ELECTROSPUN POLY(ε-CAPROLACTONE)/POLY(3-HYDROXYBUTYRATE-*CO*-3-HYDROXYVALERATE) FIBROUS SUBSTRATES FOR BONE TISSUE ENGINEERING

Prae-ravee K-hasuwan

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2012

551764

Thesis Title:	$Electrospun \ Poly (e-caprolactone)/Poly (3-hydroxybutyrate-co-$
	3-hydroxyvalerate) Fibrous Substrates for Bone Tissue
	Engineering
By:	Prae-ravee K-hasuwan
Program:	Polymer Science
Thesis Advisors:	Prof. Pitt Supaphol

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Pomthong Malakul)

Hathachar M.

(Asst. Prof. Hathaikarn Manuspiya)

/ ~ -

(Prof. Pitt Supaphol)

Proet Porat.

(Prof. Prasit Pavasant)

Neeranut K

(Dr. Neeranut Kuanchertchoo)

ABSTRACT

5182001063: Polymer Science Program
Prae-ravee K-hasuwan: Electrospun Poly(ε-caprolactone)/Poly
(3-hydroxybutyrate-co-3-hydroxyvalerate) Fibrous Substrates for
Bone Tissue Engineering.
Thesis Advisor: Prof. Pitt Supaphol 154 pp.

Keywords: Electrospinning/ Poly(ε-caprolactone)/ Poly(3-hydroxybutyrate-co-3hydroxyvalerate/ Hydroxyapatite/ Bone proteins/ Doxycycline hyclate

Fibrous substrates of the blend solutions of $Poly(\varepsilon$ -caprolactone) (PCL)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) in a mixture of chloroform and N,N-dimethylformamide (DMF) were fabricated by electrospinning. The effect of the solution concentration on the morphology, mechanical integrity, and physicochemical properties of the obtained fibrous substrates was examined. The fibrous substrate prepared from 10 wt% PCL/PHBV solution exhibited the smoothest surface topography and the lowest static water contact angle, which have been reported to be suitable for cell growth. Taking into account the osteoconductivity of hydroxyapatite (HAp) and the osteoinductivity of bone proteins (i.e., type I collagen (COL), fibronectin (FN), and crude bone protein (CBP)), HAp and bone proteinsloaded HAp nanoparticles were incorporated into the PCL/PHBV fibrous substrates. The potential use of these fibrous substrates as bone scaffolds was assessed in vitro with mouse-calvaria-derived preosteoblastic cells (MC3T3-E1) in terms of the attachment, proliferation, alkaline phosphatase (ALP) activity, and mineralization. Furthermore, the capability of the PCL/PHBV fibrous substrate as a drug carrier was also investigated by the incorporation of doxycycline hyclate (DOXY). The release characteristics of DOXY from DOXY-loaded PCL/PHBV fibrous substrates were carried out by the total immersion method in a phosphate buffer solution. In vitro antibacterial activity of these fibrous substrates was also tested against Gramnegative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus.

บทคัดย่อ

แพรรวี เคหะสุวรรณ : แผ่นเส้นใยอิเล็คโตรสปันพอลีคาโปรแลคโตน/พอลีไฮดรอกซี บิวทิเรต-โค-ไฮดรอกซีวาเลอเรตสำหรับงานวิศวกรรมเนื้อเยื่อกระดูก (Electrospun Poly(*ɛ*caprolactone)/Poly(3-hydroxybutyrate-*co*-3-hydoxyvalerate) Fibrous Substrates for Bone Tissue Engineering) อ. ที่ปรึกษา : ศ.ดร. พิชญ์ ศุภผล 154 หน้า

