ผลกระทบของสารช่วยกระจายตัว สารเชื่อมประสาน และชนิคของแม่พิมพ์ที่มีต่อคุณสมบัติเชิงแสง ของอะลูมินาเซรามิกที่เตรียมด้วยวิธีการหล่อแบบ

นาย สักกภาส อารีย์รักษากุล

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2548 ISBN 974-17-6415-4 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

I 25195621

EFFECTS OF DEFLOCCULANTS, BINDERS AND MOLD TYPES ON OPTICAL PROPERTY OF ALUMINA CERAMIC PREPARED BY SLIP CASTING

Mr. Sakkapas Areeraksakul

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Chemical Engineering Department of Chemical Engineering Faculty of Engineering Chulalongkorn University Academic Year 2005 ISBN 974-17-6415-4

481921

Thesis Title	EFFECTS OF DEFLOCCULANTS, BINDERS AND	
	MOLD TYPES ON	OPTICAL PROPERTY OF
	ALUMNA CERAMIC PI	REPARED BY SLIP CASTING
Ву	Mr. Sakkapas Areeraksak	ul
Field of study	Chemical Engineering	
Thesis Advisor	Associate Professor Tawa	atchai Charinpanitkul, D. Eng.
Thesis Co-advisor	Professor Shigetaka Wada	a, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

> - Lavaunii Dean of the Faculty of Engineering (Professor Direk Lavansiri, Ph.D.)

THESIS COMMITTEE

Whort Vanthapanichekon . Chairman

(Professor Wiwut Tanthapanichakoon, Ph.D.)

V. Champomillul Thesis Advisor

(Associate Professor Tawatchai Charinpanitkul, D. Eng.)

S. Wada Thesis Co-advisor

(Professor Shigetaka Wada, Ph.D.)

Var Brinnen Member

(Assistant Professor Varong Pavarajarn, Ph.D.)

สักกภาส อารีย์รักษากุล: ผลกระทบของสารช่วยกระจายตัว สารเชื่อมประสาน และชนิดของ แม่พิมพ์ที่มีต่ออะลูมินาเซรามิกเชิงแสงที่เตรียมด้วยวิธีการหล่อแบบ (EFFECTS OF DEFLOCCULANTS, BINDERS AND MOLD TYPES ON OPTICAL PROPERTY OF ALUMINA CERAMIC PREPARED BY SLIP CASTING). อ. ที่ปรึกษา : รศ. คร. ธวัช ชัย ชรินพาณิชกุล, อ. ที่ปรึกษาร่วม : ศาสตราภิชาน คร. ชิเกตากะ วาคะ จำนวนหน้า 97 หน้า. ISBN 974-17-6415-4.

กระบวนการขึ้นรูปเซรามิกอะลูมินาดิบให้มีความหนาแน่นสูงและมีสิ่งเจือปนในปริมาณน้อยนั้น เป็นกระบวนการหนึ่งที่สำคัญที่สุดในการผลิตเซรามิกอะลูมินาใส เช่นเดียวกันกับ กระบวนการใช้อนุภาค ขนาดซับไมครอนเป็นวัตถุดิบ และกระบวนการเผาผนึกที่เหมาะสม เซรามิกอะลูมินาดิบที่มีความเป็นรูพรุน ต่ำและสิ่งเจือปนน้อยจะนำไปสู่เซรามิกของอะลูมินาที่มีสมบัติเชิงแสงที่ดี ด้วยข้อดีของกระบวนการขึ้นรูป โดยวิธีการหล่อแบบ นอกจากจะได้ชิ้นงานที่มีความเป็นเนื้อเดียวกันแล้ว ยังจะเสียค่าใช้ง่ายในการ ดำเนินการต่ำกว่าเมื่อเทียบกับวิธีอื่นๆ จากการทดลองพบว่า เซรามิกอะลูมินาดิบที่มีความหนาแน่นสัมพันธ์ สูงกว่า 60% สามารถเตรียมได้จาก สารแขวนลอยอะลูมินาที่มีความเข้มข้น 75% ผสมกับสารช่วยกระจายตัว 1.25% โดยน้ำหนัก นอกจากนี้การเติมสารเชื่อมประสานในปริมาณ 0.05% จะช่วยเพิ่มความแข็งแรงของเซรา มิกอะลูมินาดิบ โดยไม่ก่อกระทบในทางลบต่อความหนาแน่นของเซรามิกดิบ

