REFERENCES

ภาษาไทย

ณรงค์ โทณานนท์. <u>ความรู้เบื้องต้นเกี่ยวกับเรื่องไม้</u>. หนังสือชุคความรู้เพื่อชุมชน เถ่มที่ 41. กรุงเทพมหานคร: สำนักพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย, 2544.

ภาษาอังกฤษ

- Alberts, B.; Johnson, B.; Lewis, A.; Raff, J.; Roberts, M.; and Watter, P. <u>Molecular</u> <u>Biology of the Cell</u>. 4th ed., New York: Garian Science, 2002.
- Bajpai, P. Application of enzymes in the pulp and paper industry. <u>Biotechnology</u> <u>Progress</u> 75 (1999): 147 – 157.
- Baker, G.E.; and Yeager, L.D. <u>Wood Technology</u>. United States of America: Howard W. Sams & Co., Inc., 1974.
- Beg, Q.K.; Kapoor, M.; Mahajan, L.; and Hoondal, G.S. Microbial xylanases and their industrial applications: a review. <u>Applied Microbiology and</u> <u>Biotechnology</u> 56 (2001): 326 – 338.
- Bourbonnais, R.; Paice, M.G.; Reid, I.D.; Lanthier, P.; and Yaguchi, M. Lignin oxidation by laccase isozymes from *Trametes versicolor* and role of the mediator 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) in Kraft lignin depolymerization. <u>Applied and Environmental Microbiology</u> 61 (1995): 1876 – 1880.
- Brunow, G.; Lundquist, K.; and Gellerstedt, G. "Lignin", <u>Analytical Methods in</u> <u>Wood Chemistry, Pulping, and Papermaking</u>, edited by Sjöström, E.; and Alen, R. Germany: Springer – Verlag Berlin Heidelberg, 1999.
- Campell, M.K. <u>Biochemistry</u>. United States of America: Saunders College Publishing, 1991.
- Christensen, J.H.; Bauw, G.; Welinder, K.G.; Van Montagu, M.; and Boerjan, W. Purification and characterization of peroxidases correlated with lignification in poplar xylem. <u>Plant Physiology</u> 118 (1998): 125 – 135.
- Crawford, R.L. Lignin Biodegradation and Transformation. United States of America: John Wiley & Sons, Inc., 1981.

- Del Río, J.C.; Romero, J. and Gutiérrez, A. Analysis of pitch deposits produced in Kraft pulp mills using a totally chlorine free bleaching sequence. Journal of <u>Chromatography A</u> 874 (2000): 235 – 245.
- Eaton, R.A.; and Hale, M.D.C. <u>Wood Decay. Pests and Protection</u>. Great Britain: Chapman & Hall, 1993.
- Esau, K. Plant Anatomy. United States of America: John Wiley & Sons, Inc., 1953.
- Gullichsen, J.; and Paulapuro, H. Forest Products Chemistry. Book 3 of 19. Papermaking Science and Technology. Finland: Fapet Oy, 2000.
- Hampp, N. System for the electrochemical delignification of lignin containing materials and a process for its application. <u>United States Patent Number</u> <u>6.187.170.</u> 2001.
- Harlow, W.M. Inside Wood Masterpiece of Nature. United States of America: The American Forestry Association, 1975.
- Hon, D.; and Shiraishi. Wood and cellulose chemistry, 2001.
- Image-Pro® Plus Version 4.5 for WindowsTM Reference Guide. Media Cybernatics, Inc., 2002.
- Kenealy, W.R.; and Jeffries, T.W. "Enzyme processes for Pulp and Paper: A Review of Recent Developments", <u>Wood Deterioration and Preservation: Advances in</u> <u>our Changing World</u>, edited by Goodell, B.; Nicholas, D.D.; and Schultz, T.P. United States of America: U.S. Government Work, 2003.
- Kirk, T.K. "Technical overview of forest biotechnology research in the U.S." <u>Biotechnology in The Pulp and Paper Industry</u>, edited by Srebotnik, E.; and Messner, K. Austria: Facultas – Universitatsreslag, 1996.
- Lapierre, C.; Pollet, B.; Petit-Conil, M.; Toval, G.; Romero, J.; Pilate, G.; Leplé, J.C.;
 Boerjan, W.; Ferret, V.; De Nadai, V.; and Jouanin, L. Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase of caffeic acid *O*-Methyltransferase activity have an opposite impact on the efficiency of industrial Kraft pulping. <u>Plant Physiology</u> 119 (1999): 153 163.
- Li, L; Popko, J.L.; Umezawa, T.; and Chiang, V.L. 5-Hydroxyconiferyl aldehyde moculates enzymatic methylation for syringyl monolignol formation, a new view of monolignol biosynthesis in angiosperms. <u>The Journal of Biological</u> <u>Chemistry</u> 275 (2000): 6537 – 6545.
- Lodish, H.; Baltimore, D.; Berk, A.; Zipursky, S.L.; Matsudaira, P.; and Darnell, J. Molecular Cell Biology. 3rd ed., New York: Scientific American Books, 1995.

