HIGH DIELECTRIC COMPOSITE MATERIAL AT MULTI-FREQUENCY RANGE

Nidchakarn Krueson

· . . .

.*

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2008

512036

Thesis Title:High Dielectric Composite Material at Multi-frequency RangeBy:Nidchakarn KruesonProgram:Polymer ScienceThesis Advisors:Asst.Prof. Hathaikarn Manuspiya
Prof. Hatsuo Ishida

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantaya Samuel College Director

....

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Hathailiarn M.

(Asst.Prof. Hathaikarn Manuspiya)

(Prof. Hatsuo Ishida)

Nantage Januart

(Assoc. Prof. Nantaya Yanumet)

rotur

(Dr. Pitak Laoratanakul)

ABSTRACT

4972015063: Polymer Science Program

.

Nidchakarn Krueson: High Dielectric Composite Material at Multifrequency Range.

Thesis Advisors: Asst.Prof. Hathaikarn Manuspiya and Prof. Hatsuo Ishida 94 pp.

Keywords:Polybenzoxazine/ Barium strontium titanate/ Surface treatment/Dispersion/ Dielectric properties

This research was proposed a novel nano BST powder-polybenzoxazine composite as a new dielectric material. In this work, dielectric properties of surface treated BST powder-polybenzoxazine composite were studied. The surface of BST powder was modified by using three different chemicals: 3-aminopropyltrimethoxysilane, benzoxazine monomer and phthalocyanine. The distribution of BST powder in polybenzoxazine matrix was observed by SEM. The dielectric constants of the composites with a function of frequency (1 kHz-10 MHz) were investigated by Hewlett- Packard 4194A. It was found that the composites with modified BST powders showed good distribution in polybenzoxazine matrix and the dielectric constants were also be enhanced than those with untreated BST powder. In comparisons among silane coupling benzoxazine monomer agent, and phthalocyanine modification, the composite with the silane modified BST powder showed more significantly in dielectric constant improvement due to the chemical bond formed on the BST surface while the composite with the benzoxazine monomer and phthalocyanine modified BST powder displayed lower in dielectric loss because the modified powder dispersed well in the polybenzoxazine matrix. In addition to the surface modification, the effect of molecular structure of polybenzoxazine on dielectric properties was also investigated. It was found that polybenzoxazine which has higher in dipole polarizability showed higher in dielectric constant of the composite.

....

บทคัดย่อ

นางสาวณิชกานต์ เครือสน : วัสดุกอมโพสิตที่มีก่าไดอิเล็กตริกสูงในคลื่นความถี่ต่างๆ (High dielectric composite material at multi-frequencies range) อ. ที่ปรึกษา : ผศ.คร. หทัยกานต์ มนัสปียะ และ ศ.คร. ฮัทซึโอะ อิชิคะ 94 หน้า