แต่อย่างไรก็ตาม ข้อเสียของการขึ้นรูปแบบนี้กือสิ่งปนเปื้อนจากแม่พิมพ์ยิปชัม ซึ่งจะสามารถจะ กำจัดได้ด้วยการใช้กรดบำบัดก่อนการเผาผนึก จากการทดลองพบว่าการบำบัดด้วยกรดเกลือก่อนเผาผนึก นอกจากจะช่วยกำจัดสิ่งปนเปื้อนจากแม่พิมพ์ยิปชัมแล้ว ยังจะทำให้ได้ชิ้นงานเผาผนึกมีความหนาแน่นสูงที่ อุณหภูมิต่ำกว่าการเผาผนึกปกติ ยิ่งกว่านั้นชิ้นงานที่ได้จะมีความสม่ำเสมอของขนาดเกรนหลังการเผา อันจะ เป็นประโยชน์ต่อคุณสมบัติเชิงแสงของชิ้นงาน

ภาควิชา	วิศวกรรมเคมี	ลายมือชื่อนิสิต ด้ากกาส อารีมีการกาล
สาขาวิชา	วิศวกรรมเคมี	ถายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา <u></u>	2548	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม <u>8 เVaela</u>

4670550021: MAJOR CHEMICAL ENGINEERING KEY WORD: TRANSPARENT ALUMINA/ DEFLOCCULANT/ BINDER

SAKKAPAS AREERAKSAKUL : THESIS TITLE. (EFFECTS OF DEFLOCCULANTS, BINDERS AND MOLD TYPES ON OPTICAL PROPERTY OF ALUMINA CERAMIC PREPARED BY SLIP CASTING) THESIS ADVISOR: ASSOC. PROF. TAWATCHAI CHARINPANITKUL, D.Eng., THESIS COADVISOR : PROF. SHIGETAKA WADA, Ph.D., 97 pp. ISBN 974-17-6415-4

Fabrication of alumina green body with high density and low impurity is one of the most important processes to produce transparent alumina ceramic. Using of submicron particles as raw materials and appropriated sintering processes will give rise to such transparent alumina specimens. Once green body of alumina with low porosity and low impurities could be prepared, good optical properties would be obtained. With advantages of slip casting technique, it provides not only homogeneous specimen but also lower operating cost compared with other technique. From experimental results, alumina green body with density higher than 60% can be prepared from alumina suspension with solid content of 75% and deflocculant concentration of 0.05%. In addition, adding binder of 0.05% could increase physical strength of the prepared green body without negative effect on density of the specimens.

However, disadvantage of this technique is contamination of gypsum mold, which could be eliminated by using acid treatment before sintering. It is found that acid treatment was not only efficiently eliminated gypsum contamination, but also provided specimens with high density at lower sintering temperature. The prepared specimen exhibited the uniformity grain size after sintering, which is beneficial to optical property of the specimens.

ACKNOWLEDGEMENT

I am very thankful to my advisor, Assoc. Prof. Tawatchai Charinpanitkul, Department of Chemical Engineering, Chulalongkorn University, for his introducing me to this interesting project, and for his helpful and stimulated suggestions, deep discussion and encouraging guidance throughout the course of this work. I am also very thankful to my co-advisor, Chair Professor Shigetaka Wada, Department of Material Science, Chulalongkorn University, for his useful guidance, hospitality, educational suggestion, and his Ceramic Laboratory facilities. Furthermore, I am also thankful to Professor Dr. Wiwut Tanthapanichakoon, Asst. Dr. Varong Pavarajarn and Miss Nattaporn Tonanon for their stimulative comments and participation as my thesis committee

Furthermore, I would like to acknowledge the National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency. The present work is part of "The Development of color doped Al₂O₃ nanocrystalline precious stone" headed by Assoc. Prof. Tawatchai Charinpanitkul with the financial support from NANOTEC as well as the research grant from Thailand Research Fund (TFT) of Prof. Wiwut Tanthapanichakoon.

Moreover, I would like to thank Mr. Nirut Wangmooklang and Mr. Soonthorn Tansungnoen and their ceramic's lab member for their kind and helpful suggestion.

In addition, I would like to very thankful Mr. Rapeepong Pinyopotsanard for his hospitality to measure the green body density by Archemedes' method in mercury.

I am also thankful to all members of the Particle Technology ad Material Processing Laboratory for their help, kindness and warm collaborations.

Finally, I would like to express my cordial and deep thank to my parents for their love and encouragement.