แผ่นเส้นใยอิเล็คโตรสปันของสารละลายผสมพอลีคาโปรแลคโตน/พอลีไฮครอกซีบิว ทีเรต-โค-ไฮครอกซีวาเลอเรตในตัวทำละลายผสบคลอโรฟอร์มและไดเมทิลฟอร์มาร์ไมต์ สามารถ เตรียมได้จากกระบวนการปั่นเส้นใยด้วยไฟฟ้าสถิต ในงานวิจัยนี้ได้ศึกษาผลกระทบของความ เข้มข้นของสารละลายพอลิเมอร์ผสมต่อลักษณะพื้นผิว คุณสมบัติเชิงกล และคุณสมบัติทางเคมี กายภาพของแผ่นเส้นใย แผ่นเส้นใยที่เตรียมจากสารละลายผสมเข้มข้น 10 เปอร์เซ็นต์โดยน้ำหนัก ให้แผ่นเส้นใยที่มีลักษณะพื้นผิวเรียบและมีความชอบน้ำมาก ซึ่งเหมาะแก่การเจริญเติบโตของ เซลล์กระดูก นอกจากนี้ไฮครอกซีอะพาไทค์ที่มีโปรตีนกระดูก (เช่น คอลลาเจน, ไฟโบรเนคติน และ โปรตีนกระดูกรวม) ถูกนำมาผสมลงในแผ่นเส้นใยเพื่อพัฒนาคุณสมบัติการเหนี่ยวนำการ และเนื่องจากความต้องการที่จะประยุกต์ใช้แผ่นเส้นใยอิเล็คโตรสปันเหล่านี้ สร้างกระดูกใหม่ สำหรับเป็นวัสคุทคแทนกระคก **จึงได้มีการศึกษาความเข้ากันได้ทางชีวภาพของวัส**ดุกับเซลล์ กระดูก (MC3T3-E1) โดยทดสอบการเกาะของเซลล์, การเจริญเติบโตของเซลล์, การสร้างคอลลา เจน และ การสะสมแร่ธาตุของเซลล์ นอกจากนี้ยังได้มีการทคสอบความสามารถของแผ่นใยในการ เป็นสารตัวนำพายา โดยผสมสารละลายของแผ่นเส้นใยกับยาด็อกซีไซคลินไฮเคลตและศึกษาการ ปลอดปล่อยตัวยาจากแผ่นเส้นใย โดยใช้วิธีการแช่ในสารละลายฟอสเฟตบัฟเฟอร์ รวมถึงได้มีการ ทคสอบแผ่นเส้นใยที่มีตัวยานี้ในการด้านเชื้อแบคทีเรียอีกด้วย

ACKNOWLEDGEMENTS

Appreciation is expressed to those who have made contributions to this dissertation. First the author gratefully acknowledges her advisor, Prof. Pitt Supaphol, for giving her invaluable knowledge, meaningful guidance and encouragement all along the way. She also would like to give her sincere thanks to Prof. Prasit Pavasant and Dr. Neeranut Kuanchertchoo for giving her useful advises, invaluable knowledge, and suggestions. Furthermore, she would like to express her special thanks to Prof. Gary Wnek and colleagues from Case Western Reserve University for giving her useful advises, suggestions and opportunities to learn new research experiences and incredible ways of thinking while she did a short research at Case Western Reserve University.

She gratefully acknowledges all faculty members and staff at The Petroleum and Petrochemical College, Chulalongkorn University for their knowledge and assistance. She also would like to give her special thanks to all members in her research group and all of her friends for their kind assistance, continual encouragement and wonderful friendship.

Asst. Prof. Pomthong Malakul, Prof. Pitt Supaphol, Asst. Prof. Hathaikarn Manuspiya, and Prof. Prasit Pavasant, as well as Dr. Neeranut Kuanchertchoo are further acknowledged for being her dissertation committees, making valuable comments and suggestions.

She wishes to express her deep gratitude to her family for their unconditioned love, understanding and very supportive during all these years spent for her Ph.D. study.

Eventually, she is grateful for the partial financial support from the Petroleum and Petrochemical College, and from the Center of Excellence on Petrochemical and Materials Technology, Thailand; and a doctoral scholarship received from the Institute for the Promotion of Teaching Science and Technology (IPST) through the Development and Promotion of Science and Technology talents project (DPST). This work would not be carried out successfully without all financial supports.

TABLE OF CONTENTS

PAGE

	Title P	age	i
	Abstra	ct (in English)	iii
	Abstra	et (in Thai)	iv
	Ackno	wledgements	v
	Table	of Contents	vi
	List of Tables		
	List of	Figures	xii
СНА	PTER		
	I	INTRODUCTION	1
	II	LITERATURE REVIEW	3
	III	EXPERIMENTAL	15
	IV	HYDROXYAPATITE/OVALBUMIN COMPOSITE	
		PARTICLES AS MODEL PROTEIN CARRIERS FO	OR BONE
		TISSUE ENGINEERING: I. SYNTHESIS AND	
		CHARACTERIZATION	23
		4.1 Abstract	23
		4.2 Introduction	23
		4.3 Experimental	24
		4.4 Results and Discussion	26
		4.5 Conclusions	35
		4.6 Acknowledgments	35
		4.7 References	35

