ELECTROSPUN FIBER MATS CONTAINING SILVER NANOPARTICLES WITH ANTIBACTERIAL ACTIVITY

Pim-on Rujitanaroj

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2009

Thesis Title:	Electrospun Fiber Mats Containing Silver Nanoparticles with
	Antibacterial Activity
By:	Pim-on Rujitanaroj
Program:	Polymer Science
Thesis Advisors:	Assoc. Prof. Pitt Supaphol
	Dr. Nuttaporn Pimpha

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

JICC Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Pomthong Malakul)

Nottoporn Pimplia

(Dr. Nuttaporn Pimpha)

(Assoc. Prof. Pitt Supaphol)

Hathailiann M

(Asst. Prof. Hathaikarn Manuspiya)

c lle

(Asst. Prof. Chidchanok Meechaisue)

ABSTRACT

4882002063: Polymer Science Program
Pim-on Rujitanaroj: Electrospun Fiber Mats Containing Silver
Nanoparticles with Antibacterial Activity.
Thesis Advisor: Assoc. Prof. Pitt Supaphol and Dr. Nuttaporn
Pimpha, 258 pp.

Keywords: Silver nanoparticles/ Electrospinning/ Gelatin/ Polyacrylonitrile

Silver has a long history as an antimicrobial agent, especially in the treatment of burns. Several products have incorporated silver for use as a topical antibacterial such silver silver sulphadiazine (SSD), agent, as nitrate, silver sulphadiazine/chlorhexidine. Moreover, nanotechnology has provided a way of producing pure silver nanoparticles (nanoAg⁰). This system also markedly increases the rate of silver ion release. NanoAg⁰ is one of the most effective antimicrobial agents because of the high specific surface or volume fraction so that a large proportion of metal atoms are directly contact with the environment and can kill a wide range of bacteria. In this work, mats of poly(acrylonitrile) (PAN; $M_w \approx 55,500$) and gelatine (GT; Bloom ≈ 180) fibers containing nanoAg⁰ were prepared by e-spinning and these e-spun fiber mats were prepared to be used as surgical mask and wound dressing pads, respectively. The nanoAg⁰-containing poly(acrylonitrile) and gelatin fiber mats were characterized for various properties (i.e., morphological, mechanical, swelling, and weight loss), the release characteristic of the as-loaded silver as well as their antibacterial activity. Moreover, in vitro and in vivo biological evaluation of neat and nanoAg⁰-containing e-spun gelatin fiber mats with intended uses as wound dressing materials were investigated by studying the cytotoxicity and cell spreading of human dermal fibroblast (NHDF) or monocytes/macrophage on materials. In addition, morphologies of NHDF and monocytes/macrophage attached on these fibers were also observed by scanning electron microscope (SEM) and confocal microscopy, respectively.

บทคัดย่อ

พิมพ์อร รุจิธนโรจน์ : การพัฒนาแผ่นเส้นใยอิเล็คโตรสปันที่มีอนุภาคซิลเวอร์นาโน สำหรับการประยุกต์ใช้เป็นวัสดุด้านเชื้อแบคทีเรีย (Electrospun Fiber Mats Containing Silver Nanoparticles with Antibacterial Activity) อ. ที่ปรึกษา : รศ. คร. พิชญ์ ศุภผล และ คร. ณัฏฐพร พิมพะ 258 หน้า