- Mackay, J.J.; O'Malley, D.M.; Presnell, T.; Booker, F.L.; Campbell, M.M.; Whetten, R.W.; and Sederoff, R.R. Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cinnmyl alcohol dehydrogenase.
 <u>Proceedings of the National Academy of Sciences of the United States of American</u> 94 (1997): 8255 8260.
- Mathews, C.K.; and Van Hold, K.E. <u>Biochemistry</u>. 2nd ed., United States of America: The Benjamin/Cummings Publishing Inc., 1996.
- Meyermans, H.; Morreel, K.; Lapierre, C.; Pollet, B.; De Bruyn, A.; Busson, R.; Herdewijn, P.; Devreese, B.; Van Beeumen, J.; Marita, J.M.; Ralph, J.; Chen, C.; Burggraeve, B.; Van Montagu, M.; Messen, E.; and Boerjan, W. Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-Methyltransferase, an enzyme involved in lignin biosynthesis. <u>The Journal of Biological Chemistry</u> 275 (2000): 36899 – 36909.
- Meylan, B.A.; and Butterfield, B.G. <u>Three dimensional structure of wood: A</u> <u>scanning electron microscope study.</u> Syracuse wood science series, 2. Hong Kong: Syracuse University Press, 1972.
- Osakabe, K.; Tsao, C.C.; Li, L.; Popko, J.L.; Umezawa, T.; Carraway, D.T.; Smeltzer, R.H.; Joshi, C.P.; and Chiang, V.L. Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. <u>Proceedings of the National Academy of Sciences of the United States of American</u> 96 (1999): 8955 – 8960.
- Paice, M.G.; Bourbonnais, R.; and Reid, I.D. Bleaching Kraft pulps with oxidative enzymes and alkaline hydrogen peroxide. <u>TAPPI Journal</u> 78 (1995): 161 – 169.
- Pérez, J.; Munoz-Dorado, J.; Dela Rubia, T.; and Martinez, J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. <u>International Microbiology</u> 5 (2002): 53 – 63.
- Ritter, P. <u>Biochemistry A Foundation</u>. United States of America: Brooks/Cole Publishing Company, 1996.
- Riva, S. Laccase: blue enzymes for green chemistry. <u>TRENDS in Biotechnology</u> 24(2006): 219 226.
- Sigoillot, C.; Lomascolo, A.; Record, E.; Robert, J.L.; Asther, M.; and Sigoillot, J.C. Lignocellulolytic and hemicellulolytic system of *Pycnoporus cinnabarinus*:

isolation and characterization of a cellobiose dehydrogenase and a new xylanase. Enzyme and Microbial Technology 31 (2002): 876 – 883.

- Sjöström, E.; and Westermark, U. "Chemical Composition of Wood and Pulps: Basic Constituents and Their Distribution", <u>Analytical Methods in Wood Chemistry</u>, <u>Pulping</u>, and Papermaking, edited by Sjöström, E.; and Alen, R. Germany: Springer – Verlag Berlin Heidelberg, 1999.
- Srebotnik, E.; and Hammel, K.E. Degradation of nonphenolic lignin by the laccase/1hydroxybenzotriazole system. Journal of Biotechnology 81 (2000): 179 – 188.
- Stamm, A.J. <u>Wood and Cellulose Science</u>. United States of America: The Ronald Press Company, 1964.
- Suurnäkki, A.; Tenkanen, M.; Buchert, J.; and Viikari, L. Hemicellulases in the bleaching of chemical pulps. <u>Advances in Biochemical Engineering/</u> <u>Biotechnology</u> 57 (1997): 261 – 287.
- Tolan, J.; and Foody, B. Method for the use of enzymes in bleaching paper pulp. United States Patent Number 5,591,304. 1997.
- Tsai, C.J.; Popko, J.L.; Mielke, M.R.; Hu, W.J.; Podila, G.K.; and Chiang, V.L. Suppression of O-Methyltransferase gene by homologous sense transgene in quaking Aspen causes red – brown wood phenotypes. <u>Plant Physiology</u> 117 (1998): 101 – 112.
- Vincent, A.H.D.; Khong, C.; and Rizzon, E. FAS (thiourea dioxide) bleaching of recycled pulp. <u>Appita Journal</u> 50 (1997): 393 399.
- Wenzl, H.F.J. <u>The Chemical Technology of Wood</u>. United States of America: Academic Press, Inc., 1970.
- Westermark, U.; and Sjöström, E. "Separation and Analysis of Wood constituents with Respect to Their Morphological Location", <u>Analytical Methods in Wood</u> <u>Chemistry, Pulping, and Papermaking</u>, edited by Sjöström, E.; and Alen, R. Germany: Springer – Verlag Berlin Heidelberg, 1999.

APPENDICES

APPENDIX A

Appendix A

Image Processing

A1 Theory (Image-pro plus, 2002)

In this study, the image processing technique was adopted and applied as an indirect measurement of the amount of lignin removed. The principle of the technique is that when the scanner scans the image into a computer, the image is converted into a numeric form. This process is called image digitizing. The digitized image is composed of horizontal grid of very small area called picture elements, or pixels. This digital grid is called bitmap. Each pixel is identified by its location in the grid, in the form of row x and column y (x,y) just like in matrix. By convention pixel (0,0) is in the upper left hand corner of the image. When an image is digitized, each pixel is examined; its brightness is measured and quantified. The value is stored in the corresponding pixel of the image bitmap.

(0,0)	(0,1)	(0,2)		
(1,0)				
			(x,y)	

Figure A1 Example digital grid

Bit and Byte: A computer understands only 2 conditions-on and off or one or naught. Therefore, computer count number in 0 and 1, this is called binary system. A computer usually deals with 8-bit numbers, which consists of 8 ones and 8 naught. The 8-bit numbers are called bytes. Each byte represents a combination of 0/1 conditions. Therefore, eight 0/1 condition can represent 256 combinations (2^8). That is 000000 is equal to 0 and 111111111 is equal to 255.

So a byte can be expressed in 256 ways (counting 0 to 11111111).

Depending on the capability of the hardware, 1 to 32 bits might be used to store each pixel value. The number of bits used to represent the pixel values is called pixel depth, or bits-per-pixel (BPP).

In gray scale, pixel values represent a level of grayness or brightness, ranging from completely black to completely white. In an 8-bit gray scale image, a pixel with a value of 0 is completely black and a pixel with a value of 255 is completely white. Everything in between this 2 number is a shade of gray. Although some hardware and software can handle up to 32 BBP, the 8 BPP Gray Scale images are the most common. This is because it has 1 byte per pixel depth which makes it easy to manipulate with computer and because it can be faithfully represent any gray scale image because it provides 256 distinct level of gray.