57

HYDROXYAPATITE/OVALBUMIN COMPOSITE PART	FICLES	
AS MODEL PROTEIN CARRIERS FOR BONE TISSUE		
ENGINEERING: II. RELEASE OF OVALBUMIN	39	
5.1 Abstract	39	
5.2 Introduction	39	
5.3 Experimental	41	
5.4 Results and Discussion	43	
5.5 Conclusions	52	
5.6 Acknowledgments	53	
5.7 References	53	

VI EFFECT OF THE SURFACE TOPOGRAPHY OF ELECTROSPUN POLY(ε- CAPROLACTONE)/POLY(3-HYDROXYBUTYRATE-CO-3- HYDROXYVALERATE) FIBROUS SUBSTRATES ON CULTURED BONE CELL BEHAVIOR 6.1 Abstract

6.1	Abstract	57
6.2	Introduction	57
6.3	Experimental	60
6.4	Results and Discussion	65
6.5	Conclusions	82
6.6	Acknowledgments	83
6.7	References	83

viii

VII	BIOCOMPATIBLE EVALUATION IN VITRO	OF POLY(E-				
	CAPROLACTONE)/POLY(3-HYDROXYBUTYRATE- <i>CO</i> -3- HYDROXYVALERATE) FIBROUS SUBSTRATES FILLED WITH PROTEIN-LOADED HYDROXYAPATITE					
					PARTICLES	87
					7.1 Abstract	87
	7.2 Introduction	88				
	7.3 Experimental	90				
	7.4 Results and Discussion	97				
	7.5 Conclusions	116				
	7.6 Acknowledgments	116				
	7.7 References	117				

VIII ELECTROSPUN DOXYCYCLINE-LOADED POLY(E-

CAPROLACTONE)/POLY(3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE) COMPOSITE FIBROUS SUBSTRATES AS WOUND DRESSINGS 120 8.1 Abstract 120 8.2 Introduction 120 122 8.3 Experimental 8.4 Results and Discussion 126 8.5 Conclusions 137 8.6 Acknowledgments 138 8.7 References 138

IX	CONCLUSIONS AND RECOMMENDATIONS	143

REFERENCES

145

CURRICULUM VITAE

153

LIST OF TABLES

TABLE

	CHAPTER IV	
4.1	Textural parameters of pure HAp and HAp/OVA composite	
	particles that had been obtained at different pH conditions	27
	CHAPTER V	
5.1	Experimental conditions of HAp and HAp/OVA particles	42
5.2	Physico-chemical characteristics of HAp and HAp/OVA	
	particles	49
	CHAPTER VI	
6.1	Viscosities of PCL/PHBV, PCL, and PHBV solutions as	
	well as physical and physico-chemical characteristics of the	
	obtained electrospun fibrous substrates	67
6.2	Mechanical characteristics of the obtained electrospun	
	fibrous substrates	72
6.3	True densities, porosities, and pore volumes of the obtained	
	electrospun fibrous substrates	73
	CHAPTER VII	
7.1	Viscosities of PCL/PHBV solution, PCL/PHBV-HAp and	
	PCL/PHBV- HAp/protein (COL, FN, and CBP) suspensions	
	as well as physical and physico-chemical characteristics of	
	the obtained electrospun fibrous substrates	98
7.2	Mechanical characteristics of the obtained electrospun	
	fibrous substrates	101

10

PAGE

7.3	True densities, porosities, and pore volumes of the obtained		
	electrospun fibrous substrates	102	

CHAPTER VIII

8.1	Melting temperature (T_m) and melting enthalpy (ΔH_m) of	
	electrospun fibrous substrates	129
8.2	Crystallization temperature (T_c) , crystallization enthalpy	
	(ΔH_c) , and crystallinity degree (X_c) of electrospun fibrous	
	substrates	130
8.3	Mechanical integrity of the drug-free PCL/PHBV	
	electrospun fibrous substrates	134
8.4	Average lengths of the inhibition zones (measured from the	
	edge of the samples to the edge of the clear zones) for all	
	fibrous substrates	137

LIST OF FIGURES

FIGURE

CHAPTER II

The reaction of ring opening polymerization of ε-	
caprolactone rings.	7
Chemical structure of PHBV.	8
A schematic drawing of the electrospinning apparatus.	8
	The reaction of ring opening polymerization of ε- caprolactone rings. Chemical structure of PHBV. A schematic drawing of the electrospinning apparatus.

