REFERENCES

- Beuschern, U., Cleghorn, S.J.C., and Johnson, W.B. (2005). Challenges for PEM fuel cell membranes. International Journal of Energy Research, 29, 1103-1112.
- Bozkurt A, and Meyer W.H. (2001). Proton conducting blends of poly(4-vinylimidazole) with phosphoric acid. <u>Solid State Ionics</u>, 138, 259-265.
- Bozkurt, A., Meyer, W.H., and Wegner, G. (2003). PAA/imidazol-based proton conducting polymer electrolytes. <u>Journal of Power Sources</u>, 123,126–131.
- Cropper, M. (2004). Fuel for people. Fuel Cells, 4 (No. 3), 236-240.
- Fu, Y., Manthiram, A., and Guiver, M.D. (2006). Blend membranes based on sulfonated poly(ether ether ketone) and polysulfone bearing benzimidazole side groups for proton exchange membrane fuel cells. <u>Electrochemistry</u> Communications, 8, 1386–1390.
- Haile, S.M. (2003). Fuel cell materials and components. <u>Acta Materialia</u>, 51, 5981-6000.
- Kawahara, M., Morita, J., Rikukawa, M., Sanui, K., and Ogata, N. (2000). Synthesis and proton conductivity of thermally stable polymer electrolyte: poly(benzimidazole) complexes with strong acid molecules. <u>Electrochimica Acta</u>, 45, 1395–1398.
- Kim, H.J., Cho, S.Y., An, S.J., Eun, Y.C., Kim, J.Y., Yoon, H.K., Kweon, H.J., and Yew, K.H. (2004). Synthesis of Poly(2,5-benzimidazole) for Use as a Fuel-Cell Membrane. Macromol. Rapid Commun., 25, 894–897.
- Kerres, J.A. (2001). Development of ionomer membranes for fuel cells. <u>Journal of</u>
 Membrane Science, 185, 3-27.
- Kreuer, K.D., Fuchs, A., Ise, M., Spaeth, M., and Maier, J. (1998). Imidazole and pyrazole-based proton conducting polymers and liquids. <u>Electrochim. Acta</u>, 43 (10-11), 1281-1288.
- Kreuer, K.D. (2001). On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. <u>Journal of Membrane Science</u>, 185, 29-39.

- Li, Q., He, R., Jensen, J.O., and Bjerrum, N. J. (2003). Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C. Chemisty of Materials, 15, 4896-4915.
- Munch, W., Kreuer, K.D., Silvestri, W., Maier, J., and Seifert, G. (2001). The diffusion mechanism of an excess proton in imidazolemolecule chains: first results of an ab initio molecular dynamics study. <u>Solid State Ionics</u>, 145, 437–443.
- Nakamoto, H., Noda, A., Hayamizu, K., Hayashi, S., Hamaguchi, H., and Watanabe, M. (2007). Proton-conducting properties of a Brønsted acid-base ionic liquid and ionic melts consisting of bis(trifluoromethanesulfonyl)imide and benzimidazole for fuel cell electrolytes. J. Phys. Chem. C, 111, 1541-1548.
- Plug Power Company. "Fuel cell's operation". http://www.plugpower.com/ echnology/ works.cfm >.
- Schuster, M., Meyer, W.H., Wegner, G., Herz, H.G., Ise, M., Schuster, M., Kreuer, K.D., and Maier, J. (2001). Proton mobility in oligomer-bound proton solvents: imidazole immobilization via flexible spacers. <u>Solid State Ionics</u>, 145, 85-92.
- Song, C. (2002). Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century. <u>Catalysis Today</u>, 77, 17-49.
- Sopian, K., and Wan-Daud, W.R. (2006). Challenges and future developments in proton exchange membrane fuel cells. <u>Renewable Energy</u>, 31, 719–727.
- Stambouli, A.B., and Traversa, E. (2002). Fuel cells: An alternative to standard sources of energy. Renewable and Sustainable Energy Reviews, 6, 297-306.
- Yang, C., Costamagna, P., Srinivasan, S., Benziger, J., and Bocarsly, A.B. (2001).
 On the development of proton conducting polymer membranes for hydrogen and methanol fuel cell. <u>J. Power Sources</u>, 103, 1-15.

Appendix A: Classification and characteristic features of fuel cells

Type of Fuel	Temperature	Efficiency	Application	Advantages	Disadvantages
Cell	(°C)	(%)			
Alkaline fuel cell (AFC)	50-90	50-70	Space application	High efficiency	Intolerant to CO ₂ in impure H ₂ and air, corrosion, expensive
Phosphoric acid fuel cell (PAFC)	175-220	40-45	Stand-alone & combined heat and power	Tolerant to impure H ₂ , commercial	Low power density, corrosion, sulfur poisoning
Molten carbonate fuel cell (MCFC)	600-650	50-60	Central, Standalone & combined heat and power	High efficiency, near commercial	Electrolyte instability, corrosion, sulfur poisoning
Solid oxide fuel cell (SOFC)	800-1000	50-60	Central, Standalone & combined heat and power	High efficiency, direct fossil fuel	High temperature, thermal stress failure, coking, sulfur poisoning
Polymer electrolyte membrane fuel cell (PEMFC)	60-100	50-60	Vehicle and portable	High power density, low temperature	Intolerant to CO in impure H ₂ , expensive
Direct methanol fuel cell (DMFC)	50–120	25-40	Vehicle and portable	No reforming, high power density, low temperature	Low efficiency, methanol cross-over, poisonous by-product

CURRICULUM VITAE

Name: Mr. Puripong Totsatitpaisan

Date of Birth: August 18, 1980

Nationality: Thai

University Education:

1999-2003 Bachelor Degree of Engineering (Petrochemical and Polymeric Materials), Faculty of Engineering and Industrial Technology, Silpakorn University, Nakornprathom, Thailand

Working Experience:

2008-present Position: Application Labs Supervisor

Company name: Clariant (Thailand) Ltd.

