APPENDICES

Appendix A Preparation of Benzoxazine Monomer by Solventless Method

Aniline based benzoxazine monomer

 Table A1 Experimental data of precursors for aniline based benzoxazine synthesis

	Precursors						
	Bisphenol A	Aniline	Paraformaldehyde	time			
Mole	0.06	0.24	0.12				
· M.W.	228.29	30.03	93.13	30 min			
Weight (g)	13.70	7.21	11.18				

Fluorinate based benzoxazine monomer

Table A2	Experimental	data of precursors	for fluorinate	based b	enzoxazine synthesis
----------	--------------	--------------------	----------------	---------	----------------------

		Reaction		
	Hexafluoro- bisphenol A	Aniline	Paraformaldehyde	time
Mole	0.06	0.24	0.12	
M.W.	336.24	30.03	93.13	30 min
Weight (g)	20.17	7.21	11.18	

....

.

Appendix B Preparation of BST by Sol-Gel Process

Precursor materials

- 1. Barium acetate Ba(CH₃COO)₂, $d = 2.468 \text{ g/cm}^3$
- 2. Strontium acetate Sr(CH₃COO)₂
- 3. Titanium tetra-n-butoxide $(CH_3(CH_2)_3O)_4Ti$, d = 0.998 g/cm3
- 4. Methanol
- 5. Glacial acetic acid

Table B1	Experimental	data of	precursors for	or $Ba_{0,2}$	$Sr_{0.7}TiO_3$
----------	--------------	---------	----------------	---------------	-----------------

		Precursors	
	Barium acetate Ba(CH ₃ COO) ₂	Strontium acetate Sr(CH ₃ COO) ₂	Titanium tetra-n- butoxide (CH ₃ (CH ₂) ₃ O) ₄ Ti
Mole	0.00882	0.02058	0.0294
M.W.	225.42	205.71	340.36
Weight (g)	2.25	4.23	-
Volume (ml)	-	_	10

Appendix C Glass Transition Temperature (T_g) of PBA-a Measured by Dynamic Mechanical Analysis (DMA)

Figure C1 DMA analysis of aniline based polybenzoxazine.

Glass transition temperature (T_g) of aniline based polybenzoxazine and is detected at the maximum of the loss modulus, G" which is around 144.2°C.

Appendix D Sol-Gel BST Powders Characterization

XRD charaterization

Table D1 The identification of XRD peaks analysis of the sol-gel $Ba_{0,3}Sr_{0,7}TiO_3$ powders calcined at 1000°C

20	θ	hkl
22.6	11.3	100
32.12	16.06	110
39.62	19.81	111
46.10	23.05	200
51.86	25.93	210
57.30	28.65	211
67.24	33.62	220

SEM micrograph

Figure D1 SEM micrographs of sol-gel $Ba_{0.3}Sr_{0.7}TiO_3$ powders calcined at 1000 °C for 80 min.

Appendix E Calculation of BST Volume Fraction in Composites

The volume fraction of BST was calculated by using the following formula:

$$f = \underline{\text{volume of BST powder}}$$

$$(\text{volume of BST powder + volume of BZZ powder})$$

$$= \underline{(M_i/\rho_i)}$$

$$(M_i/\rho_i) + (M_h/\rho_h)$$

where M_i and ρ_i (5.17 g/cm³) are the mass and density of BST powder and M_h and ρ_h (1.23 g/cm³) are those of benzoxazine monomer

Table E	E1	Volu	ime f	fraction	of BS	ST	powd	er at	various	BST	wt% in	the	com	posites
----------------	----	------	-------	----------	-------	----	------	-------	---------	-----	--------	-----	-----	---------

 Composites	Volume fraction
30 wt% BST	0.093
50 wt% BST	0.192
80 wt% BST	0.488

÷

	Frequency (Hz)						
Materials	10 ³	104	105	10 ⁶	107		
PBA-a	4.95	4.67	4.43	4.22	4.11		
PBA-f	4.55	4.14	4.07	3.97	3.97		
BST ceramic	326	308	297	297	292		

Appendix F The Dielectric Constant and Loss tangent at Different Frequencies

Table F1 The dielectric constant of polybenzoxazine and $Ba_{0.3}Sr_{0.7}TiO_3$ ceramic

Table F2 The dielectric constant of untreated BST- polybenzoxazine composites

Matariala	Frequency (Hz)							
Materials	10^{3}	104	105	10 ⁶	107			
 30 wt% BST	7.14	6.85	6.53	6.20 .	6.04			
50 wt% BST	12.30	9.66	10.38	10.17.	9.28			
80 wt% BST	39.81	37.93	36.51	35.35	34.99			

 Table F3
 The dielectric constant of silane treated BST- polybenzoxazine composites

Matariala		Frequency (Hz)						
Materials	10 ³	104	105	10 ⁶	107			
30 wt% BST	9.80	9.47	9.17	8.86	8.71			
50 wt% BST	12.82	12.67	12.50	11.98	9.65			
80 wt% BST	42.39	40.75	41.06	40.39	40.5			

Matariala		Frequency (Hz)						
Materials	10 ³	104	105	10 ⁶	10 ⁷			
30 wt% BST	6.02	5.96	5.88	5.81	5.80			
50 wt% BST	11.54	11.08	10.25	10.06	8.57			
80 wt% BST	39.49	39.04	38.59	38.02	37.97			

Table F4 The dielectric constant of benzoxazine monomer treated BST–

 polybenzoxazine composites

 Table F5
 The dielectric constant of phthalocyanine treated BST- polybenzoxazine composites

.