เป็นที่ทราบกันคีว่า ซิลเวอร์มีคุณสมบัติในการฆ่าเชื้อโรคได้เป็นอย่างคี ซิลเวอร์จึงถูกนำ ผสมในผลิตภัณฑ์ต่างๆเพื่อใช้เป็นแผ่นฆ่าเชื้อโรคหรือวัสดุปิดแผล ไม่ว่าจะเป็นซิลเวอร์ไนเตรต ซิลเวอร์ซัลไฟด์ และอื่นๆ นอกจากนี้นาโนเทคโนโลยีได้ถูกพัฒนานำมาใช้ในการขึ้นรูปซิลเวอร์ หรือที่เรียกกันว่า อนุภาคซิลเวอร์นาโน (silver nanoparticles; nanoAg⁰) ด้วยขนาดของอนุภาค ซิลเวอร์นาโนที่เล็กมาก ส่งผลให้ประสิทธิภาพในการฆ่าเชื้อโรคสูงยิ่งขึ้น งานวิจัยนี้จึงเป็นการ เตรียมเส้นใยพอถิอะคริโลไนไตร์และเส้นใยเจลาตินที่ผสมอนุภาคซิลเวอร์นาโนด้วนกระบวนการ ป้นเส้นใยด้วยไฟฟ้าสถิต โดยเส้นใยทั้งสองชนิดนี้สามารถนำไปประยุกต์ใช้เป็นแผ่นกรองอากศ หรือวัสดุปิดแผลตามลำดับ นอกจากนี้ในงานวิจัยนี้ได้มีการศึกษาสมบัติพื้นฐานต่างๆ เช่น ้ลักษณะพื้นผิวของเส้นใย ขนาดอนุภาคซิลเวอร์นาโนในเส้นใย รวมทั้งศึกษาสมบัติเชิงกล การ บวมน้ำและการสูญเสียน้ำหนักของแผ่นเส้นใยเหล่านั้น และยังได้ทำการทดลองเพื่อศึกษาการ ปลดปล่อยของอนุภาคซิลเวอร์นาโนจากแผ่นเส้นใย โดยใช้วิธีการแช่ในสารละลายบัฟเฟอร์ ้เนื่องจากความด้องการที่จะประยุกต์ใช้แผ่นเส้นใยอิเล็คโตรสปันเหล่านี้สำหรับเป็นวัสดุที่ฆ่าเชื้อ โรคได้ จึงได้ศึกษาถึงความสามารถในการฆ่าเชื้อโรคของเส้นใยที่ผสมอนุภาคซิลเวอร์นาโน อีก ทั้งเส้นใยเงลาตินสามารถประยุกต์ใช้เป็นวัสดุปิดแผล จึงได้ศึกษาความเข้ากันได้ทางชีวภาพของ วัสดุ กับเซลล์ผิวหนัง (NHDF) หรือเซลล์เม็คเลือดขาว (monocyte/macrophage) โดยทดสอบ ้ความเป็นพิษ, การเกาะของเซลล์, การเจริญเติบ โตของเซลล์ นอกจากนี้ยังได้ศึกษาลักษณะของ เซลล์ผิวหนังที่เกาะบนแผ่นเส้นใยอิเล็คโตรสปัน โคยใช้กล้องจลทรรศน์อิเล็กตรอนแบบส่อง กราด และซลล์เม็ดเลือดขาว โดยใช้กล้องคอนโฟคอลไมโครสโคปปีด้วย

ACKNOWLEDGEMENTS

Appreciation is expressed to those who have made contributions to this dissertation. First the author gratefully acknowledges her advisor, Assoc. Prof. Pitt Supaphol from The Petroleum and Petrochemical College, Chulalongkorn University and Dr. Nuttaporn Pimpha from National Nanotechnology Center, National Science and Technology Development Agency for giving her invaluable knowledge, meaningful guidance and their encouragement all along the way. She also would like to express her sincere thanks to Professor James M. Anderson and colleagues from Case Western Reserve University for giving her useful advises and suggestions while she did a short research at Case Western Reserve University.

She gratefully acknowledges all faculty members and staffs at The Petroleum and Petrochemical College, Chulalongkorn University for their knowledge and assistance. Moreover she would like to give her special thanks to all members in her research group and all of her friends for their kind assistance

Asst. Prof. Pomthong Malakul, Assoc. Prof. Pitt Supaphol, Asst. Prof. Hathaikarn Manuspiya, Dr. Nuttaporn Pimpha and Asst. Prof. Chidchanok Meechaisue are further acknowledged for being her dissertation committees, making valuable comments and suggestions.

She wishes to express her deep gratitude to her family for their unconditioned love, understanding and very supportive during all these years spent for her Ph.D. study.

Finally, she is grateful for the partial fund by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology, and by the Center for Petroleum, Petrochemicals and Advanced Materials, Thailand, National Nanotechnology Center (through an in-house research grant) and a doctoral scholarship received from the Thailand Graduate Institute of Science and Technology (TGIST) (TG-55-09-49-067D). This work would not be carried out successfully without all financial supports.