CONTENTS

	Page
ABSTRACT IN THAI	iv
ABSTRACT IN ENGLISH	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	x
LIST OF FIGURES	xi
NOMENCLATURES	xv
CHAPTER I INTRODUCTION	1
1.1 Background	1
1.2 Objective of the research	2
1.3 Scope of the research	3
1.4 Expected benefits	3
CHAPTER II LITERATURE REVIEW	4
2.1 Development of transparent alumina ceramic	4
2.2 Methodologies for development of the alumina green body	
with high density	7
2.3 Influences of impurities on the properties and microstructure	
changes in the alumina sintered body	10
2.4 Development of sintering technique	11
CHAPTER III FUNDAMENTAL	12
3.1 Optical properties in polycrystalline alumina ceramic	12
3.2 Fabrication of ceramic by slip casting	15
3.3 Porous mold	17
3.4 Drying process	18
3.4.1 Drying shrinkage	19
3.5 Sintering process	20
CHAPTER IV EXPERIMENTAL	21
4.1 Raw materials	21
4.2 Preparation of stabilized slurry with high solid content	22

4.3 Preparation of stabilized slurry adding with binder	22
4.4 Preparation of green body from well-dispersed alumina slurries	
by slip casting in gypsum mold	23
4.5 Post- treatment, calcination, HCl treatment and sintering condition	25
CHAPTER V RESULTS AND DISCUSSION	28
5.1 Characterization of alumina powder as starting material	28
5.2 Rheological behaviors for preparing of the appropriate	
alumina slurries	30
5.2.1 Effect of organic content on the properties of	
alumina slurries	30
5.2.1.1 Effect of PMAA deflocculant concentration on	
the viscosity of alumina slurries	30
5.2.1.2 Effect of CMC binder concentration on	
the viscosity of well-dispersed alumina slurries	34
5.2.2 Effect of spindle speed on the viscosity of the alumina slurries	35
5.3 Effects of deflocculant and binder on the properties of	
alumina green body prepared by slip casting technique	38
5.3.1 Effects of solid loading concentrations	38
5.3.1.1 Density of the alumina green body	38
5.3.1.2 Strength of the alumina green body	39
5.3.2 Effects of CMC binder concentration	40
5.3.2.1 Density of alumina green body	40
5.3.2.2 Strength of alumina green body	41
5.4 Effect of acid treatment on the properties of	
alumina calcined body	42
5.5 Effects of temperature and acid treatment on the properties of	
the alumina sintered body	45
5.5.1 Appearance of alumina sintered body	45
5.5.2 Density of alumina sintered body	46
5.5.3 Microstructure and grain size	47

P	a	g	e

	Page
5.5.4 Shrinkage	52
5.6 Effects of HIP on the properties of alumina sintered body	54
5.6.1 Appearance of alumina sintered body	54
5.6.2 Density of sintered body	55
5.6.3 Average grain size and microstructure of HIPed body	56
5.6.4 Transmittance of alumina sintered body	58
CHAPTER VI CONCLUSIONS AND RECOMMENDATIONS	60
6.1 Conclusions	60
6.2 Recommendation for future work	61
REFERENCES	62
APPENDICES	67
APPENDIX A Publication of this research	68
APPENDIX B Raw materials specification	74
APPENDIX C Experimental results	81
VITA	97

LIST OF TABLES

Pa	ge
----	----

Table 3.1	Properties of conventional gypsum mold	18
Table 4.1	Dimension of the prepared alumina green body	25
Table 5.1	The composition of slurries	35
Table 5.2	Ratio of particle size of starting materials: grain sizes	
	at various sintering temperature	48
Table 5.3	Summary of HIPed specimen characteristic	59

LIST OF FIGURES

xi

Figure 3.1	The light transmission of (a) large-grained PCA (translucent)	
	with high diffuse transmission and a low in-line	
	transmission and (b) fine-grained PCA (transparent) with	
	a low diffuse transmission and a high in-line transmission	12
Figure 3.2	The light scattering mechanism in sintered body of	
	polycrystalline alumina	13
Figure 3.3	Real in-line transmission as a function of the mean grain size	
	of sintered alumina (0.8 mm thick sample)	14
Figure 3.4	Diagram of ceramics forming by slip casting	15
Figure 3.5	Drain casting process	16
Figure 4.1	Raw materials and equipments for preparing TM-DAR	
	alumina slurry	21
Figure 4.2	The mixing process for preparing the alumina slurries by	
	ball-mill (a) mixing process in PE container (b) ball-mill with	
	high purity of alumina	22
Figure 4.3	Flow chart of green body compact prepared by slip	
	casting process	23
Figure 4.4	Two assembled gypsum mold for preparing alumina green body	
	in pellet shape	24
Figure 4.5	Development of optical alumina after slip casting	
	in gypsum mold	26
Figure 5.1	Particle size distribution of TM-DAR alumina powder	
	(a) No. of frequency (b) % culmulative No. of particle	29
Figure 5.2	SEM image of TM-DAR alumina powder	30
Figure 5.3	The effect of Aron A6114 deflocculant concentration on the	
	viscosity of 70%, 75% and 80% solid loading	
	of alumina slurries	32