In this research work, the 8 BPP gray scale was used for the above reason. After the computer digitized the image, the image was then stored in bitmap file for true representation of the image. Other type of this files such as jpeg will distraught the image.

After the computer have the record of the gray scale for all the pixels. These data have to be manipulated into a form that can be worked with. A computer program written by Mr. Danulux was used to organize the data into the form as shown in Appendix C. From these sets of data the gray scale for all images of untreated and treated samples were calculated (see Appendix C for sample of calculation).

A2 Data collecting using image processing technique

Procedure 1. Setting the scanner to the following scanning parameter:

8 bit Gray Scale 800 dpi Width = 1,236 pixels Height = 1,220 pixels No color correction Save as bitmap file

- 2. Scan the image.
- 3. Save the image

APPENDIX B

APPENDIX B

Preparation of Buffer Solution

B1 Preparation of 0.2 M phosphate buffer pH 6.5

- 1. Preparation of stock solution A
 - 1.1 mixing 27.8 g of monobasic sodium phosphate monohydrate with distilled water
 - 1.2 adjusted to 1000 ml.
- 2. Preparation of stock solution B
 - 2.1 mixing 53.6 g of dibasic sodium phosphate heptahydrate with distilled water
 - 2.2 adjusted to 1000 ml.
- 3. Mixing 68.5 ml of stock solution A to 31.5 ml of stock solution B
- 4. Measure the pH using Orion 701A pH meter from Orion Research USA
- 5. Adjust the pH using stock solution A and B

B2 Preparation of 0.2 M acetate buffer pH 4.5

- 1. Preparation of stock solution A
 - 1.1 mixing 27.8 g of sodium acetate anhydrous with distilled water
 - 1.2 adjusted to 1000 ml.
- 2. Mixing 43 ml of stock solution A with 57 ml of 0.2 M acetic acid
- 3. Measure the pH using Orion 701A pH meter from Orion Research USA
- 4. Adjust the pH using stock solution A and 0.2 M acetic acid

APPENDIX C

Appendix C

Sample of Calculation

Gray Scale (x _i)	Number	of pixel	weight		
	Untreat(n _{ui})	Treat(n _{ti})	N _{ui} X _i	n _{ti} x _i	
0	0	0	0	0	
*	÷.	. e	200	÷	
			4		
- 13					
84	28,609	19,365	2,403,156	1,626,660	
85	26,174	21,318	2,224,790	1,812,030	
86	23,511	23,254	2,021,946	1,999,844	
87	21,054	24,598	1,831,698	2,140,026	
88	18,774	26,190	1,652,112	2,304,720	
89	16,298	27,391	1,450,522	2,437,799	
90	14,120	29,156	1,270,800	2,624,240	
91	12,188	30,010	1,109,108	2,730,910	
92	10,461	30,649	962,412	2,819,708	
93	8,724	31,234	811,332	2,904,762	
94	7,120	31,684	669,280	2,978,926	
-4.5					
33					
255					
	1,009,910	1,000,974	77,532,513	95,464,274	
	$=\sum n_{ui}$	$=\sum \mathbf{n_{ti}}$	$=\sum \mathbf{n}_{\mathbf{u}\mathbf{i}}\mathbf{x}_{\mathbf{i}}$	$=\sum n_{ti}x_{i}$	

- Average gray scale of untreated wood = $\sum \underline{n_{ui}x_i} = \frac{77.532.513}{1,009,910} = 76.77$
- Average gray scale of treated wood $= \sum \underline{\mathbf{n}_{ti} \mathbf{x}_i} = \underline{95.464.274} = 95.37$ $\sum \mathbf{n}_{ti} = 1,000,974$

% change in average gray scale = <u>95.37 - 76.77</u> x 100 76.77 = 24.23 %

Figure C Example of Gray Scale of untreated and treated wood

APPENDIX D

Appendix D

Preliminary Experiments

Table D1 Effect of temperature on % change in gray scale

	Temperature				
time (hour)	32 degree C	45 degree C	60 degree C		
0	0	0	0		
0.5	5.31	5.41	8.64		
1	6.10	7.54	12.98		
2	7.11	12.75	18.47		
4	10.17	14.96	22.13		

Figure D1 Effect of temperature on % change in gray scale

	% change in gray scale			
time (hour)	pH 4.5	pH 6.5	pH 9.0	
1	10.35	12.98	9.02	
2	14.61	18.47	13.26	

Table D2 Effect of pH on % change in gray scale

Figure D2 Effect of pH on % change in gray scale

APPENDIX E

Appendix E

Enzymatic Assay of Laccase

REAGENTS:

- A. 100 mM Potassium Phosphate Buffer, pH 6.5 at 30°C
 (Prepare 100 ml in deionized water using Potassium Phosphate, Monobasic, Anhydrous, and Sigma Prod. No. P5379. Adjust to pH 6.5 at 30°C with 1 M KOH.)
- B. 0.216 mM Syringaldazine Solution
 (Prepare 3 ml in absolute methanol using Syringaldazine, Sigma Prod. No. S-7896.)
- C. Laccase Enzyme Solution (Immediately before use, prepare a solution containing25 50 units/ml of Laccase in cold deionized water.)

PROCEDURE:

1. Pipette (in millilitres) the following reagents into suitable cuvettes:

	Test	Blank
Deionized Water		0.50
Reagent A (Buffer)	2.20	2.20
Reagent C (Enzyme Solution)	0.50	

- 2. Equilibrate to 30°C. Monitor the A_{530nm} until constant, using a suitably thermos tatted spectrophotometer. Then add:
- Reagent B (Syringaldazine) 0.30 0.30

 Immediately mix by inversion and record the increase inA530nm for approximately 10 minutes. Obtain the530nm/minute using the maximum linear rate for both theTest and Blank.

