NOVEL POLYBENZOXAZINE-BASED CARBON AEROGEL ELECTRODE FOR SUPERCAPACITORS

Porawee Katanyoota

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,

Case Western Reserve University

2009

Thesis Title:

Novel Polybenzoxazine-Based Carbon Aerogel Electrode for

Supercapacitors

By:

Porawee Katanyoota

Program:

Polymer Science

Thesis Advisors:

Assoc. Prof. Sujitra Wongkasemjit

Dr. Thanyalak Chaisuwan

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Assoc. Prof. Sujitra Wongkasemjit)

(Dr. Thanyalak Chaisuwan)

(Asst. Prof.Hathaikarn Manuspiya)

(Assoc. Prof. Atchana Wongchaisuwat)

Afeliana Weychaint

(Dr. Pitak Laoratanakul)

ABSTRACT

5072014063: Polymer Science Program

Ms. Porawee Katanyoota: Novel Polybenzoxazine-Based Carbon

Aerogel Electrode foe Supercapacitors

Thesis Advisors: Assoc. Prof. Sujitra Wongkasemjit, and

Dr. Thanyalak Chaisuwan 51 pp.

Keywords: Carbon Aerogel/Polybenzoxazine/Supercapacitor

In this study, polybenzoxazine, a new high performance thermosetting resin, was used to prepare carbon aerogels used as an electrode for supercapacitors. Two types of polybenzoxazines, derived from two different amines, aniline and triethylenetetramine, and denoted as BA-a and BA-teta, respectively, were chosen as the reactants for the organic precursor preparation. The surface areas of carbon aerogels from both BA-a and BA-teta were 391 and 368 m²/g, respectively. The pore size of each carbon aerogel was in the range of 2 to 5 nm which is a suitable pore size for being used as electrodes in electrochemical application. The electrochemical properties of the obtained carbon aerogels showed good performance for supercapacitor applications with specific capacitance of 55.78 and 20.53 F/g for BA-teta and BA-a, respectively. At low voltage scanning, 1 and 5 mV/s, the cyclic voltammogram of the carbon aerogel derived from BA-teta gave better rectangular shape than that of the other carbon aerogel. Impedance spectra of both carbon aerogels confirm the results of the specific capacitance and the cyclic voltammogram analyses.

บทคัดย่อ

ปรวี กตัญญูตะ : การพัฒนาคาร์บอนแอร์โรเจลที่ใช้เป็นขั้วเก็บประจุไฟฟ้าที่มีประสิทธิภาพสูงซึ่ง ผลิตมาจากพอลิเบนซอกซาซีน (Novel Polybenzoxazine-Based Carbon Aerogel Electrode for Supercapacitors) อ.ที่ปรึกษา : รองศาสตราจารย์ คร.สุจิตรา วงศ์เกษมจิตต์ และ คร.ธัญญูลักษณ์ ฉายสุวรรณ์ 51 หน้า

ในการศึกษาครั้งนี้ พอลิเบนซอกซาซีนซึ่งเป็นเรซินที่มีประสิทธิภาพแบบใหม่ถูกนำมาใช้ เตรียมการ์บอนแอโรเจลสำหรับขั้วไฟฟ้าของขั้วเก็บประจุไฟฟ้าที่มีประสิทธิภาพสูง พอลิเบนซอก ซาซีนซึ่งทำมาจากเอมีน 2 ชนิด ที่ต่างกันคือ อะนีลีน และ ไตรเอทธลินเตตระมีน หมายถึง BA-a และ BA-teta ตามลำคับ ถูกเลือกให้เป็นสารตั้งต้นสำหรับการเตรียมสารประกอบอินทรย์ โดย คาร์บอนแอโรเจลที่ได้จาก BA-a และ BA-teta มีค่าพื้นที่ผิว 391 ถึง 368 ตารางเมตรต่อกรัม ตาล ลำคับ ส่วนขนาดของรูพรุนอยู่ในช่วง 2 ถึง 5 นาโนเมตร ซึ่งเป็นขนาดรูพรุนที่เหมาะสมสำหรับ ขั้วไฟฟ้าในด้านเคมีไฟฟ้า คุณสมบัติทางเคมีไฟฟ้าของการ์บอนแอโรเจลแสดงประสิทธิภาพที่ดี ในการนำมาใช้เป็นขั้วเก็บประจุไฟฟ้าที่มีประสิทธิภาพสูงด้วยค่าความจุไฟฟ้าจำเพาะ 55.78 และ 20.53 ฟารัดต่อกรัมของ BA-teta และ BA-a ตามลำดับ ที่อัตราความต่างศักย์ต่ำคือ 1 และ 5 มิลลิ โวลต์ต่อวินาที ใชคลิกโวลแทมโมแกรมของคาร์บอนแอโรเจลที่ได้จาก BA-teta มีลักษณะเป็น รูปสี่เหลี่ยมมุมฉากที่ดีกว่าการ์บอนแอโรเจลอีกตัว อิมพีแคนซ์ สเปกตราของคาร์บอนแอโรเจลทั้ง สองซึ่งยืนยันผลของค่าความจุไฟฟ้าจำเพาะและผลวิเคราะห์ของใชคลิกโวลแทมโมแกรม