TABLE OF CONTENTS

			PAGE
	Title I	Page	i
	Abstr	act (in English)	iii
	Abstr	act (in Thai)	iv
	Ackno	owledgements	v
	Table of Contents		vi
	List of Tables		ix
	List o	f Figures	xiv
	Abbre	eviations	xxiv
	List o	f Symbols	xxvi
СНА	PTER		
	Ι	INTRODUCTION	1
	II	LITERATURE REVIEW	6
	III	PREPARATION, CHARACTERIZATION AND ANTI-	
		BACTERIAL PROPERTIES OF ELECTROSPUN	
		POLYACRYLONITRILE FIBROUS MEMBRANES	
		CONTAINING SILVER NANOPARTICLES	58
		3.1 Abstract	58
		3.2 Introduction	59
		3.3 Experimental	60
		3.4 Results and Discussion	64
		3.5 Conclusion	70
		3.6 Acknowledgements	71
		3.7 References	71

IV	WOUND-DRESSING MATERIALS WITH		
	ANTIBACTERIAL ACTIVITY FROM ELECTROSPUN		
	GELATIN FIBER MATS CONTAINING SILVER		
	NANOPARTICLES	85	
	4.1 Abstract	85	
	4.2 Introduction	86	
	4.3 Experimental	88	
	4.4 Results and Discussion	93	
	4.5 Conclusion	103	
	4.6 Acknowledgements	104	
	4.7 References	105	

V IN VITRO STUDY OF ELECTROSPUN GELATIN FIBER MATS CONTAINING SILVER NANOPARTICLES WITH **ANTI-BACTERIAL ACTIVITY** 122 5.1 Abstract 122 5.2 Introduction 123 5.3 Experimental 125 5.4 Results and Discussion 133 5.5 Conclusion 141 5.6 Acknowledgements 142

5.0 Acknowledgements	144
5.7 References	142

VI IN VITRO AND IN VIVO BIOLOGICAL EVALUATION OF SILVER-CONTAINING ELECTROSPUN FIBROUS MEMBRANES FOR TISSUE ENGINEERING AND WOUND DRESSING APPLICATIONS

vii

PAGE

CHAPTER

viii

	6.1 Abstract	167
	6.2 Introduction	168
	6.3 Materials and methods	171
	6.4 Results	177
	6.5 Discussion	181
	6.6 Conclusion	189
	6.7 Acknowledgements	190
	6.8 References	191
VП	CONCLUSION AND RECOMMENDATIONS	217
	REFERENCES	220
	CURRICULUM VITAE	233

LIST OF TABLES

TABLE

ix

CHAPTER II

2.1	Classification of membranes and membrane processes for	
	separations via passive transport	7
2.2	Polymers as materials for industrially established separation	
	membranes	9
2.3	A description of the traditional and current classifications of	
	burns	12
2.4	Lists the most common microorganisms colonizing and infecting	
	burn wounds	15
2.5	Profile of commonly used topical antimicrobial agents ^a	21
2.6	Commercially Topical Dressings	22
2.7	Impact of age-related skin changes on dressing selection	28
2.8	Examples of moist wound healing dressings	36
2.9	Examples of antimicrobial dressings	37
2.10	Properties of poly(acrylonitrile)	39

CHAPTER III

3.1	Shear viscosity and electrical conductivity of the base PAN	
	solution and the AgNO ₃ -containing PAN solutions that had been	
	aged for 5 d $(n = 3)$.	77
3.2	Representative SEM images illustrating morphology and	
	diameters of electrospun fibers from 10% w/v PAN solution in	
	DMF and the 5 d-aged solutions that contained $AgNO_3$ in the	
	amounts of 0.5-2.5% by weight of PAN without and with 10	
	min of UV irradiation.	78

- 3.3 Representative TEM images illustrating distribution, morphology and diameters of AgNPs that were formed within electrospun fibers from 5 d-aged 10% w/v PAN solutions in DMF that contained AgNO₃ in the amounts of 0.5-2.5% by weight of PAN without and with 1 or 10 min of UV irradiation.
- 3.4 Actual amounts of silver in electrospun fiber mats from 5 d-aged 10% w/v PAN solutions in DMF that contained AgNO₃ in the amounts of 0.5-2.5% by weight of PAN both before and after 10 min of UV treatment (n = 3).