CALCULATIONS:

Units/ml enzyme = $(\Delta A_{530nm} / \min \text{Test} - \Delta A_{530nm} / \min \text{Blank})(df)$ (0.001)(0.5)

df = Dilution factor

0.001 = the change in A530nm/minute per unit of Laccase at pH 6.5 at 30°C in a 3 ml reaction mix

0.5 = Volume (in millilitre) of enzyme used

Units/mg solid = <u>units/ml enzyme</u> mg solid/ml enzyme

UNIT DEFINITION:

One unit will produce a ΔA_{530nm} of 0.001 per minute at pH 6.5 at 30°C in a 3 ml reaction volume using syringaldazineas substrate.

FINAL ASSAY CONCENTRATION:

In a 3 ml reaction mix, the final concentrations are 73 mM potassium phosphate, 0.02 mM syringaldazine, 10% methanol, and 12.5 - 25.0 units laccase.

APPENDIX F

Appendix F

Enzymatic Assay of Xylanase

- 1. Weigh 20 mg of xylanase use 4-digit balance.
- 2. Add 100 ml of 0.02 M acetate buffer pH 4.5
- 3. Take 20 μ l of this solution.
- 4. Add 20 ml of 0.02 M acetate buffer pH 4.5
- 5. Add xylan 0.1000 g.
- 6. Incubate at 30°c for 10 minutes.
- 7. Take 1 ml of this solution.
- 8. Follow Nelson-Somogyi method, detail in appendix D.

APPENDIX G

Appendix G

Experimental Data

Table G1 H₂O₂ experiment

H ₂ O ₂	Time	% change in	Samp	le weight (gra	m)
	(hour)	gray scale	untreated	treated	difference
2%	0.5	4.7	0.3284	0.3180	0.0104
		4.51	0.3294	0.3180	0.0114
		4.89	0.3097	0.3018	0.0079
	1	6.58	0.3264	0.3124	0.0140
		6.2	0.3175	0.3087	0.0088
		6.49	0.3232	0.3115	0.0117
	2	8.87	0.2962	0.2839	0.0123
		9.18	0.3146	0.2989	0.0157
		9.26	0.3197	0.3046	0.0151
10%	0.5	7.96	0.3032	0.2925	0.0107
		8.98	0.2956	0.2848	0.0108
		8.98	0.2927	0.2805	0.0122
	1	12.86	0.3130	0.3005	0.0125
		13.44	0.2836	0.2730	0.0106
		12.64	0.2864	0.2755	0.0109
	2	18.2	0 3247	0 3065	0.0182
	-	18 72	0.3019	0 2854	0.0165
		18.48	0.3151	0.2989	0.0162

Xylanase	Time	% change in	Sample weight (gram)		
(u/ml)	(hour)	gray scale			
()	(untreated	treated	difference
0.25	0.5	-1.42	0.2425	0.2385	0.0040
		-1.19	0.2736	0.2681	0.0055
		-0.49	0.2374	0.2329	0.0045
	1	-1.71	0.2765	0.2728	0.0037
		-0.41	0.2366	0.2319	0.0047
		0.65	0.2672	0.2608	0.0064
	2	-0.80	0.2968	0.2914	0.0054
		-0.84	0.2412	0.2359	0.0053
		-2.36	0.2750	0.2683	0.0067
0.5	0.5	-0.42	0.3001	0.2949	0.0052
		-1.26	0.3095	0.3040	0.0055
		-1.25	0.2453	0.2410	0.0043
	1	-1.79	0.2619	0.2568	0.0051
		-1.70	0.2493	0.2450	0.0043
		-0.25	0,2724	0.2680	0.0044
	2	-1.93	0.2496	0.2445	0.0051
		-1.88	0.2597	0.2499	0.0098
		-2.39	0.3062	0.2987	0.0075
1	0.5	-1.53	0.2704	0.2647	0.0057
		-1.60	0.2454	0.2408	0.0046
		-0.22	0.2633	0.2581	0.0052
	1	-1.05	0.2458	0.2412	0.0046
		-1.72	0.2589	0.2530	0.0059
		-0.70	0.2717	0,2657	0.0060
	2	-2.45	0.2997	0.2907	0.0090
		-1.92	0.2728	0.2654	0.0074
		-2.14	0.2401	0,2367	0.0034

Table G2 Xylanase experiment

laccase	time	% change in	Sample weight (gram)		
(u/ml)		gray scale			
()			untreated	treated	difference
0.05	0.5	-1.88	0.2984	0.2930	0.0054
		-1.97	0.3018	0.2962	0.0056
		-0.52	0.3112	0.3059	0.0053
	1	-1.99	0.3045	0.2985	0.0060
		-2.32	0.3046	0.2985	0.0061
		-2.19	0.2890	0.2829	0.0061
	2	-2.48	0.3055	0.2968	0.0087
		-2.27	0.2573	0.2502	0.0071
		-2.56	0.2989	0.2903	0.0086
0.25	0.5	-2.64	0.2444	0.2394	0.0050
		-0.56	0.2860	0.2800	0.0060
		-1.42	0.3121	0.3057	0.0064
	1	-3.19	0.2978	0.2919	0.0059
		-1.12	0.2574	0.2519	0.0055
		-1.07	0.3151	0.3073	0.0078
	2	-2.92	0.3151	0.3073	0.0078
		-2.16	0.3151	0.3073	0.0078
		-2.50	0.2953	0.2878	0.0075
1	0.5	-1.29	0.2514	0.2465	0.0049
		-1.70	0.2965	0.2908	0.0057
		0.24	0.2533	0.2483	0.0050
	1	-0.85	0.2569	0.2518	0.0051
		-2.12	0.3103	0.3035	0.0068
		-1.03	0.2965	0.2909	0.0056
	2	-2.86	0.3016	0.2950	0.0066
		-2.42	0.2737	0.2667	0.0070
		-1.94	0.3052	0.2964	0.0088