งานวิจัยนี้ได้สนใจปรับปรุงและพัฒนาวัสดุกอมโพสิตผสมระหว่างผงแบเรียมสตรอน-เชียมไตตาเนตและพอลิเบนซอกซาซีนให้เป็นวัสคุชนิคใหม่เพื่อใช้ในการเก็บประจุ สำหรับขั้น พื้นผิวของผงแบเรียมสตรอนเชียมไตตาเนตได้ถูกปรับสภาพก่อนโดยใช้ ตอนการดำเนินงาน สารเคมีที่แตกต่างกันไปสามชนิด ดังนี้: 3-อะมิโนโพรพิล-ไตรเมททอกซีไซเลน, เบนซอกซาซีน ้มอนอเมอร์ และ พทาโลไซยาไนน์ จากนั้นนำวัสดุคอมโพสิตที่ได้มาศึกษาพฤติกรรมไดอิเล็กตริก ที่ช่วงความถี่ (1 กิโลเฮิร์ท-10 เมกกะเฮิร์ท) และช่วงอุณหภูมิ (25-200 องศาเซลเซียส) ต่างๆ โคยใช้ เครื่อง Hewlett- Packard 4194A นอกจากนี้อิทธิพลของสารเคมีที่ใช้ในการปรับปรุงต่อการ กระจายตัวของผงนาโนแบเรียมสตรอนเชียมไตตาเนตในกอมโพสิตยังถูกศึกษาโดยเครื่อง SEM อีกด้วย จากผลการวิจัยพบว่า แบเรียมสตรอนเชียมไตตาเนตที่ถูกปรับปรุงสภาพพื้นผิวสามารถ กระจายตัวในเนื้อพอลิเบนซอกซาซีนได้คีกว่าผงแบเรียมสตรอนเชียมไตตาเนตที่ไม่ได้ผ่านการ ปรับปรุง และวัสคุคอมโพสิตที่ได้ยังให้ค่าไดอิเล็กตริกที่สูงกว่าอีกด้วย ในกรณีการเปรียบเทียบ ระหว่างสารเคมีที่ใช้ในการปรับปรุงพื้นผิวพบว่า ผงแบเรียมสตรอนเซียมไตตาเนตที่ปรับปรุงโดย ใช้สาร 3-อะมิโนโพรพิล-ไตรเมทอกซีไซเลนสามารถเพิ่มค่าไคอิเล็กตริกของคอมโพสิตได้ดีที่สุด เนื่องจากไซเลนสามารถสร้างพันธะเคมีกับผิวของแบเรียมสตรอนเชียมไตตาเนตได้ ในขณะเดียว กันผงแบเรียมสตรอนเชียมไตตาเนตที่ปรับปรุงโคยใช้เบนซอกซาซีนมอนอเมอร์และพทาโลไซยา ในน์สามารถคค่าถอสเทนเจนต์ของคอมโพสิตได้คีกว่า เนื่องจากสามารถกระจายตัวในเนื้อพอถิ อย่างไรก็ตามนอกจากการศึกษาถึงผลกระทบของการปรับปรุงสภาพพื้นผิว เบนซอกซาซึนได้ดี ของผงแบเรียมสตรอนเซียมไตตาเนตต่อค่าไคอิเล็กตริกของกอมโพสิตแล้ว งานวิจัยนี้ยังได้ศึกษา ผลกระทบของชนิดของพอลิเบนซอกซาซึนเมทริกซ์ต่อก่าไดอิเล็กตริกของคอมโพสิตอีกด้วย และ ้งากผลการวิจัยพบว่าคอมโพสิตที่ประกอบด้วยพอลิเบนซอกซาซีนเมทริกซ์ที่มีค่าไดโพลโพลา-ไรซ์มากสามารถเพิ่มค่าไคอิเล็กตริกของคอมโพสิตได้มากขึ้น

ACKNOWLEDGEMENTS

I am grateful for the partial scholarship and partial funding of the thesis work provided by the Petroleum and Petrochemical College; the National Excellence Center for Petroleum, Petrochemical, and Advanced Materials, Thailand; and Government Research Budget Year 2005-2007.

I wish to express my deep gratitude to my advisors, Asst.Prof. Hathaikarn Manuspiya for her constructive suggestions, valuable guidance, encouragement and vital help throughout this research work and Prof. Hatsuo Ishida for his intensive suggestions and helpful guidance. My appreciates are also extended to all other committee members, Assoc. Prof. Nantaya Yanumet and Dr. Pitak Laoratanakul for their valuable comments on this task.

Special acknowledgement is given to Dr. Thanyalak Chaisuwan who has generously given me her advices and help during the work and Mr. Gasidit Panomsuwan for his useful suggestions and his assistance.

My thanks are extended to National Metal and Materials Technology Center (MTEC) for the electrical measurement and MTEC staff for assistance in testing.

Finally, I would like to take this opportunity to thank my friends and the college staff at Petroleum and Petrochemical College for their friendly help, cheerfulness and creative suggestions, particularly to my parents, my brother and a friend who have always loved, encouraged and given worthy moral support throughout this thesis work.

TABLE OF CONTENTS

			PAGE
	Title P	age	i
	Abstra	act (in English)	iii
	Abstra	act (in Thai)	iv
	Ackno	owledgements	v
	Table	of Contents	vi
	List of	fTables	viii
	List of	fFigures	ix
	CHAPTER		
	I	INTRODUCTION	1
	II	THEORETICAL BACKGROUND AND	
· '		LITERATURE REVIEW	3
	III	EXPERIMENTAL	22
	IV	EFFECT OF MOLECULAR STRUCTURE ON	÷
		DIELECTRIC PROPERTIES OF POLYBENZOXAZINE	31
		4.1 Abstract	31
		4.2 Introduction	31
		4.3 Experimental	33
		4.4 Results and Discussion	35
		4.5 Conclusions	44
		4.6 Acknowledgements	44
		4.7 References	45

.

