METAL COMPLEXATION VIA BENZOXAZINE-BASED MOLECULES: AN APPROACH OF MEMBRANE ELECTRODE FOR PROTON EXCHANGE MEMBRANE FUEL CELL

Autchara Pangon

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2008

510301

Thesis Title:	Metal Complexation via Benzoxazine-Based Molecules: An
	Approach of Membrane Electrode for Proton Exchange
	Membrane Fuel Cell
By:	Autchara Pangon
Program:	Polymer Science
Thesis Advisors:	Assoc. Prof. Suwabun Chirachanchai
	Asst. Prof. Apirat Laobuthee

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantage Genunet College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Survalann Chirachances

. . . .

(Assoc. Prof. Suwabun Chirachanchai)

apt lacouther

(Asst. Prof. Apirat Laobuthee)

Thanyalah Chi •••••

(Dr. Thanyalak Chaisuwan)

Jatyphom

(Assoc. Prof. Jatuphorn Wootthikanokkhan)

ABSTRACT

4972004063: Polymer Science Program
Ms. Autchara Pangon: Metal Complexation via Benzoxazine-Based
Molecules: An Approach of Membrane Electrode for Proton
Exchange Membrane Fuel Cell
Thesis Advisors: Assoc. Prof. Suwabun Chirachanchai,
Asst. Prof. Apirat Laobuthee, 53 pp.
Keywords: Benzoxazine/ Catalyst/ Membrane electrode assembly/ Proton
exchange membrane fuel cell/ Host-guest compound

N,N-bis(2-hydroxy-3,5-dimethylbenzyl)methylamine forms host-guest compound with platinum ions. The inclusion phenomena in solution are confirmed from a new peak at 352 nm as observed by UV-Visible spectroscopy and chemical shift as observed by ¹H-NMR. The efficiency of platinum ion interaction quantified by Pedersen's technique clarifies that the platinum ion extraction is as high as 80%. The single crystal analysis shows the complex structure of N,N-bis(2-hydroxy-3,5dimethylbenzyl)methylamine with platinum chloride in solid state under the hostguest ratio of 2:1. A well-defined allyl-containing benzoxazine dimer, N-(2-hydroxy-3-methoxy-5-allylbenzyl)-N-(2'-hydroxy-3',5'-dimethylbenzyl)cyclohexylamine is further proposed as a model to develop a membrane electrode.

บทคัดย่อ

อัจฉรา แป้งอ่อน : การเกิดคอมเพลกซ์ของโลหะโดยโมเลกุลของเบนซอกซาซีน: วิธีการ ใหม่สำหรับการพัฒนาอิเล็กโทรคเมมเบรนของเซลล์เชื้อเพลิงแบบเมมเบรนแลกเปลี่ยนโปรตอน (Metal Complexation via Benzoxazine-Based Molecules: An Approach of Membrane Electrode for Proton Exchange Membrane Fuel Cell) อาจารย์ที่ปรึกษา: รอง ศาสตราจารย์ ดร.สุวบุญ จิรชาญชัย และ ผู้ช่วยศาสตราจารย์ ดร.อภิรัตน์ เหล่าบุตรี, 53 หน้า

เอ็น,เอ็น-บิส(2-ไฮครอกซี-3,5-ไคเมทิลเบนซิล)เมทิลอามีน สร้างสารประกอบสารหลัก-สารรองกับไอออนของแพลททินัม ปรากฏการณ์การรวมตัวในสารละลายยืนยันจากการเกิคพีกใหม่ ที่ 352 นาโนเมตร โคยยูวี-วิซิเบิลสเปคโตรสโกปี และการเลื่อนตำแหน่งของเคมมิคอลชิพใน โปรตอนเอ็นเอ็มอาร์ ประสิทธิภาพของอันตรกิริยาของไอออนของแพลททินัมเชิงปริมาณหาได้จาก เทคนิคปีเดอเซ็นโดยชี้ว่า การสกัดไอออนของแพลททินัมสูงถึง 80 เปอร์เซ็นต์ การวิเคราะห์ผลึก เดี่ยวแสคงโครงสร้างสารเชิงซ้อนของ เอ็น,เอ็น-บิส(2-ไฮครอกซี-3,5-ไคเมทิลเบนซิล)เมทิลอามีน กับแพลททินัมคลอไรค์ ในสถานะของแข็งภายในอัตราส่วนสารหลัก-สารรรองเท่ากับ 2:1 เบน ซอกซาซีนไดเมอร์ที่ประกอบค้วยแอลิว, เอ็น-(2-ไฮครอกซี-3-เมทอกซี-5-แอลิวเบนซิล)-เอ็น'(2'-ไฮครอกซี-3',5'-ไดเมทิลเบนซิล)ไซโคลเซกซิลอามีน ได้ถูกเสนอเพื่อจะเป็นด้นแบบในการพัฒนา เมมเบรนอิเล็กโทรคต่อไป

ACKNOWLEDGEMENTS

The author would like to thank Associate Professor Suwabun chirachanchai, her advisor, who not only originated this work, but also gave her continuous support, good suggestion, intensive recommendation and for the help, patience, encouragement he has shown during her one year in his research group and also the chance to do the research in Japan.