.

.

		Frequency (Hz)				
Materials	10^3	104	10 ⁵	106	107	
30 wt% BST	7.05	6.88 .	6.47	6.13	5.96	
50 wt% BST	11.73	11.26	10.49	10.14	8.74	
80 wt% BST	39.65	39.14	38.61	37.95	. 37.86	

 Table F6
 The loss tangent of polybenzoxazine and Ba_{0.3}Sr_{0.7}TiO₃
 ceramic

Motoriala	Frequency (Hz)					
Iviaterials	10 ³	104	10 ⁵	10 ⁶	107	
PBA-a	0.0564	0.0348	0.0289	0.0242	0.0233	
PBA-f	0.0091	0.0050	0.0075	0.0074	0.0126	
BST ceramic	0.3570	0.0763	0.0224	0.0126	0.0451	

Matariala	Frequency (Hz)					
Materials	10 ³	104	105	106	107	
30 wt% BST	0.0578	0.0383	0.0363	0.0297	0.0272	
50 wt% BST	0.01	0.0484	0.0195	0.0427	0.0978	
80 wt% BST	0.118	0.0606	0.0264	0.0346	0.123	

 Table F7
 The loss tangent of untreated BST- polybenzoxazine composites

 Table F8
 The loss tangent of silane treated BST- polybenzoxazine composites

Matariala	Frequency (Hz)					
Materials	10 ³	104	105	106	10 ⁷	
30 wt% BST	0.0564	0.0348	0.0289.	0.0242	0.0233	
50 wt% BST	0.0118	0.0087	0.0181	0.0383	0.0427	
80 wt% BST	0.0517.	0.0446	0.0277	. 0.0312	0.0624	

 Table F9 The loss tangent of benzoxazine monomer treated BST- polybenzoxazine composites

				a			
		Frequency (Hz)					
Materials	10 ³	104	10 ⁵	10 ⁶	10 ⁷		
30 wt% BST	0.0035	0.0097	0.0119	0.0127	0.0166		
50 wt% BST	0.0095	0.0188	0.0348	0.0219	0.0451		
80 wt% BST	0.02	0.0447	0.0209	0.0306	0.0534		

Materials	Frequency (Hz)					
	10 ³	104	105	10 ⁶	107	
30 wt% BST	0.0325	0.0087	0.0155	0.0155	0.0155	
50 wt% BST	0.0128	0.007	0.0109	0.0304	0.0351	
80 wt% BST	0.0632	0.0406	0.0203	0.0189	0.0527	

• •

 Table F10
 The loss tangent of phthalocyanine treated BST- polybenzoxazine

 composites

.

CURRICULUM VITAE

Name:	Ms.	Nidchakarn	Krueson
	1410.	1 viuchukui li	1 LI UCSUI

Date of Birth: May 22, 1983

Nationality: Thai

University Education:

2002-2006 Bachelor Degree of Science in Science and Technology of Polymer, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand

Proceedings:

- Krueson, N., Laoratanakul, P., Ishida, H., and Manuspiya, H. (2008, April 23) High Dielectric Composite Material at Multi-Frequency Range. <u>Proceedings of</u> <u>the 14th PPC Symposium on Petroleum, Petrochems, and Polymers</u>, Bangkok, Thailand.
- Krueson, N., Laoratanakul, P., Ishida, H., and Manuspiya, H. High Dielectric Composite Material at Multi-Frequency Range. <u>Advanced Materials Research</u> (accepted).

Presentations:

- Krueson, N., Ishida, H., and Manuspiya, H. (2008, April 6-10) Dielectric Properties of Surface Treated BST Powder-Polybenzoxazine Composite. Poster presented at <u>the 235th American Chemical Society Conference</u>, New Orleans, USA.
- Krueson, N., Laoratanakul, P., Ishida, H., and Manuspiya, H. (2008, April 23) High Dielectric Composite Material at Multi-Frequency Range. Poster presented at <u>the 14th PPC Symposium on Petroleum, Petrochems, and Polymers</u>, Bangkok, Thailand.
- Krueson, N., Laoratanakul, P., Ishida, H., and Manuspiya, H. (2008, April 22-25) High Dielectric Composite Material at Multi-Frequency Range. Poster presented at <u>Smartmat-'08 & IWOFM-2</u>, Chiang Mai, Thailand.