CHAPTER IV

- 4.1 Shear viscosity and conductivity of the base gelatin (GT) and some of the AgNO₃-containing GT solutions that had been aged for different time intervals after preparation
- 4.2 Diameters of the individual fibers and thicknesses of the electrospun fiber mats from the base gelatin (GT) solution and the AgNO₃-containing GT solution that had been aged for 12 h, after having been cross-linked with moist vapor of glutaraldehyde for 1 h or 3 h
- 4.3 Mechanical integrity of the electrospun fiber mats from the base gelatin (GT) solution and the 12 h-aged AgNO₃containing GT solution, after having been cross-linked with moist vapor of glutaraldehyde for 1 h or 3 h

79

82

112

113

PAGE

114

TABLE

4.4 Antibacterial activity of the electrospun fiber mats from the base gelatin (GT) solution and the 12 h-aged AgNO₃-containing GT solution, after having been cross-linked with moist vapor of glutaraldehyde for 1 h or 3 h with or without washing with glycine, against some common bacteria found on burn wounds

CHAPTER V

5.1	Shear viscosity and conductivity of the base gelatin (GT) and	
	some of the 0.75-2.00% AgNO3-containing GT solutions that	
	had been 12 h-aged after preparation	147
5.2	Selected SEM and TEM images of fibers before and after	
	cross-linked 0.5 h and the particles size of Ag nanaparticles	148
5.3	The average diameter and thickness of e-spun fibers mats	149
5.4	The mechanical assessment of both the neat and the	
	nanoAg ⁰ -containing e-spun gelatin fiber mats that had been	
	cross-linked for 0.5 h before and after immersion in acetate	
	buffer for 1 day	150
5.5	Actual amount of silver incorporated in AgNO ₃ -loaded	
	electrospun GT fiber mats	151
5.6	Cumulative release of Ag^{+} ions in the concentration of Ag^{+}	
	ions released into the medium (ppm) divided by the actual	
	weight of specimens (in g) and the percentage of the weight	
	of Ag^{+} ions released divided by the actual weight of Ag^{+}	152
5.7	Antibacterial activities of the neat GT fibers mat and the	
	0.75-2.00% AgNO ₃ -loaded e-spun GT fibers mat against	
	Staphylococus aureus, Bacillus subtilis, Escherichia coli and	
	Pseudomonas aeruginosa in Agar plates	153

TABLE

- 5.8 Antibacterial activities of the neat GT fibers mat and the 0.75-2.00% AgNO₃-loaded e-spun GT fibers mat against Staphylococus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa in Blood Agar plates 154 5.9 Antibacterial activities of the neat GT fibers mat and the 0.75-2.00% AgNO₃-loaded e-spun GT fibers mat against Staphylococus aureus and Bacillus subtilis in AATCC Test 155 Method 100 5.10 Antibacterial activities of the neat GT fibers mat and the 0.75-2.00% AgNO₃-loaded e-spun GT fibers mat against Escherichia coli and Pseudomonas aeruginosa in AATCC Test Method 100 5.11 Quantitative evaluation with antibacterial activity of the 0.75-2.00% AgNO₃-loaded e-spun GT fibers mats against Staphylococus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa 157 5.12 Selected SEM micrographs of NHDF cells proliferated on the neat gelatin fibers mats and the 0.75-1.00% AgNO₃-loaded electrospun gelatin fibers mats at 1 day of cell culture; Mag = 500x and 3500x 158 5.13 Selected SEM micrographs of NHDF cells proliferated on the neat gelatin fibers mats and the 0.75-1.00% AgNO3-loaded
 - electrospun gelatin fibers mats at 7 days of cell culture; Mag = 500x and 3500x

CHAPTER VI

6.1 Scoring system on all phases of the inflammatory and wound healing response and fibrous capsule structure response (week 1, 2 and 4

PAGE

156

200

TABLE

6.2	P values of comparison between e-spun gelatin fibrous	
	membranes and 0.75-2.50%AgNO3 and 0.75-2.50%Agnano-	
	loaded e-spun gelatin fibrous membranes on cell viability and	
	cell adhesion	201
6.3	P values of comparison between silver concentrations and types	
	of silver of on cell viability and cell adhesion	202
6.4	P values of comparison to biodegradable polyesters; PLLA,	
	PCL and PBSu-DCH on cell viability and cell adhesion	203

xiii

PAGE

LIST OF FIGURES

FIGURE

76

CHAPTER II

2.1	Classification of burn injuries (www.burn-	
	recovery org/injuries.htm).	13
2.2	Commercially Topical Antimicrobial Dressings; (a)	
	AQUACEL [®] Ag, (b) Acticoat TM , (c) Contreet [®] Foam, (d)	
	Urgotul [®] S.S.D, (e) PolyMem [®] Silver, (f) Actisorb Silver	
	220, (g) Arglaes and (h) Silverlon	23
2.3	The anatomy of normal skin	28
2.4	(a)Polymerization of Polyacrylonitrile and (b) Structural unit	
	of Polyacrylonitrile	38
2.5	Amino acid composition of gelatine	40
2.6	Preparative process for acidic and basic gelatins from	
	collagen	41
2.7	Structural unit of gelatine	42
2.8	Schematic drawing of the electrospinning process (Dan,	
	2004)	45

СНАРТЕЯ Ш

3.1 Changes in UV-visible absorption spectra of 10% w/v PAN solution in DMF containing various amounts of AgNO₃ of (a)
0.5, (b) 1.5 and (c) 2.5% by weight of PAN after having been aged for various time intervals (n = 3).