ACKNOWLEDGEMENTS

The author would like to thank Associate Professor Sujitra Wongkasemjit and Dr. Thanyalak Chaisuwan, her advisors, who not only originated this work, but also gave her continuous support, good suggestion, intensive recommendation and for the help, patience, encouragement they have shown during her one year in their research group.

She would like to express her appreciation to Associate Professor Atchana Wongchaisuwat, her committee, for the wonderful comments, worth advices, her kindness and helps.

She wishes to thank other thesis committee; Assistance Professor Hathaikarn Manuspiya and Dr. Pitak Laoratanakul for their sugguestions and invaluable guidances.

A deep appreciation is expressed to Associate Professor Suwabun Chirachanchai for electrochemical measurement.

Special thanks are to Dr. Masashi Ishikawa for his great suggestion for Electrochemical Impedance analyses.

She is grateful for the scholarship from Petroleum and Petrochemical College; and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand; and the Ratchadapisake Sompote Research Funds, Chulalongkorn University for the partial financial support of this research.

She would to thanks T.F.G. Enterprise Co., Ltd. and Suthee United Carbon Co., Ltd. for kindly support materials which used in this research.

Her thanks are also to all Sujitra's and Thanyalak's group members both her seniors and her friends for their helps, good suggestions, friendship and all the good memories.

Last, but not least, she thanks her family for giving her life, for educating her and giving the unconditional support to pursue her interests and also for their love and encouragement.

TABLE OF CONTENTS

			PAGE
	Title P	age	i
	Abstra	ect (in English)	iii
	Abstra	et (in Thai)	iv
	Ackno	wledgements	v
	Table	of Contents	vi
	List of	Schemes	ix
	List of	Tables	x
	List of	Figures	xi
	Abbre	viations	xiii
CHA	PTER		
	I	INTRODUCTION	1
	II	LITERATURE REVIEW	3
	Ш	LITERATURE REVIEW	3
		2.1 Polybezaxazine	3
		2.1.1 Chemical Methodologies for Synsthesis of	
		Benzoxazine Monomer	3
		2.1.2 Preparation of High Molecular Weight	
		Benzoxazine Precursors	7
		2.2 Carbon Aerogels	9
		2.2.1 Preparation of Carbon Aerogels	10
		2.2.2 Structure and Propreties of Carbon Aerogels	11
		2.3 Supercapacitors	12
		2.3.1 General propeties of Supercapacitors	12
		2.3.2 Types of Supercapacitors	16
		2.3.2.1 Electrical Double Layer Capacitor (EDLC)	16
		2.3.2.2 Pseudocapacitors	17

CHAPETR			PAGE
Ш	EXPERIM	IENTAL	19
	3.1	Materials	19
	3.2	Instruments and Equiptment	19
	3.3	Methodology	20
		3.3.1 Synthesis of Polybenzoxazine based Aerogels	20
		3.3.2 Preparation of Carbon Aerogel Electrodes	22
		3.3.3 Characterization of Carbon Aerogel Electrodes	23
IV	NOVEL P	OLYBENZOXAZINE-BASED CARBON AEROGE	L
	ELECTR	ODE FOR SUPERCAPACITORS	24
	4.1	Abstract	24
	4.2	Introduction	25
	4.3	Experimental	25
		4.3.1 Materials	26
		4.3.2 Measurements	26
		4.3.3 Methodology	27
	4.4	Results and Discussion	30
		4.4.1 Chemical Structure of Polybenzoxazine Precursor	rs 30
		4.4.2 Thermal Properties of Polybenzoxazine Precursor	rs 31
		4.4.3 Surface Area of Polybenzoxazine-based Carbon	
		Aerogel Electrodes	34
		4.4.4 Morphology of Organic Aerogels and	
		Carbon Aerogels	35
		4.4.5 Electrochemical Characterization	36
	4.5	Conclusions	43
	4.6	Acknowledgements	43
	4.7	References	43