.

.....

V	DIELECTRIC PROPERTIES OF POLYBENZOXAZIN	E -
	BARIUM STRONTIUM TITANATE COMPOSITES	47
	5.1 Abstract	47
	5.2 Introduction	48
	5.3 Experimental	49
	5.4 Results and Discussion	53
	5.5 Conclusions	74
	5.6 Acknowledgements	74
	5.7 References	75
VI	CONCLUSIONS AND RECOMMENDATIONS	77
	REFERENCES	80
	APPENDICES	84
	CURRICULUM VITAE	94

LIST OF TABLES

TABLE

PAGE

CHAPTER III

3.1	Temperature program for	compression molding process	30
-----	-------------------------	-----------------------------	----

CHAPTER V

5.1	Temperature program for compression molding process	51
5.2	Thermal properties of polybenzoxazine-BST composites	59
5.3	Densities of the composites at various BST contents	60

•

1

1.0

LIST OF FIGURES

FIGURE

CHAPTER II

2.1	The structures of benzoxazine monomers; (a) aniline-based	
	benzoxazine and (b) fluorinate-based benzoxazine	3
2.2	Synthesis of benzoxazine monomer (BA-a) and	
	polybenzoxazine (PBA-a) prepared from bisphenol A,	
	aniline, and formaldehyde	4
2.3	A cubic perovskite ABO ₃ -type unit cell of Ba _{1-x} Sr _x TiO ₃	10
2.4	First-order phase transition in a ferroelectric	10
2.5	Hysteresis loop of Ba _{1-x} Sr _x TiO ₃ ceramics at room	
	temperature: (a) $x = 0$, (b) $x = 0.3$, and (c) $x = 0.5$	12
2.6	Dielectric constants of Ba _{1-x} Sr _x TiO ₃ ceramics at room	
	temperature	13
2.7	Dielectric losses of Ba _{1-x} Sr _x TiO ₃ ceramics at room	
	temperature	13
2.8	Connectivity patterns in a diphasic composite system	14
2.9	Frequency dependence of dielectric constant of the composite	
	at various sol-gel BST (SG-BST)contents	16
2.10	Frequency dependence of dielectric loss of the composite at	
	various sol-gel BST (SG-BST) contents	16
2.11	Agglomeration and dispersion of ceramic particles into	
	polymer matrix	17
2.12	Surface treatment of BaTiO ₃ with N-phenylaminopropyl-	
	trimethoxysilane	18
2.13	Chemical reaction process of KH550 with both surface of	
	BaTiO ₃ and PVDF	19
2.14	Structure of phthalocyanine (Pc)	20

CHAPTER III

3.1	Synthesis reaction of benzoxazine monomer based on	
	bisphenol A, aniline and paraformaldehyde	24
3.2	Synthesis reaction of benzoxazine monomer based on	
	hexafluoro-bisphenol A, aniline and paraformaldehyde	25
3.3	Benzoxazine monomer preparation	26
3.4	Temperature program for the 2-step thermal decomposition	27
3.5	Barium strontium titanate preparation	28

CHAPTER⁻IV

Synthesis reaction of benzoxazine monomer based on	
bisphenol A, aniline and paraformaldehyde	33
Synthesis reaction of benzoxazine monomer based on	
hexafluoro-bisphenol A, aniline and paraformaldehyde	34
FTIR spectra of the aniline based benzoxazine (BA-a)	
monomer	36
FTIR spectra of the fluorinate based benzoxazine (BA-f)	
monomer	36
¹ H NMR spectra of the aniline based benzoxazine (BA-a)	
monomer	37
¹ H NMR spectra of the fluorinate based benzoxazine (BA-f)	
monomer	38
¹⁹ F NMR spectra of the fluorinate based benzoxazine (BA-f)	
monomer	38
Differential scanning calorimetry (DSC) thermogram of BA-	
a and BA-f monomer	39
	Synthesis reaction of benzoxazine monomer based on bisphenol A, aniline and paraformaldehyde Synthesis reaction of benzoxazine monomer based on hexafluoro-bisphenol A, aniline and paraformaldehyde FTIR spectra of the aniline based benzoxazine (BA-a) monomer FTIR spectra of the fluorinate based benzoxazine (BA-f) monomer ¹ H NMR spectra of the aniline based benzoxazine (BA-a) monomer ¹ H NMR spectra of the fluorinate based benzoxazine (BA-f) monomer ¹⁹ F NMR spectra of the fluorinate based benzoxazine (BA-f) monomer