FIGURE

- 3.2 Mechanical integrity in terms of (a) tensile strength and (b) elongation at break of electrospun fiber mats from 10% w/v PAN solution in DMF and the 5 d-aged solutions that contained AgNO₃ in the amounts of 0.5-2.5% by weight of PAN without UV irradiation (n = 10).
- 3.3 Cumulative release profiles of silver from electrospun fiber mats from 5 d-aged 10% w/v PAN solutions in DMF that contained AgNO₃ in the amounts of 0.5-2.5% by weight of PAN both (a) before and (b) after 10 min of UV treatment upon total submersion in distilled water at room temperature (i.e., 25 ± 1 °C) (n = 3).
- 3.4 Lengths of inhibition zones illustrating the antibacterial activity of electrospun fiber mats from 5 d-aged 10% w/v PAN solutions in DMF that contained AgNO₃ in the amounts of 0.5-2.5% by weight of PAN both before and after 1, 5 and 10 min of UV treatment against (a) Gram-positive *Staphylococcus aureus* and (b) Gram-negative *Escherichia coli* (n = 3). The original diameters of the fiber mat specimens were 15 mm and those of gentamicin and vancomycin disks were 6 mm. (*) p < 0.05, compared with the fiber mat specimens before the UV treatment. without UV irradiation (n=3)

81

XV

CHAPTER IV

4.1	Variation in UV-visible absorption spectra of the base gelatin	
	(GT) solution and the AgNO ₃ -containing GT solutions that	
	had been aged for different time intervals. The concentration	
	of the base GT solution was 22 wt.% and the amount of	
	AgNO ₃ in the AgNO ₃ -containing GT solutions was 2.5 wt.%	
	based on the weight of GT	115
4.2	AFM image of Ag nanoparticles (nAg) generated in the	
	AgNO ₃ -containing gelatin solutions that had been aged for 6	
	d. The average diameter of these particles was 20 nm	116
4.3	Selected SEM images of the electrospun fiber mats from (a)	
	the base gelatin solution and (b) the AgNO ₃ -containing	
	gelatin solution that had been aged for 12 h. The diameters of	
	the individual fibers obtained from these solutions were 230 \pm	
	30 and 280 \pm 40 nm, respectively	117
4.4	Selected TEM image of an electrospun fiber from the	
	AgNO ₃ -containing gelatin solution that had been aged for 12	
	h. The diameters of the as-formed nAg were 13 ± 4 nm	118
4.5	Morphology of the electrospun fiber mats from (a,b) the base	
	gelatin solution and (c,d) the AgNO ₃ -containing gelatin	
	solution that had been aged for 12 h, after having been cross-	
	linked with moist vapor of glutaraldehyde for (a,c) 1 h or	
	(b,d) 3 h	119
4.6	Thermogravimetric spectra of the electrospun fiber mats from	
	(a) the base gelatin solution and (b) the AgNO ₃ -containing	
	gelatin solution that had been aged for 12 h, after having	
	been cross-linked with moist vapor of glutaraldehyde for 1 h	
	or 3 h	120

FIGURE

4.7 Cumulative release profiles of Ag⁺ ions from 1 h and 3 h cross-linked nAg-containing e-spun gelatin (GT) fiber mat specimens reported as the weight of Ag⁺ ions released (in mg) divided by the actual weight of specimens (in g) in three types of releasing medium: (a) acetate buffer (pH 5.5), (b) distilled water (pH 6.9) (both at the skin temperature of 32°C), and (c) simulated body fluid (pH 7.4) (at the physiological temperature of 37°C)