CHAPTER IV

4.1	XRD patterns of (a) pure HAp and (b) HAp/OVA composite	
	particles that had been obtained at pH 9.	27
4.2	FT-IR spectra of (a) pure HAp and (b) HAp/OVA composite	
	particles that had been obtained at pH 9 as well as that of (c)	
	as-received OVA in its dry state.	28
4.3	TGA curves of (a) pure HAp and (b) HAp/OVA composite	
	particles that had been obtained at pH 9.	29
4.4	PSD curves of pure HAp and HAp/OVA composite particles	
	that had been obtained at pH 9.	30
4.5	TEM micrographs of (a) pure HAp and (b) HAp/OVA	
	composite particles that had been obtained at pH 9.	31
4.6	SEM images of (a) pure HAp and (b) HAp/OVA composite	
	particles that had been obtained at pH 9.	32
4.7	Adsorption-desorption isotherms of N_2 within the pore	
	structures of (a) pure HAp and (b) HAp/OVA composite	
	particles that had been obtained at pH 9. The size	
	distribution of the pores as determined based on the Bopp-	
	Jancsó- Heinzinger (BJH) model is shown as the inset.	34

PAGE

CHAPTER V

5.1	XRD patterns of (a) 1D-7, (b) 1D-9, (c) 1E-7, and (d) 1E-9.	44
5.2	FT-IR spectra of (a) 0D-7, (b) 1D-7, (c) 1D-9, (d) 1E-7, (e)	
	1E-9, and (f) as-received OVA in its dry state.	45
5.3	EDX characteristic peaks of (a) 1D-7, (b) 1D-9, (c) 1E-7,	
	and (d) 1E-9.	46
5.4	Representative TEM micrographs of (a) 1D-7, (b) 1D-9, (c)	
	1E-7, and (d) 1E-9.	47
5.5	TGA profiles of HAp and HAp/OVA particles synthesized at	
	various conditions.	5()
5.6	Release profiles of OVA from the obtained HAp/OVA	
	particles synthesized under different conditions.	52

CHAPTER VI

6.1	Representative SEM images (scale bar = 5 μ m and	
	magnification = 3500×) of the electrospun fibrous scaffolds	
	from 4-14 wt% PCL/PHBV, 12 wt% PCL, and 14 wt%	
	PHBV solutions.	68
6.2	ATR-FTIR spectra of the obtained electrospun fibrous	
	scaffolds.	7 0
6.3	Attachment of MC3T3-E1 that were seeded on the surfaces	
	of TCPS and various types of fibrous substrates as a function	
	of cell seeding time. *Significance at $p < 0.05$ with respect to	
	TCPS.	74

6.4	Proliferation of MC3T3-E1 that were cultured on the	
	surfaces of TCPS and various types of fibrous substrates as a	
	function of cell culturing time. *Significance at $p < 0.05$	
	with respect to TCPS. [#] Significance at $p < 0.05$ with respect	
	to the fibrous substrate from 12 wt% PCL solution.	75
6.5	Representative SEM images (scale bar = $10 \ \mu m$ and	
	magnification = 1500×) of MC3T3-E1 that were	
	seeded/cultured on the surfaces of a glass substrate (control)	
	and various types of the fibrous substrates at various time	
	points.	78
6.6	ALP activity of MC3T3-E1 that were cultured on the	
	surfaces of TCPS and various types of the fibrous substrates	
	at various time points after cell culturing. *Significance at p	
	< 0.05 with respect to TCPS. [#] Significance at $p < 0.05$ with	
	respect to the fibrous substrate from 12 wt% PCL solution.	80
6.7	Alizarin Red S staining for mineralization of MC3T3-E1 on	
	day 14 after being cultured on the surfaces of TCPS and	
	various types of the fibrous substrates: (a) photographic	
	images of the stained specimens and (b) the corresponding	
	quantitative analyses. *Significance at $p < 0.05$ with respect	
	to TCPS. [#] Significance at $p < 0.05$ with respect to the fibrous	
	substrate from 12 wt% PCL solution.	81