Table G3 Laccase experiment

H ₂ O ₂	Xylanase	time	% change	e Sample weight (gram)		gram)
	(u/ml)		in gray			
			scale	untreated	treated	difference
2%	0.25	0.5	3.5	0.3042	0.2963	0.0079
			4.07	0.3249	0.3168	0.0081
			3.73	0.2817	0.2724	0.0093
	0.25	1	7.03	0.3137	0.3018	0.0119
			6.07	0.3269	0.3172	0.0097
			7.40	0.3223	0.3101	0.0122
	0.25	2	7.39	0.3092	0.2985	0.0107
			8.25	0.3122	0.2974	0.0148
			8.42	0.3188	0.3068	0.0120
	0.5	0.5	4.52	0.3221	0.3127	0.0094
			4.10	0.3121	0.306	0.0061
			3.81	0.2858	0.2773	0.0085
	0.5	1	6.88	0.3160	0.3049	0.0111
			6.99	0.3374	0.3289	0.0085
			7.46	0.3047	0.2972	0.0075
	0.5	2	8.46	0.3095	0.2991	0.0104
			8.28	0.3330	0.3143	0.0187
			8.02	0.2846	0.2713	0.0133
	1	0.5	3.51	0.3110	0.3008	0.0102
			3.95	0.3208	0.3122	0.0086
			5.46	0.3028	0.2937	0.0091
	1	1	6.79	0.2873	0.2778	0.0095
			8.49	0.3123	0.3008	0.0115
			7.27	0.3125	0.3039	0.0086
	1	2	8.54	0.3298	0.3129	0.0169
			7.92	0.3169	0.3050	0.0119
			9.55	0.3055	0.2902	0.0153
10%	0.25	0.5	9.05	0.2969	0.2856	0.0113
			9.96	0.3082	0.2968	0.0114
			9.55	0.3000	0.2895	0.0105
	0.25	1	13 28	0 3311	0 3185	0.0126
	0.20	1	13.17	0.3108	0.3024	0.0084
			13.29	0.3298	0.3203	0.0095

Table G4 H₂O₂, xylanase and time experiment

H ₂ O ₂	Xylanase	time	% change	Samp	le weight (gram)
	(u/ml)		scale	untreated	treated	difference
	0.25	2	17 47	0 2041	0 2705	0.0146
	0.23	2	17.47	0.2941	0.2795	0.0140
			10.74	0.3189	0.3019	0.0170
			17.70	0.3133	0.2901	0.0172
	0.5	0.5	9.06	0.3070	0.2961	0.0109
			10.09	0.3245	0.3118	0.0127
			9.96	0.3305	0.3284	0.0021
	0.5	1	13.76	0.3140	0.2990	0.0150
			11.66	0.2863	0.2765	0.0098
			13.00	0.2835	0.2739	0.0096
	0.5	2	17.13	0.3098	0.2977	0.0121
			17.71	0.3081	0.2928	0.0153
			16.75	0.3004	0.2845	0.0159
	1	0.5	10.76	0.2814	0.2713	0.0101
			9.03	0.3127	0.3044	0.0083
			12.39	0.3326	0.3227	0.0099
	1	1	14.68	0.2952	0.2830	0.0122
	_	_	14.39	0.2876	0.2764	0.0112
			14.06	0.2725	0.2628	0.0097
	1	2	16.51	0.3912	0.2738	0.1174
	-	_	18.17	0.3079	0.2921	0.0158
			18.06	0.3092	0.2980	0.0112

H ₂ O ₂	Laccase	time	% change	Samp	le weight (gram)
	(u/ml)		in gray			
			scale	untreated	treated	difference
2%	0.05	0.5	4.57	0.2763	0.2659	0.0104
			5.06	0.2627	0.2589	0.0038
			4.82	0.2959	0.2866	0.0093
	0.05	1	6.36	0.2414	0.2396	0.0018
			6.08	0.3333	0.3198	0.0135
			6.30	0.2616	0.2522	0.0094
	0.05	2	7.72	0.2785	0.2730	0.0055
			8.28	0.2870	0.2755	0.0115
			8.10	0.2952	0.2867	0.0085
	0.25	0.5	4.34	0.2632	0.2569	0.0063
			4.48	0.2658	0.2545	0.0113
			4.48	0.2684	0.2546	0.0138
	0.25	1	5.75	0.2473	0.2356	0.0117
			5.63	0.2663	0.2556	0.0107
			5.72	0.2971	0.2885	0.0086
	0.25	2	8.07	0.2663	0.2556	0.0107
			8.30	0.2904	0.2796	0.0108
			8.21	0.2315	0.2205	0.0110
	1	0.5	4.75	0.2581	0.2435	0.0146
			4.78	0.3204	0.3085	0.0119
			4.84	0.3250	0.3159	0.0091
	1	1	5.92	0.2452	0.2339	0.0113
			6.23	0.2579	0.2489	0.0090
			6.02	0.2889	0.2796	0.0093
	1	2	8.18	0.2845	0.2726	0.0119
			8.94	0.2935	0.2821	0.0114
			8.62	0.2725	0.2606	0.0119
10%	0.05	0.5	8 69	0.2917	0.2870	0.0047
1 - / -			10.47	0.3080	0.3035	0.0045
			8.66	0.2275	0.2133	0.0142
	0.05	1	11 42	0 2546	0 2478	0 0068
	0.05	1	11.69	0.2911	0.2846	0.0065
			11.47	0.2472	0.2369	0.0103
	0.05	2	23 03	0 1007	0 1018	0 0070
	0.05	2	15 32	0.1337	0.1918	0 0084