121

CHAPTER V

- 5.1 Variation in UV-visible absorption spectra of the base gelatin (GT) solution and the 0.75-2.00% AgNO₃-containing GT solutions that had been aged for different time intervals. The concentration of the base GT solution was 22 wt.% and the amount of AgNO₃ in the AgNO₃-containing GT solutions was 0.75-2.00 wt.% based on the weight of GT
- 5.2 Water retention of the electrospun fiber mats from the base gelatin (GT) solution and the 12 h-aged 0.75-2.00% AgNO₃- containing GT solution, after having been cross-linked with moist vapor of glutaraldehyde for 0.5 h, as a function of submersion time in (a) acetate buffer solution (pH = 5.5) at 32°C, and (b) simulated body fluid (pH 7.4) at 37°C
- 5.3 Weight loss of the electrospun fiber mats from the base gelatin (GT) solution and the 12 h-aged 0.75-2.00% AgNO₃- containing GT solution, after having been cross-linked with moist vapor of glutaraldehyde for 0.5 h, as a function of submersion time in (a) acetate buffer solution (pH = 5.5) at 32°C, and (b) simulated body fluid (pH 7.4) at 37°C

160

161

PAGE

xviii

FIGURE

- 5.4 Cumulative release profiles of Ag⁺ ions from 0.5 h-crosslinked nanoAg⁰-containing e-spun gelatin (GT) fiber mat specimens reported as the concentration of Ag⁺ ions released into the medium (in ppm of the medium) divided by the actual weight of specimens (in g) in two types of releasing medium, i.e., (a) acetate buffer (pH 5.5) at the skin temperature of 32°C, and (b) simulated body fluid (pH 7.4), at the physiological temperature of 37°C
- 5.5 Cumulative release profiles of Ag⁺ ions from 0.5 h-crosslinked nanoAg⁰-containing e-spun gelatin (GT) fiber mat specimens reported as the percentage of the weight of Ag⁺ ions released divided by the actual weight of Ag⁺ in two types of releasing medium, i.e., (a) acetate buffer (pH 5.5) at the skin temperature of 32°C, and (b) simulated body fluid (pH 7.4) at the physiological temperature of 37°C
- 5.6 The influence of silver content on the antibacterial capacities of the 0.75-2.00% AgNO₃-loaded e-spun GT fibers mat against *Staphylococus aureus*, *Bacillus subtilis*, *Escherichia coli*, and *Pseudomonas aeruginosa* in (a) agar plates and (b) blood agar plates
- 5.7 Indirect cytotoxicity evaluation of the neat gelatin and 0.75-2.00% AgNO₃-loaded electrospun fibers mats in comparison with viability of the cells that were cultured with fresh culture medium (n=3). (*) p < 0.05 compared with TCPS

163

164

165

CHAPTER VI

- 6.1 Variation in UV-visible absorption spectra of the base gelatin (GT) solution and the AgNO₃-containing GT solutions that had been aged for different time intervals. The concentration of the base GT solution was 22 wt.% and the amount of AgNO₃ in the AgNO₃-containing GT solutions was 2.5 wt.% based on the weight of GT
- 6.2 Adherent monocyte density a) the e-spun fibrous membranes of gelatin and gelatin that contained 0.75-2.50%AgNO₃ and 0.75-2.50%Agnano and b) biodegradable polyesters; PLLA, PCL and PBSu-DCH as a function of time. Results are expressed as the mean of 5 experiments \pm the standard error of the mean (n=5). * Statistically significant vs. PLLA, p <0.001
- 6.3 Percentage of cell viability a) the e-spun fibrous membranes of gelatin and gelatin that contained 0.75-2.50%AgNO₃ and 0.75-2.50%Agnano and b) biodegradable polyesters; PLLA, PCL and PBSu-DCH as a function of the time. Results are expressed as the mean of 5 experiments ± the standard error of the mean (n=5). * Statistically significant vs. PLLA, p <0.01