PAGE

CHAPTER VII

7.1	Representative SEM images (scale bar = $5 \mu m$ and	
	magnification = $2000 \times$) of the electrospun PCL/PHBV	
	fibrous substrate, PCL/PHBV-HAp and PCL/PHBV-	
	HAp/protein (COL, FN, and CBP) composite fibrous	
	substrates.	99
7.2	Representative EDX images of the element spectra and	
	calcium mappings of the electrospun PCL/PHBV fibrous	
	substrate, PCL/PHBV-HAp and PCL/PHBV-HAp/protein	
	(COL, FN, and CBP) composite fibrous substrates.	100
7.3	TGA thermograms of (a) neat HAp and HAp composite	
	particles and (b) neat PCL/PHBV and PCL/PHBV composite	
	fibrous substrates.	104
7.4	Cumulative release of proteins from (a) HAp composite	
	particles and (b) PCL/PHBV composite fibrous substrates, in	
	terms of the percentage of the weight of the proteins released	
	divided by the actual weight of the proteins in the specimens,	
	as a function of submersion time in MEM, at 37 °C ($n = 3$).	106
7.5	Attachment of MC3T3-E1 that were seeded onto the surfaces	
	of TCPS and various types of fibrous substrates as a function	
	of the cell seeding time. *Significance at $p < 0.05$ with	
	respect to TCPS. [#] Significance at $p < 0.05$ with respect to the	
	fibrous substrate from PCL/PHBV solution.	107

7.6	Proliferation of MC3T3-E1 that were cultured on the	
	surfaces of (a) TCPS and various types of fibrous substrates	
	and (b) TCPS without and with HAp and HAp/proteins	
	particles as a function of the cell culturing time.	
	*Significance at $p < 0.05$ with respect to TCPS.	
	[#] Significance at $p < 0.05$ with respect to (a) the fibrous	
	substrate from PCL/PHBV solution and (b) TCPS with HAp	
	particle.	109
7.7	Representative SEM images (scale bar = 10 μ m and	
	magnification = $1500 \times$) of MC3T3-E1 that were	
	seeded/cultured on the surfaces of a glass substrate (control)	
	and various types of fibrous substrates at various time points.	111
7.8	ALP activity of MC3T3-E1 that was cultured on the surfaces	
	of (a) TCPS and various types of fibrous substrates and (b)	
	TCPS without and with HAp and HAp/proteins particles at	
	various given time points after cell culturing. *Significance	
	at $p < 0.05$ with respect to TCPS. [#] Significance at $p < 0.05$	
	with respect to (a) the fibrous substrate from PCL/PHBV	
	solution and (b) TCPS with HAp particles.	113
7.9	Alizarin Red S staining for the mineralization of MC3T3-E1	
	on day 14 after being cultured on the surfaces of TCPS and	
	various types of the fibrous substrates: (a) photographic	
	images of the stained specimens and (b) the corresponding	
	quantitative analyses. *Significance at $p < 0.05$ with respect	
	to TCPS. [#] Significance at $p < 0.05$ with respect to the fibrous	
	substrate from PCL/PHBV solution.	115

xvi

PAGE

CHAPTER VIII

8.1	SEM images (scale bar = $10 \ \mu m$ and magnification = 1500	
	×) of drug-free and DOXY-loaded electrospun fibrous	
	substrates.	127
8.2	ATR-FTIR spectra of neat PHBV, neat PCL, PCL/PHBV	
	50/50, DOXY-loaded PCL/PHBV 50/50, and DOXY.	128
8.3	DSC thermograms of electrospun fibrous substrates, (a)	
	heating and (b) cooling scan.	130
8.4	Water retention behavior of (a) the drug-free and (b) the	
	DOXY-loaded fibrous substrates immersed in phosphate	
	buffer saline solution pH 7.4 at 37 °C for various time	
	intervals $(n = 5)$.	132
8.5	Stress-strain curves of the drug-free PCL/PHBV electrospun	
	fibrous substrates.	133
8.6	Cumulative release of DOXY from DOXY-loaded	
	electrospun fibrous substrates, in terms of the percentage of	
	the weight of DOXY released divided by the actual weight	
	of DOXY in the samples, as a function of submersion time	
	in phosphate buffer saline solution, at physiological	
	temperature of 37 °C ($n = 5$).	136