Table G5 H_2O_2 , laccase and time experiment

H ₂ O ₂	Laccase	time	% change	Samp	le weight (gram)
	(u/ml)		in gray scale	untreated	treated	difference
10%	0.05	2	15.79	0.2369	0.2247	0.0122
	0.25	0.5	7.52	0.2577	0.2524	0.0053
			7.32	0.2760	0.2715	0.0045
			1.38	0.2362	0.2208	0.0154
	0.25	1	9.73	0.2355	0.2281	0.0074
			11.8	0.2893	0.2835	0.0058
			11.57	0.2616	0.2523	0.0093
	0.25	2	19.31	0.3192	0.3098	0.0094
			15.40	0.3037	0.2937	0.0100
			16.35	0.3279	0.3145	0.0134
	1	0.5	10.91	0.3170	0.3123	0.0047
			11.98	0.2103	0.2062	0.0041
			7.64	0.2896	0.2828	0.0068
	1	1	11.90	0.2929	0.2870	0.0059
	_	_	13.04	0.2955	0.2886	0.0069
			11.81	0.2484	0.2369	0.0115
	1	2	16.61	0 3023	0 2929	0 0094
	Ĩ	4	17.69	0.3179	0.3088	0.0091
			17.65	0.2458	0.2358	0.0100

Xylanase	Laccase	time	% change	Samp	le weight (gram)
(u/ml)	(u/ml)		in gray	untrooted		
			scale	untreateu	treated	difference
0.25	0.05	0.5	-1.20	0.2399	0.2346	0.0053
			-0.53	0.2551	0.2524	0.0027
			-1.00	0.2585	0.2556	0.0029
	0.05	1	-1.23	0.2622	0.2601	0.0021
			-1.06	0.2550	0.2517	0.0033
			-0.56	0.2512	0.2475	0.0037
	0.05	2	-2.59	0.2288	0.2274	0.0014
			-2.08	0.2625	0.2611	0.0014
			-0.93	0.2574	0.2555	0.0019
	0.25	0.5	-0.64	0.2634	0.2612	0.0022
			-1.42	0.2445	0.2423	0.0022
			-0.75	0.2910	0.2874	0.0036
	0.25	1	-1.96	0.2462	0.2434	0.0028
			-2,08	0.2494	0.2434	0.0060
			-1.74	0.2890	0.2723	0.0167
	0.25	2	-2.85	0.2505	0.2427	0.0078
			-2.31	0.2640	0.2619	0.0021
			-2.40	0.2488	0.2464	0.0024
	1	0.5	-1.42	0.2780	0.2739	0.0041
			-1.48	0.2480	0.2442	0.0038
			-0.55	0.2759	0.2701	0,0058
	1	1	-1.63	0.2457	0.2390	0.0067
			-0.93	0.2932	0.2898	0.0034
			-1.17	0.2774	0.2745	0.0029
	1	2	-2.75	0.2449	0.2372	0.0077
			-2.61	0.2834	0.2754	0.0080
			-1.75	0.2774	0.2700	0.0074
0.5	0.05	0.5	-1.28	0.2474	0.2440	0.0034
			-1.10	0.2422	0.2361	0.0061
			-0.98	0.2775	0.2738	0.0037
	0.05	1	-1 46	0 2834	0.2735	0.0099
	0.00		-1 78	0.2457	0.2366	0.0091
			-0.74	0.2440	0.2366	0.0074
	0.05	2	. 1 31	0 2660	0 2562	0.0107
	0.05	4	-2.52	0.2009	0.2502	0.0087

Table G6 xylanase, laccase and time experiment

Xylanase	Laccase	time	% change	Samp	le weight (gram)
(u/ml)	(u/ml)		in gray			
			scale	untreated	treated	difference
0.5	0.05	2	-2.36	0.2750	0.2683	0.0067
	0.25	0.5	-0.99	0.2767	0.2739	0.0028
			-1.14	0.2419	0.2355	0.0064
			-1.67	0.2836	0.2684	0.0152
	0.25	1	-2.45	0.2997	0.2907	0.0090
			-3.03	0.2506	0.2476	0.0030
			-1.53	0.2736	0.2659	0.0077
	0.25	2	-2.58	0.2529	0.2444	0.0085
			-2.92	0.3043	0.2950	0.0093
			-2.45	0.3009	0.2982	0.0027
	1	0.5	-1.05	0.2444	0.2398	0.0046
			-0.93	0.2922	0.2854	0.0068
			-0.84	0.2412	0.2359	0.0053
	1	1	-1.39	0.2560	0.2511	0.0049
			-1.93	0.2496	0.2445	0.0051
			-2.06	0.2428	0.2381	0.0047
	1	2	-2.13	0.2674	0.2617	0.0057
			-2.58	0.2637	0.2581	0.0056
			-2.46	0.2793	0.2695	0.0098
1	0.05	0.5	-1.23	0.2690	0.2641	0.0049
			-1.18	0.2657	0.2596	0.0061
			-0.49	0.2374	0.2329	0.0045
	0.05	1	-1.91	0.2705	0.2641	0.0064
			-2.34	0.2520	0.2481	0.0039
			-2.12	0.3103	0.3035	0.0068
	0.05	2	-2.85	0.2619	0.2584	0.0035
			-2.34	0.2520	0.2481	0.0039
			-2.64	0.2444	0.2394	0.0050
	0.25	0.5	-0.85	0.2569	0.2518	0.0051
			-0.52	0.3112	0.3059	0.0053
			-1.07	0.3151	0.3073	0.0078
	0.25	1	-1.85	0.2997	0.2966	0.0031
			-2.10	0.2903	0.2821	0.0082
			-1.94	0.3052	0.2964	0.0088
	0.25	2	-2.67	0.2939	0.2857	0.0082