She would like to express her appreciation to Professor Kohji Tashiro for the strong support, worth advices, his kindness and concerns during her stays in Japan. She would like to show gratitude to co-advisor, Assistant Professor Apirat Laobuthee for his wonderful comments and helps.

She wishes to thank her thesis committee Dr. Thanyalak Chaisuwan and Associate Professor Jatuphorn Wootthikanokkhan for their sugguestions and invaluable guidances. A deep gratitude is expressed to all professors who have given valuable knowledge to her at PPC.

Special thanks are to Dr. Suttinun Phongtamrug for her warm hospitality and valuable comments and helps during her research period in Japan. She also wishes to thank to all members in Tashiro's laboratory for their many helps and good time all through her stays in Japan.

She is grateful for the scholarship from Development and Promotion of Science and Technology Talents Project (DPST) through her master program. This thesis work is partially funded by the PPC ; and the National Excellence Center. In addition, she acknowledges National Metal and Materials Center-Chiang Mai University (MTEC-CMU) and Research Task Force Project Fuel Cell, Chulalongkorn University for research fund and the Japan Society for the Promotion of Science (JSPS) for supporting research fund for her research period in Japan.

Her thanks are also to all Suwabun's group members both her seniors and her friends for their helps, good suggestions, friendship and all the good memories.

Last, but not least, she thanks her family for giving her life, for educating her and unconditional support to pursue her interests and also for their love and encouragement.

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Schemes	ix
List of Tables	Х
List of Figures	xi
Abbreviations	xiii

CHAPTER

I	INTRODUCTION		1
II	LITERATURE REVIEW	÷	2
	2.1 Basic Principle of Fuel Cells		 2
	2.1.1 Classification of Fuel Cells		2
	2.2 Electrochemical Reactions in PEMFC		3
	2.3 Composition of Fuel Cell		5
	2.3.1 Membrane		6
	2.3.2 Electrode		10
	2.4 Membrane Electrode Assembly (MEA)		11
	2.5 Background of Host-Guest Complex		14
	2.6 Motivation of Present Work		17

1. L

III	EXPERIMENTAL	19	
	3.1 Materials	19	
	3.2 Measurements	19	
	3.2.1 Fourier Transform Infrared (FTIR) Spectrophotometer	19	
	3.2.2 Nuclear Magnetic Resonance (NMR)	19	
	3.2.3 X-ray Diffractometer	19	
	3.2.4 UV-Vis Spectrophotometer	20	
	3.2.5 Electrospray Ionization Mass Spectroscopy (ESIMS)	20	
	3.3 Methodology	20	
	3.3.1 Complexation of N,N-bis(2-hydroxy-3,5-dimethyl		
	benzyl)methylamine and Pt Ions	20	
	3.3.2 Synthesis of Benzoxazine-based Compounds 3 and 4	21	
	3.3.3 Polymerization of 4	22	
		. *	
IV	METAL COMPLEXATION VIA BENZOXAZINE-BASED		
	MOLECULES: AN APPROACH OF MEMBRANE		
	ELECTRODE FOR PROTON EXCHANGE MEMBRANE		
	FUEL CELL	24	
	4.1 Abstract	24	
	4.2 Introduction	25	
	4.3 Experimental	26	
	4.3.1 Materials	26	
	4.3.2 Instruments and Equipment	26	
	4.3.3 Methodology	27	
	4.4 Results and Discussion	28	
	4.5 Conclusions	35	
	4.6 Acknowledgements	35	
	4.7 References	35	

V	PREPARATION OF N-(2-HYDROXY-3-METHOXY-5-		
	ALLYLBENZYL)-N-(2'-HYDROXY-3',5'-		
	DIMETHYLBENZYL)CYCLOHEXYLAMINE WITH		
	ALLYL MONOMER FOR POLYMERIZAION OF		
	MEMBRANE ELECTRODE	37	
	5.1 Abstract	37	
	5.2 Introduction	38	
	5.3 Experimental	38	
	5.3.1 Materials	38	
	5.3.2 Instruments and Equipment	39	
	5.3.3 Methodology	39	
	5.4 Results and Discussion	41	
	5.5 Conclusions	45	
	5.6 Acknowledgements	45	
	5.7 References	46	
VI	CONCLUSIONS AND RECOMMENDATIONS	47	
	REFERENCES	48	
	APPENDICES	52	
	CURRICULUM VITAE	53	