CHAPETR		PAGE
V	CONCLUSIONS AND RECOMMENDATIONS	45
	REFERENCES	46
	CURRICULUM VITAE	49

LIST OF SCHEMES

SCHEME		PAGE
	CHAPTER III	
3.1	Preparation of Poly BA-teta	21
3.2	Preparation of BA-a monomer	22
	CHAPTER IV	
4.1	Preparation of Poly BA-teta	28
4.2	Preparation of BA-a monomer	29

LIST OF TABLES

TABLE		PAGE	
	CHAPTER II		
2.1	Comparison of typical capacitor and battery characteristics	14	
2.2	The specific capacitance of selected electrode materials	18	
	CHAPTER IV		
4.1	Thermal properties of polybenzoxazine precursors	34	
4.2	Texture characteristics of carbon aerogel electrodes derived	34	
	from BA-teta (CA(BA-teta)) and BA-a (CA(BA-a))		
	nolyhenzoxazine precursors		

LIST OF FIGURES

FIGURE		PAGE	
	CHAPTER I		
1.1	Supercapacitors	2	
	CHAPTER II		
2.1	Synthesis of 3,4-dihydro-2H-1,3-benzoxazines	4	
2.2	Synthesis of bisphenol-A and aniline based benzoxazine		
	(B-a) monomer	6	
2.3	Chemical structures of the synthesized benzoxazine		
	monomers	7	
2.4	Synthesis of polybenzoxazine precursors	8	
2.5	General application of carbon aerogels	9	
2.6	Schematic diagram of the reaction of Resorcinol with		
	Formaldehyde [1,2]	10	
2.7	Effect of the pyrolysis on a of resorcinol-formaldehyde		
	aerogel (a) before pyrolysis (b) after pyrolysis	11	
2.8	Transmission Electronic Microscopie (TEM) of the carbon		
	aerogel	12	
2.9	Energy storage Ragone plot	13	
2.10	The electrical double layer	15	
2.11	Schematics for a charged supercapacitor: 1 and 2—current	13	
	collectors; 3 and 4—electrodes; 5—separator; 6—electrolyte		
	;7—pores in the electrode material; 8—positive charge; 9—		
2.12	negative ion; 10—negative charge (electrons); 11—positive		
	ion	17	

FIGURE		PAGE	
	CHAPTER IV		
4.1	H-NMR spectrum of BA-teta precursor	30	
4.2	FT-IR spectra of of BA-teta (a), polymerized BA-teta at		
	200°C (b), and pyrolyzed BA-teta at 800°C (c)	31	
4.3	DSC thermograms of BA-teta benzoxazine precursor (a) and		
	polybenzoxazine in fully cured stage (b)	32	
4.4	TGA thermogram of BA-teta benzoxazine precursor	33	
4.5	SEM micrograph of organic aerogel (a) and carbon aerogel		
	(b)	35	
4.6	TEM photograph of the carbon aerogel	36	
		33	
4.7	Cyclic voltammograms of CA(BA-teta) (a) and CA(BA-a)	33	
	(b) with scan rate: 1 and 5 mV/s	37	
4.8	Cyclic voltammograms of CA(BA-teta) (a) and CA(BA-a)		
	(b) with scan rate: 1,5, 25 and 50 mV/s	38	
4.9	Discharge curves of polybenzoxazine-based cabon aerogel		
	electrode at current discharge (5mA/cm ²)	39	
4.10	Nyquist plots for CA(BA-teta) (a) and CA(BA-a) (b)	41	
4.11	The equivalent circuit of carbon aerogel electrodes	42	

ABBREVIATION

BA-teta Benzoxazine is based on bisphenol-A and triethylenetetramine

BA-a Benzoxazine is based on bisphenol-A and aniline

CA(BA-teta) Carbon Aerogel derived from BA-teta

CA(BA-a) Carbon Aerogel derived from BA-a