204

PAGE

- 6.4 Representative confocal images of monocytes/macrophages
 adhesion at day 0 (2h). Scale bar indicates 50 micrometers;
 (a) the e-spun gelatin fibrous membranes.; (b)-(d) the 0.752.50%AgNO₃-loaded e-spun gelatin fibrous membranes; (e)(g) the 0.75-2.50%AgNO₃-loaded e-spun gelatin fibrous membranes; (h) poly(L-lactic acid) (PLLA); (i) polycaprolactone (PCL) and (j) 1,6-diisocyanatohexaneextended poly(1,4-butylene succinate) (PBSu-DCH)
- 6.5 Representative confocal images of monocytes/macrophages adhesion at day 3. Scale bar indicates 50 micrometers; (a) the e-spun gelatin fibrous membranes; (b)-(d) the 0.75-2.50%AgNO₃-loaded e-spun gelatin fibrous membranes; (e)-(g) the 0.75-2.50%AgNO₃-loaded e-spun gelatin fibrous membranes; (h) poly(L-lactic acid) (PLLA); (i) polycaprolactone (PCL) and (j) 1,6-diisocyanatohexane-extended poly(1,4-butylene succinate) (PBSu-DCH)
- 6.6 Representative confocal images of monocytes/macrophages adhesion at day 7. Scale bar indicates 50 micrometers; (a) the e-spun gelatin fibrous membranes; (b)-(d) the 0.75-2.50%AgNO₃-loaded e-spun gelatin fibrous membranes; (e)-(g) the 0.75-2.50%AgNO₃-loaded e-spun gelatin fibrous membranes; (h) poly(L-lactic acid) (PLLA); (i) polycaprolactone (PCL) and (j) 1,6-diisocyanatohexane-extended poly(1,4-butylene succinate) (PBSu-DCH)

207

FIGURE

- 6.7 Representative confocal images of monocytes/macrophages adhesion at day 10. Scale bar indicates 50 micrometers; (a) the e-spun gelatin fibrous membranes; (b)-(d) the 0.75-2.50%AgNO₃-loaded e-spun gelatin fibrous membranes; (e)-(g) the 0.75-2.50%AgNO₃-loaded e-spun gelatin fibrous membranes; (h) poly(L-lactic acid) (PLLA); (i) polycaprolactone (PCL) and (j) 1,6-diisocyanatohexane-extended poly(1,4-butylene succinate) (PBSu-DCH)
- 6.8 Histology evaluation at 1 week implantation. Subcutaneous implant specimens with H&E stain for cellularity and Masson's Trichrome stain for fibrosis. Scale bar indicates 400 microns; A, B Electrospun gelatin, H&E and Trichrome; C, D 0.75% AgNO₃-loaded electrospun gelatin, H&E and Trichrome; E, F 1.00%AgNO₃-loaded electrospun gelatin, H&E and Trichrome; G, H 2.50%AgNO₃-loaded electrospun gelatin, H&E and Trichrome; I, J 0.75%Ag nano-loaded electrospun gelatin, H&E and Trichrome; I, J 0.75%Ag nano-loaded electrospun gelatin, H&E and Trichrome; I, J 0.75%Ag nano-loaded electrospun gelatin, H&E and Trichrome; I, J 0.75%Ag nano-loaded electrospun gelatin, H&E and Trichrome; I, J 0.75%Ag nano-loaded electrospun gelatin, H&E and Trichrome; I, J 0.75%Ag nano-loaded electrospun gelatin, H&E and Trichrome; I, J 0.75%Ag nano-loaded electrospun gelatin, H&E and Trichrome; I, J 0.75%Ag nano-loaded electrospun gelatin, H&E and Trichrome; I, J 0.75%Ag nano-loaded electrospun gelatin, H&E and Trichrome; I, J 0.75%Ag nano-loaded electrospun gelatin, H&E and Trichrome; I, J 0.75%Ag nano-loaded electrospun gelatin, H&E and Trichrome; I, J 0.75%Ag nano-loaded electrospun gelatin, H&E and Trichrome; I, J 0.75%Ag nano-loaded electrospun gelatin, H&E and Trichrome
- 6.9 Histology evaluation at 1 week implantation. Subcutaneous implant specimens with H&E stain for cellularity and Masson's Trichrome stain for fibrosis. Scale bar indicates 400 microns; A, B 1.00% Agnano-loaded electrospun gelatin, H&E and Trichrome; C, D 2.50%Agnano-loaded electrospun gelatin, H&E and Trichrome; E, F Electrospun poly(L-lactic acid) (PLLA), H&E and Trichrome; G, H Electrospun polycaprolactone (PCL), H&E and Trichrome; I, J Electrospun 1,6-diisocyanatohexane-extended poly(1,4-butylene succinate) (PBSu-DCH), H&E and Trichrome