Xylanase	ase Laccase time		% change	Sample weight (gram)			
(u/ml)	(u/ml)		scale	untreated	treated	difference	
			-2.86	0.3193	0.3099	0.0094	
			-2.55	0.3047	0.2953	0.0094	
1	1	0.5	-0.68	0.2509	0.2464	0.0045	
			-1.42	0.3121	0.3057	0.0064	
			-1.03	0.2965	0.2909	0.0056	
	1	1	-2.32	0.3046	0.2985	0.0061	
			-2.15	0.3150	0.3039	0.0111	
			-1.99	0.3045	0.2985	0.0060	
	1	2	-2.41	0.2462	0.2398	0.0064	
			-2.86	0.3016	0.2950	0.0066	
			-2.98	0.2485	0.2336	0.0149	

APPENDIX H

Appendix H

ANOVA Results

Table H 1

Test of Between-Subjects Effects

Dependent Variable: % reduce in gray scale

source	Type III Sum of square	df	Mean square	F	Sig.
Corrected model	383.236 ^a	5	76,647	543.191	.000
Intercept	1798.800	1	1798.800	12747.905	.000
H_2O_2	203.885	1	203.885	1444.914	.000
time	159.851	2	79.926	566.424	.000
H ₂ O ₂ * time	19.500	2	9.750	69.096	.000
Error	1.693	12	.141		
Total	2183.730	18			
Corrected Total	384.929	17			
a D Savarad - 0	OC (Adimented D and	1	004)		

a. R Squared = .996 (Adjusted R squared = .994)

Table H 2

Test of Between-Subjects Effects

Dependent Variable: % reduce in gray scale

F Sig.	Mean square	df	Type III Sum of square	source
.703 .166	.837	8	6.700 ^a	Corrected model
1.069 .000	44.776	1	44.776	Intercept
.558 .238	.776	2	1.532	xylanase
.471 .027	2.198	2	4.396	time
.392 .811	.193	4	.771	xylanase * time
	.492	18	8.850	Error
		27	60.326	Total
		26	15.550	Corrected Total
.000 .558 .238 .471 .027 .392 .811	44.776 .776 2.198 .193 .492	1 2 4 18 27 26	44.776 1.532 4.396 .771 8.850 60.326 15.550 21 (A directed Press	xylanase time xylanase * time Error Total Corrected Total

a. R Squared = .431 (Adjusted R squared = .178)

Table H 3

Test of Between-Subjects Effects

source	Type III Sum of square	df	Mean square	F	Sig.
Corrected model	7.811 ^a	8	.976	1.709	.164
Intercept	91.595	1	91.595	160.366	.000
laccase	1.152	2	.576	1.009	.384
time	6.055	2	3.028	5.301	.015
laccase * time	.603	4	.151	.264	.897
Error	10.281	18	.571		
Total	109.687	27			
Corrected Total	18.092	26			
a D Savarad - 4	22 (Adimented Dame		170)		

Dependent Variable: % reduce in gray scale

a. R Squared = .432 (Adjusted R squared = .179)

Table H 4

Test of Between-Subjects Effects

Dependent Variable: % reduce in gray scale

source	Type III Sum of square	df	Mean square	F	Sig.
Corrected model	1013.475 ^a	17	59.616	109.024	.000
Intercept	5475.462	1	5475.462	10013.375	.000
xylanase	5.723	2	2.861	5.233	.010
H_2O_2	676.423	1	676.423	1237.024	.000
time	301.947	2	150.974	276.096	.000
xylanase * H ₂ O ₂	.935	2	.467	.855	.434
xylanase* time	.696	4	.174	.318	.864
H_2O_2 * time	26.860	2	13.430	24.560	.000
xylanase * H ₂ O ₂ * time	.892	4	.223	.408	.802
Error	19.685	36	.547		
Total	6508.622	54			
Corrected Total	1033.161	53			

a. R Squared = .981 (Adjusted R squared = .972)

Table H 5

Test of Between-Subjects Effects

Dependent Variable: % reduce in gray scale

source	Type III Sum of square	df	Mean square	F	Sig.
Corrected model	838.196 ^a	17	49.306	494.531	.000
Intercept	4539.700	1	4539.700	45532.758	.000
laccase	1.815	2	.907	9.101	.001
H_2O_2	439.071	1	439.071	4403.841	.000
time	335.394	2	167.697	1681.985	.000
laccase * H ₂ O ₂	.073	2	,036	.365	.697
laccase * time	4.187	4	1.047	10.499	.000
H_2O_2 * time	55.675	2	27.837	279.206	.000
laccase * H ₂ O ₂ * time	1.981	4	.495	4.968	.003
Error	3.589	36	.100		
Total	5381.485	54			
Corrected Total	841.785	53			

a. R Squared = .981 (Adjusted R squared = .972)

TableH6

Test of Between-Subjects Effects

Dependent Variable: % reduce in gray scale

source	Туре ПІ Sum of square	df	Mean square	F	Sig.
Corrected model	36.241 ^a	26	1.394	9.721	.000
Intercept	247.783	1	247.783	1728.046	.000
xylanase	1.874	2	.937	6.536	.003
laccase	1.333	2	.666	4.647	.014
time	28.663	2	14.331	99.948	.000
xylanase * laccase	1.282	4	.320	2.235	.077
xylanase * time	1.397	4	.349	2.435	.058
laccase * time	.846	4	.211	1.474	.223
xylanase* laccase * time	.847	8	.106	.739	.657
Error	7.743	54	.143		
Total	291.767	81			
Corrected Total	43.984	80			

a. R Squared = .824 (Adjusted R squared = .739)

Source of variation	Sum of Squares	df	Mean Square	F	Р
Between group	3743.415	4	935.854	3.921	.006
Within group	19810.519	83	238.681		
Total	23553.933	87			

Table H7 ANOVA results on effect of xylanase concentration on xylose produced xylanase single component experiment (room temperature)

 Table H8 ANOVA results on effect of xylanase concentration on xylose produced

 xylanase single component experiment (room temperature)

Source of variation	Sum of Squares	df	Mean Square	F	Р
Between group	17876.044	5	3575.20 9	51.633	.000
Within group	5677.889	82	69.243		
Total	23553.933	87			