LIST OF SCHEMES

SCHEME

PAGE

2.1	7
2.2	11
3.1	20
3.2	22
3.3	22
4.1	27
5.1	40
5.2	40

entre a

LIST OF TABLES

TABLE

2.1	Characteristics of different types of fuel cell	4
2.2	Structure-property relationships and in situ performance of	
	polymers	8
2.3	Analysis of catalyst preparation and application for MEA	
	assembly mode 1: application of catalyst to GDL	12
2.4	Analysis of catalyst preparation and application for MEA	
	assembly mode 2: application of catalyst to membrane	13
4.1	Crystallographic data of 2 and 2-PtCl ₄ compound	33
4.2	Crystallographic data of 4	43

PAGE

LIST OF FIGURES

FIGURE

2.1	Schematic of PEMFC operation	3
2.2	Schematic of DMFC operation with a polymer electrolyte	
	membrane as the electrolyte	5
2.3	Schematic of a single typical polymer electrolyte membrane	
	fuel cell fuel cell	6
2.4	Structure of commercial perfluorosulfonic acid polymers.	
	Nafion [®] (DuPont): m=1; n=2; x=5-13.5; y=1, Flemion [®]	
	(Asahi Glass): m=0,1; n=1-5; x=5-13.5; y=1, Aciplex®	
	(Asahi Chemicals): m=0; n=2-5; x=1.5-15; y=1, Dow (Dow	
	Chemical): m=0; n=2; x=3.6-10, y=1	7
2.5	Chemical structures of polymer electrolyte membrane based	
	on hydrocarbon polymers	9
2.6	Synthesis process for composite polyimide layers containing	
	mono-dispersed copper nanoparticles	15
2.7	Chemical structures of iron (III)	
	tetramethoxyphenylporphyrin chloride (FeTMPP-Cl) and	
	cobalt tetramethoxyphynylporphyrin (CoTMPP)	16
2.8	Supramolecular structure of N,N-Bis(2-	
	hydroxybenzyl)alkylamine (HBA) with Cu framework	16
2.9	Pt agglomeration and Pt detachment from support material	
	surface after PEMFC operation	17
2.10	TEM micrographs of Pt/C catalyst a) original Pt/C catalyst	
	and b) after degradation	18
2.11	Membrane electrode of a PEMFC and an overview of the	
	present work	18

PAGE

FIGURE

4.1	UV-Vis spectra of 2 in chloroform; before extraction (solid	
	line), and after extraction (dotted line)	28
4.2	Job plots of 2 and K_2PtCl_4	29
4.3	¹ H-NMR spectra of 2 a) before extraction, and b) after	
	extraction with aqueous solution of K ₂ PtCl ₄	30
4.4	Mass spectra of 2 a) before extraction, and b) after extraction	
	with aqueous solution of K ₂ PtCl ₄	31
4.5	FTIR spectra of 2, a) before extraction, and b) after	
	extraction with aqueous solution of K ₂ PtCl ₄	32
4.6	Crystal structure of 2	34
4.7	Crystal structure of 2 with PtCl ₄	34
5.1	FTIR spectra of a) 3 and b) 4	41
5.2	¹ H-NMR spectra of a) 3 and b) 4	42
5.3	Crystal structure of 4	44
5.4	FTIR spectra of a) precipitate part, and b) solution part	
	obtained from polymerization reaction between 4 and	
	maleimide	45

ABBREVIATIONS

PFSA	perfluorosulfonic acid	
PFCA	perfluorocarboxylic acid	
PFSI	bis(perfluoroalkylsulfonyl)imide	
PTFE-g-TFS	α,β,β -trifluorostyrene grafted onto poly(tetrafluoroethylen	e)
	with post sulfonation	
PVDF-g-PSSA	styrene grated on sulfonated poly(vinylidiene fluoride)	
NPI	naphthalenic polyimide	
BAM3G	ballard advance material of third generation membrane	
SPEEK	sulfonated poly(ether ether ketone)	
SPPBP	sulfonated poly(4-phenoxy benzoyl-1,4-phenylene)	
MBS-PBI	methyl benzensulfonated polybenzimidazoles	
PBI	polybenzimidazole	ž
P4VP	poly(4-vinyl pyrrolidone)	
PEI	poly(ethyleneimine)	
PSU(NH ₂) ₂	ortho-sulfone aminated polysulfone	
SPSU	sulfonated polysulfone	
Poly-AMPS	poly(2-acrylamido-2-methylpropanesulfonic acid)	
PVA	poly(vinyl alcohol)	
PC	sulfonated polycarbonate	
PPO	poly(phenylene oxide)	
PI	sulfonated polyimide	
PSU	sulfonated polysulfone	
PPS	sulfonated poly(phenylene sulfide)	
PPSU	poly(phenyl sulfone)	
TBA+	tetrabutylammonium	
ТВАОН	tetrabutylammonium hydroxide	