b) Non-ideal displacement	18
2.11	Different conditions of trapping in capillary (a) Continuous	
	phases (b) Oil trapped drop (c) Variation in θ (d) Variation in σ	20
2.12	Molecular structures of PAM and HPAM	23
2.13	Electromagnetic spectrum	30
2.14	(a) A spinning top is precessing around the vertical field of	
	gravity (b) A nucleus in the presence of an externally applied	
	magnetic field (B_0)	31
2.15	(a) Spins aligned in two orientations with respect to B_0	
	(b) The bulk net magnetization (M_0) results from summation of	
	individual spins	32

2.16	(a) RF pulse (B_1) rotates M_0 by 90°, i.e. into the transverse plane	
	(b) The rotating magnetization induces an AC current in the	
	receiver coil	34
2.17	Free induction decay (FID) is characterized by the time constant T_2^*	34
2.18	Spin echo	36
2.19	3D SPI pulse sequence	40
2.20	3D SPRITE pulse sequence (one gradient stepped)	42
2.21	(a) 2D Spiral SPRITE pulse sequence	
	(b) Spiral k-space trajectory	42
2.22	(a) 3D Conical SPRITE pulse sequence	
	(b) Conical k-space trajectory	43
3.1	Tube dimensions of the sand pack sample	52
3.2	Schematic of the experimental setup for sample preparation	53
3.3	Schematic diagram of overall experiment	53
3.4	Tube dimensions for the channel system	54
3.5	Schematic of the MRI experimental setup	55
3.6	Photograph of MRI machine	56
4.1	Ottawa sand grain size distribution	58
4.2	Wettability visualization for	
	(a) Water-wet sand (b) Oil-wet sand	59
4.3	Viscosity of polymer	60
4.4	Residual oil saturation (S_{or}) profile from MRI for	
	Waterflooding # 3	63
4.5	Oil/polymer viscosity ratio, μ_o/μ_p at 25°C	64
4.6	Comparison of oil recovery and S_{or} by material balance for	
	water-wet sand	65
4.7	Oil recovery profile from MRI for water-wet sand	66

4.8	Comparison of oil recovery and S_{or} by material balance for		
	oil-wet sand	70	
4.9	Oil recovery profile from MRI for oil-wet sand	71	
4.10	Schematic of the channel arrangement	74	
4.11	Residual oil saturation (S_{or}) profile and images for		
	No channel sample	75	
4.12	Residual oil saturation (S_{or}) profile from MRI for		
	Channel sample # 1	77	
4.13	Residual oil saturation (S_{or}) profile from MRI for		
	Channel sample # 2	80	
4.14	Residual oil saturation (S_{or}) profile from MRI for		
	Channel sample # 3	83	
4.15	Comparison of residual oil saturation (S_{or}) profile from MRI for		
	channel system	88	
5.1	Photograph of sandstone with dimensions	90	
5.2	Residual oil saturation (S_{or}) profile from MRI for		
	fluorolube oil experiments in sandstone	91	
5.3	Residual oil saturation (S_{or}) profile and images for		
	dodecane experiments in sandstone	93	