		Page
Figure 5.4	The model of PMMA deflocculant quantity on the	
	submicron-alumina slurries with high solid content in case of	
	(a) insufficient deflocculant (b) appropriate deflocculant	
	(c) well-disersed slurries (d) excess of deflocculant	33
Figure 5.5	The effect of binder concentration on the viscosity of	
	70%, 75% and 80% solid loading of well-dispersed	
	alumina slurries	34
Figure 5.6	The effect of spindle speed on the viscosity of	
	the alumina slurries with 70% solid content at various	
	concentrations of deflocculant	36
Figure 5.7	The effect of spindle speed on the viscosity of	
	the alumina slurries with 75% solid content at various	
	concentrations of deflocculant	36
Figure 5.8	The effect of spindle speed on the viscosity of	
	the alumina slurries with 80% solid content at various	
	concentrations of deflocculant	37
Figure 5.9	The effect of spindle speed on the viscosity of	
	the alumina slurries with 70% solid content and 1.18 wt%	
	deflocculant at various concentrations of binder	37
Figure 5.10	The effect of spindle speed on the viscosity of	
	the alumina slurries with 75% solid content and 1.25 wt%	
	deflocculant at various concentrations of binder	38
Figure 5.11	The effect of solid content of slurries	
	on the relative density of the alumina green body	39
Figure 5.12	The effect of solid content of slurries	
	on the strength of the alumina green body	40
Figure 5.13	The effect of binder concentration on the relative density	
	of the alumina green body	41
Figure 5.14	The effect of binder concentration in slurries on the strength	
	of the alumina green body	42

	:	2	1
х	1	l	l

	Page
Figure 5.15 The calcined body density of B and G specimens	43
Figure 5.16 EDX analysis of the calcined body of	
(a) B specimen without- acid treatment	
(b) B specimen with acid treatment	44
Figure 5.17 Appearance of alumina sintered body	
at various sintered temperature	45
Figure 5.18 The effect of sintering temperature in air atmosphere	
for 2h on the relative density of B and G specimens	46
Figure 5.19 The effect of sintering temperature in air atmosphere	
for 2h on the grain size of B and G sintered specimens	48
Figure 5.20 SEM micrograph of alumina specimens sintered at $1250 \ ^{0}C$	
in air atmosphere (a) specimen B without treatment	
(b) specimen G without acid treatment (c) specimen B with	
acid treatment (d) specimen G with acid treatment	49
Figure 5.21 SEM micrograph of alumina specimens sintered at 1300 0 C	
in air atmosphere (a) specimen B without acid treatment	
(b) specimen G withoutacid treatment (c) specimen B with	
acid treatment (d) specimen G with acid treatment	50
Figure 5.22 SEM micrograph of alumina specimens sintered at $1350 {}^{0}C$	
in air atmosphere (a) specimen B without acid treatment	
(b) specimen G without acid treatment (c) specimen B with	
acid treatment (d) specimen G with acid treatment	51
Figure 5.23 The diametrical shrinkage specimen with pellet shape	
at various sintering temperature	52
Figure 5.24 The thickness shrinkage specimen with pellet shape	
at various sintering temperature	53
Figure 5.25 The volumetrical shrinkage specimen with pellet shape	
at various sintering temperature	53

		Page
Figure 5.26	The appearance of alumina ceramic specimen	
	(a) before hipping and (b) after hipping at 1300 0 C 130 MPa	
	in argon atmosphere	54
Figure 5.27	HIPed specimen that sintered at 1300 °C in air	
	followed by HIPing at 1300 °C, 130MPa in argon atmosphere	
	after grinding and polishing to 0.8 mm thickness	55
Figure 5.28	The influence of HIP process on the development	
	of alumina specimens	55
Figure 5.29	Grain size of HIPed specimen	56
Figure 5.30	SEM micrograph of alumina specimens HIPped at 1300 ° C,	
	130 MPa in argon atmosphere for 2 h (a) specimen B without	
	acid treatment (b) specimen G without acid treatment	
	(c) specimen B with acid treatment (d) specimen G	
	with acid treatment	57
Figure 5.31	The transmittance of specimen in range of 200-1100 nm	
	with thickness of 0.8 mm	58

NOMENCLATURES

BU	B specimen with non acid treatment
BT	B specimen with acid treatment
СМС	Carboxy methyl cellulose
EDS	Energy-Dispersive X-ray spectrometer
GU	G specimen with non acid treatment
GT	G specimen with acid treatment
\overline{N}_1	Unit length
HIP	Hot Isostatic Pressing
PCA	Poly-crystal alumina
PMAA	Polymethacrylic acid
PSD	Particle size distribution
SCA	Single-crystal alumina
SEM	Scanning Electron Microscope
$\Delta ar{l}$	Mean number of interparticle liquid films
$\Delta L/L_o$	Linear shrinkage
$\Delta V/V_o$	Volume shrinkage