211

- 6.10 Histology evaluation at 2 weeks implantation. Subcutaneous implant specimens with H&E stain for cellularity and Masson's Trichrome stain for fibrosis. Scale bar indicates 400 microns; A, B Electrospun gelatin, H&E and Trichrome; C, D 0.75% AgNO₃-loaded electrospun gelatin, H&E and Trichrome; E, F 1.00% AgNO₃-loaded electrospun gelatin, H&E and Trichrome; G, H 2.50% AgNO₃-loaded electrospun gelatin, H&E and Trichrome; I, J 0.75% Ag nano-loaded electrospun gelatin, H&E and Trichrome
- 6.11 Histology evaluation at 2 weeks implantation. Subcutaneous implant specimens with H&E stain for cellularity and Masson's Trichrome stain for fibrosis. Scale bar indicates 400 microns; A, B 1.00% Ag nano-loaded electrospun gelatin, H&E and Trichrome; C, D 2.50% Ag nano-loaded electrospun gelatin, H&E and Trichrome; E, F Electrospun poly(L-lactic acid) (PLLA), H&E and Trichrome; G, H Electrospun polycaprolactone (PCL), H&E and Trichrome; Electrospun 1,6-diisocyanatohexane-extended poly(1,4-butylene succinate) (PBSu-DCH), H&E and Trichrome

213

xxii

- 6.12 Histology evaluation at 4 weeks implantation. Subcutaneous implant specimens with H&E stain for cellularity and Masson's Trichrome stain for fibrosis. Scale bar indicates 400 microns; A, B Electrospun gelatin, H&E and Trichrome; C, D 0.75% AgNO₃-loaded electrospun gelatin, H&E and Trichrome; E, F 1.00% AgNO₃-loaded electrospun gelatin, H&E and Trichrome; G, H 2.50% AgNO₃-loaded electrospun gelatin, H&E and Trichrome; I, J 0.75% Ag nano-loaded electrospun gelatin, H&E and TrichromeHistology evaluation at 2 weeks implantation
- 6.13 Histology evaluation at 4 weeks implantation. Subcutaneous implant specimens with H&E stain for cellularity and Masson's Trichrome stain for fibrosis. Scale bar indicates 400 microns; A, B 1.00% Ag nano-loaded electrospun gelatin, H&E and Trichrome; C, D 2.50% Ag nano-loaded electrospun gelatin, H&E and Trichrome; E, F Electrospun poly(L-lactic acid) (PLLA), H&E and Trichrome; G, H Electrospun polycaprolactone (PCL), H&E and Trichrome; Electrospun 1,6-diisocyanatohexane-extended poly(1,4-butylene succinate) (PBSu-DCH), H&E and Trichrome
- 215

ABBREVIATIONS

nanoAg ⁰	Silver nanoparticles
AgNO ₃	Silver nitrate
PAN	Poly(acrylonitrile)
GT	Gelatin
PLLA	Poly(L-lactic acid)
PCL	Polycaprolactone
PBSu-DCH	Poly (1,4-butylene succinate) extended with 1,6-
	diisocyanatohexane
S. aureus	Staphylococcus aureus
MRSA	Methicillin-resistant Staphylococcus aureus
E.coli	Escherichia coli
B. subtilis	Bacillus subtilis
$M_{ m w}$	Molecular weight
PV	Pervaporation
D	Dialysis
GS	Gas separation
ED	Electrodialysis
NF	Nanofiltration
UF	Ultrafiltration
MF	Microfiltration
RO	Reverse Osmosis
AFM	Atomic force microscope
SEM	Scanning electron microscope
TEM	Transmission electron microscope
EDX	Energy dispersive X-ray
TG-DTA	Thermogravimetric/differential thermal analyzer
AAS	Atomic absorption spectroscope
GTA	Glutaraldehyde
SBF	Simulated body fluid
PBS	Phosphate buffer solution

DMF	N,N-dimethylformamide
DMSO	Dimethylsulfoxide
NHDF	Normal human dermal fibroblasts
ECM	Extracellular matrix
TCPS	Tissue-culture polystyrene plate
DMEM	Dulbecco's modified Eagle's medium
FBS	Fetal bovine serum
SFM	Serum-free medium
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-
	diphenyltetrazolium bromide
RGD	Fibronectin-like protein polymer
RNAse	Ribonuclease A
H&E	Hematoxylin and Eosin
h	Hour

LIST OF SYMBOLS

- γ Surface tension
- ρ Density
- V* Critical Potential
- V_c Critical Voltage
- DC Direct current
- M Weight of sample after submersion in the testing solution
- M_i Initial weight of the sample in its dry state
- M_d Weight of the sample after submersion in the testing solution in its dry state
- R Percentage of reduction
- A The number of bacteria recovered from the incubated treated test specimen (GT/AgNO₃) after 37°C for 24 hr
- B The number of bacteria recovered from the incubated untreated control specimen (Neat GT) after incubation at 37°C for 24 hr