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ABSTRACT

4482001063  Polymer Science Program
Jirawut Junkasem: Studies on Mechanical Properties of
Contemporary Composites.
Thesis Aavisors: Assoc. Prof. Pitt Supaphol 119 pp.

Keywords:  Mechanical properties/ Composites/ Nanocomposite Nanofibers

Composites are materials that their properties are obtained synergistically from
their constituents. Due to the wide variety of materials, myriad combinations of
materials can be chosen to arrive at composite materials of diverse properties. In this
work, composites are classified into three types, depending on the size of reinforcing
materials. The first type is macro-composite, in which the size of the reinforcing fillers
I greater than 100 micrometers. The second type is micro-composite, in which the
size of the reinforcing fillers is in the micrometer to sub-micrometer range. The third
type is nano-composite, in which the size of the reinforcing fillers is less than 100
nanometers.

For the macro-composite system investigated in this work, four types of
natural fibers from roselle plant {Hibiscus sabdariffa L.), i.e., (1) bast fibers (BF; the
weight ratio of bast/core fibers = 100/0), (2) core fibers (Core; the weight ratio of
bast/core fibers = 0/100), (3) whole-stalk fibers ( ; the weight ratio of bast/core
fibers = 40/60), and (4) core-added whole-stalk fibers (WC; the weight ratio of
bast/core = 20/80), were used as reinforcing fillers in injection-molded isotactic
polypropylene (IPP) composites. Processibility and mechanical properties of the
resulting composites were investigated against the types and the mean sizes of the
fibers. The results showed that the highest mechanical properties were observed when
BF was incorporated. When  fibers were used, moderate mechanical properties of
the resulting composites were realized. The optimal contents ofthe  fibers and the
maleic anhydride-grafted iPP compatibilizer that resulted in an improvement in some
of the mechanical properties of the resulting composites were 40 and 7 wt %,
respectively.



For micro-composite system investigated in this work, nylon 4, 6 nanofibers
prepared from electrospinning process were used as reinforcing materials in the
poly(vinyl alconol) (PVA) composite films. The nylon 4, 6 as-spun fibers exhibited
the average diameter about 116 run. Successful incorporation of nylon 4, 6 as-spun
fibers was verified by scanning electron microscope (SEM). The incorporation of the
nylon 4, 6 nanofibers increased the Young’s modulus from 54.31 MPa to 145.75
MPa and further increase with increasing the amount of nylon 4,6 nanofibers.
Halpin-Tsai model was used to compare with the data from experiment. It was found
that Hapin-Tsai model can be applied to predict the composite properties especially
Young’s modulus.

For the nano-composite System instigated in this work, another type of natural
nanofillers prepared from a-chitin flakes from Penaeus merguiensis shrimp shells
(i.e., a-chitin whiskers) were used as reinforcing fillers in electrospun poly(vinyl
alcohol) (PVA) nanocomposite nanofibers. The as-prepared chitin whiskers exhibited
lengths in the range of 231-969 nm and widths in the range of 12-65 nm, with the
average length and wiath being about 549 and 31 nm, respectively. Successful
incorporation of the chitin whiskers within the as-spun PVA/chitin - whisker
nanocomposite  nanofibers was  verified by infrared  Spectroscopic  and
thermogravimetric methods. The incorporation of chitin whiskers within the as-spun
nanocomposite fiber mats increased the Young’s modulus by about 4-8 times over
that of the neat as-spun PVA fiber mat. The influence of the chitin whiskers on
dynamic mechanical properties and crystallization behaviour of the PVA matrix in
the composites were further investigated by dynamic mechanical analysis (DMA),
wide angle X-ray diffraction (WAXD), and differential scanning calorimeter (DSC).
The results shown that chitin whisker incorporate in the amorphous region of the
PVA and inhibit the crystallization of PVA by forming the hydrogen bonding with
PVA chain leading to the reducing in the percent crystallinity of PVA.
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