TableH9

Tests of Between-Subjects Effects

Dependent Variable: %reduce_in_grey_scale

	Type III Sum				
Source	of Squares	df	Mean Square	F	Sig.
Corrected Model	2910.619 ^a	27	107.801	142.198	.000
Intercept	20925.228	1	20925.228	27602.113	.000
H2O2	1202.594	6	200.432	264.387	.000
time	1626.301	3	542.100	715.076	.000
H2O2 * time	81.724	18	4.540	5.989	.000
Error	42.454	56	.758		
Total	23878.301	84			
Corrected Total	2953.073	83			

a. R Squared = .986 (Adjusted R Squared = .979)

TableH10

Multiple Comparisons Dependent Variable: %change in gray scale LSD

	Mean			· · · ·	95% Confidence Inter		
		Difference		-	Lower Bound Upper		
(I) H2O2	(J) H2O2	(I-J)	Std. Error	Sig.	Bound		
2.00	5.00	-6.7783(*)	.35546	.000	-7.4904	-6.0663	
	8.00	-/.9558(*)	.355+6	.000	-8.66/9	-/.2+38	
	10.00	-7.6958(*)	.35546	.000	-8.4079	-6.9838	
	15.00	-9.2008(*)	.35546	.000	-9.9129	-8,4888	
	20.00	-13.0400(*)	.35546	.000	-13.7521	-12.3279	
	30.00	-10.7975(*)	.35546	.000	-11.5096	-10.0854	
5.00	2.00	6.7783(*)	.35546	.000	6.0663	7.4904	
	8.00	-1.1775(*)	.35546	.002	-1.8896	4654	
	10.00	9175(*)	.35546	.012	-1.6296	- 2054	
	15.00	-2.4225(*)	.35546	.000	-3.1346	-1.7104	
	20.00	-6.2617(*)	.35546	.000	-6.9737	-5.5496	
	30.00	-4.0192(*)	.35546	.000	-4.7312	-3.3071	
8.00	2.00	7.9558(*)	.35546	.000	7,2438	8.6679	
	5.00	1.1775(*)	.35546	.002	.4654	1.8896	
	10.00	.2600	.35546	.468	4521	.9721	
	15.00	-1.2450(*)	.35546	.001	-1.9571	5329	
	20.00	-5.0842(*)	.35546	.000	-5.7962	-4.3721	
	30.00	-2.8417(*)	.35546	.000	-3.5537	-2.1296	
10.00	2.00	7.6958(*)	.35546	.000	6.9838	8.4079	
	5.00	.9175(*)	.35546	.012	.2054	1.6296	
	8.00	2600	.35546	.468	9721	.4521	
	15.00	-1.5050(*)	35546	.000	-2.2171	7929	
	20.00	-5.3442(*)	.35546	.000	-6.0562	-4.6321	
	30.00	-3.1017(*)	.35546	.000	-3.8137	-2.3896	
15.00	2.00	9.2008(*)	.35546	.000	8.4888	9.9129	
	5.00	2.4225(*)	.35546	.000	1.7104	3.1346	
	8.00	1.2450(*)	.35546	.001	.5329	1.9571	
	10.00	1.5050(*)	.35546	.000	.7929	2.2171	
	20.00	-3.8392(*)	35546	.000	-4.5512	-3,1271	
	30.00	-1.5967(*)	35546	.000	-2.3087	8846	
20.00	2.00	13.0400(*)	35546	000	12.3279	13 7521	
20.00	5.00	6.2617(*)	35546	.000	5 5496	6 9737	
	8.00	5.0842(*)	35546	.000	+ 3721	5 7962	
	10.00	5.3442(*)	.35546	.000	4.6321	6.0562	
	15.00	3.8392(*)	35546	.000	3,1271	4.5512	
	30.00	2 2425(*)	35546	000	1 5304	2.9546	
30.00	2.00	10 7975(*)	35516	000	10 0854	11 5096	
	5.00	10.7570()	35516	000	3 3071	17312	
	8.00	7.0192(1)	35516	000	2 1296	3 5537	
	10.00	2.0+1/(*)	25516	000.	2.1290	3 8127	
	15.00	15067(*)	35516	000.	8816	2 3087	
	20.00	-2 2125(*)	35546	000	-2 9546	-1.5304	

Based on observed means. * The mean difference is significant at the .05 level.

APPENDIX I

Appendix I

Determination of Xylose Content

Chemicals

- 1. Alkaline copper reagent from Merck, Inc.
- 2. Arsenomolybdate reagent from Merck, Inc.

Apparatus

UV-2450 UV-visible spectrophotometer from Shimadzu

Nelson's Test for Reducing Sugar

- 1. Measure 1 ml. of sample into test tube
- 2. Add 1.0 ml. of 0.02 M acetate buffer to test tube
- 3. Add 1.0 ml. of alkaline copper reagent
- 4. Mix well then boil for 10 min.
- 5. Cool the sample down by put it in a bowl of water
- 6. Add 1.0 ml. of Arsenomolybdate
- 7. Mix well
- 8. Using spectrophotometer, measure absorbance at 660 nm.
- 9. Using standard curve, presented in Figure I1, calculate the corresponding xylose concentration.

xylose concentration (µg/ml)	Absorbance	
0	0	
5	0.182	
10	0.388	
15	0.524	
20	0.743	
25	0.961	

Table I1 Data for determination of standard curve

Figure I1 Standard curve for determination of xylose concentration

VITAE

Miss Bhavadee Iamtasna was born on June 25, 1958 in Bangkok, Thailand. She graduated from high school in 1976 from Triam Udom Suksa School in Bangkok. She received a Bachelor of Science degree in Chemical Engineering from the Faculty of Science, Chulalongkorn University, Bangkok, Thailand in 1980. She received a Master of Science degree in Chemical Engineering from the Department of Chemical Engineering, College of Engineering, University of South Carolina, USA in 1986.