FIGURE

PAGE

The structure of (a) aniline based benzoxazine monomer, (b)	
fluorinate based benzoxaizne monomer, and (c) diamine	
based benzoxzazine monomer	41
The dielectric constant of aniline based and fluorinate based	
polymer as a function of frequency	42
The dielectric loss of aniline based and fluorinate based	
polymer as a function of frequency	42
The dielectric constant of aniline based and fluorinate based	
polymer as a function of temperature	43
The dielectric loss of aniline based and fluorinate based	
polymer as a function of temperature	43
	The structure of (a) aniline based benzoxazine monomer, (b) fluorinate based benzoxaizne monomer, and (c) diamine based benzoxzazine monomer The dielectric constant of aniline based and fluorinate based polymer as a function of frequency The dielectric loss of aniline based and fluorinate based polymer as a function of frequency The dielectric constant of aniline based and fluorinate based polymer as a function of temperature The dielectric loss of aniline based and fluorinate based polymer as a function of temperature

CHAPTER V

5.1	Temperature program for the 2-step thermal decomposition	50
5.2	TEM micrographs of sol-gel BST powder	54
5.3	X-ray diffraction pattern of sol-gel BST powder	54
5.4	FTIR spectra of the BST powder	55
5.5	FTIR spectra: (a) BST powder and (b) 3-aminopropyl	
	trimethoxy silane treated BST powder	56
5.6	FTIR spectra of (a) BST powder (b) BST powder coated	
	5wt% BA-a monomer	57
5.7	FTIR spectra of (a) BST powder (b) BST coated with	
	phthalocyanine	58
5.8	Thermo gravimetric analysis thermogram of	
	polybenzoxazine-BST composites in nitrogen atmosphere	59
5.9	Comparison between measured density (\bullet) and theoretical	
	density () as a function of BST volume fraction	61

FIGURE

PAGE

5.10	SEM micrographs of the composites with (a) 30 wt%, (b)	
	50 wt%, and (c) 80 wt%	62
5.11	Frequency dependence of dielectric constant for the	
	composites at various BST contents	63
5.12	Frequency dependence of dielectric loss for the composites at	
	various BST contents	63
5.13	Temperature dependence of dielectric constant for the	
	composites at various BST contents	64
5.14	Temperature dependence of dielectric loss for the composites	
	at various BST contents	64
5.15	Plot of theoretical models and the measured dielectric	
	constant for different BST volume fractions at room	
	temperature and 1 kHz	66
5.16	Structure of metal-free phthalocyanine and benzoxazine	
	monomer	67
5.17	SEM micrographs of polybenzoxazine-BST composites at	
	30%wt of BST with (a) untreated BST powders, (b) silane	
	treated BST powders, (c) BA-a monomer treated BST	
	powders and (d) phthalocyanine treated BST powders	68
5.18	SEM micrographs of polybenzoxazine-BST composites at	
	50%wt of BST with (a) untreated BST powders, (b) silane	
	treated BST powders, (c) BA-a monomer treated BST	
	powders and (d) phthalocyanine treated BST powders	68
5.19	SEM micrographs of polybenzoxazine-BST composites at	
	80%wt of BST with (a) untreated BST powders, (b) silane	
	treated BST powders, (c) BA-a monomer treated BST	
	powders and (d) phthalocyanine treated BST powders	69

FIGURE

÷

PAGE

5.20	Frequency dependence of dielectric constant for the 30%wt	
	BST composites with different BST surface modification	
	methods	71
5.21	Frequency dependence of dielectric loss for the 30%wt BST	
	composites with different BST surface modification methods	71
5.22	Frequency dependence of dielectric constant for the 50%wt	
	BST composites with different BST surface modification	
	methods	72
5.23	Frequency dependence of dielectric loss for the 50%wt BST	
	composites with different BST surface modification methods	72
5.24	Frequency dependence of dielectric constant for the 80%wt.	
	BST composites with different BST surface modification :	
	methods .	73
5.25	Frequency dependence of dielectric loss for the 80%wt BST	
	composites with different BST surface modification methods	73

...

.

*