Publications:

- 1. Totsatitpaisan, P., Tashiro, K., Chirachanchai, S. (2008) Investigating Proton Transferring Route in Heteroaromatic Compound Part I: A Trial to Develop Diand Trifunctional Benzimidazole Model Compounds Inducing The Molecular Packing Structure with Hydrogen Bond Network. <u>Journal of Physical Chemistry A</u>, 112(41), 10348–10358.
- 2. Totsatitpaisan, P., Nunes, S. P. and Chirachanchai, S. (2008) Investigation of The Effect of Benzimidazole-based Model Compounds on Thermal Properties and Proton Conductivities of Sulfonated Poly(ether ether ketone). <u>Solid State Ionics</u>, accepted.
- Totsatitpaisan, P., Eiamlamai, P., Tashiro, K. and Chirachanchai, S.
 Benzimidazole Model Compounds and Their Consequent Molecular Packing Structures for Hydrogen Bond Network Channels. (To be submitted to Acta Materialia).
- 4. Totsatitpaisan, P., Takolpuckdee, P., Perrier, S. and Suwabun Chirachanchai and Chirachanchai, S. Controlled Chain Length of 4-Vinylimidazole Oligomer Prepared by Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization. (To be submitted).

Proceedings:

- 1. Totsatitpaisan, P., Perriér, S., Chirachanchai, S. (2006, February) A New Heterocyclic Resonance Structured Polymer for PEMFC Part I: Synthesis and Characterization of Imidazole-based Polymer. <u>The 7th Royal Golden Jubilee Ph.D</u> Congress, Chonburi, Thailand.
- Totsatitpaisan, P., Tashiro, K., Aukkaravittayapun, S., Vilaithong, T. and Chirachanchai, S. (2007, March 28-30) Development of Novel Material for Regular Proton Transferring Route Polymer Electrolyte Membrane: Synthesis and Characterization of Benzimidazole-based Model Compound. <u>Proceedings of NAC2007 NSTDA Annual Conference Science and Technology for National Productivity and Happiness</u>, Thailand Science Park, Pathumthani, Thailand.
- 3. Totsatitpaisan, P., Tashiro, K. and Chirachanchai, S. (2007, June 25-28) Molecular Design and Synthesis of Benzimidazole-based Model Compound for The Formation of Regular Proton Transferring Route in Anhydrous Polymer Electrolyte Membrane Fuel Cell. <u>Proceeding of The 2nd International Conference</u> on Advances in Petrochemicals and Polymers (ICAPP), Bangkok, Thailand.
- Totsatitpaisan, P., Tashiro, K. and Chirachanchai, S. (2007, August 19-23)
 Molecular Design and Synthesis of Benzimidazole-based Model Compound for
 Development of Regular Proton Transferring System. <u>Proceeding of 234th
 American Chemical Society National Meeting and Exposition</u>, Boston, MA,
 USA.

Presentations:

- Totsatitpaisan, P., Perriér, S., Chirachanchai, S. (2006, February) A New Heterocyclic Resonance Structured Polymer for PEMFC Part I: Synthesis and Characterization of Imidazole-based Polymer. Oral presented at <u>The 7th Royal</u> Golden Jubilee Ph.D Congress, Chonburi, Thailand.
- Totsatitpaisan, P., Tashiro, K., Aukkaravittayapun, S., Vilaithong, T. and Chirachanchai, S. (2007, March 28-30) Development of Novel Material for Regular Proton Transferring Route Polymer Electrolyte Membrane: Synthesis and Characterization of Benzimidazole-based Model Compound. Oral presented at

- NAC2007 NSTDA Annual Conference Science and Technology for National Productivity and Happiness, Thailand Science Park, Pathumthani, Thailand.
- Totsatitpaisan, P., Tashiro, K. and Chirachanchai, S. (2007, August 19-23)
 Molecular Design and Synthesis of Benzimidazole-based Model Compound for Development of Regular Proton Transferring System. Oral presented at <u>The 234th American Chemical Society National Meeting and Exposition</u>, Boston, MA,
- Totsatitpaisan, P., Tashiro, K. and Chirachanchai, S. (2007, May 29-31)
 Molecular Design and Synthesis of Benzimidazole-based Model Compound for Development of Regular Proton Transferring System. Oral presented at <u>The 56th Society of Polymer Sciences</u>, Japan (SPSJ) Annual Meeting, Kyoto, Japan.

Honors and Awards:

- 1. Scholar Student, Damrongchaitham Foundation, (1999-2003).
- 2. First Class Honor (GPA 3.62), Bachelor Degree of Engineering (Petrochemicals and Polymeric Materials), Faculty of Engineering and Industrial Technology, Silpakorn University (2003).
- 3. Full Scholarship, Master Degree in Polymer Science Program, The Petroleum and Petrochemical College, Chulalongkorn University (2003~2004).
- 4. Royal Golden Jubilee-Ph.D. Scholarship, Thailand Research Fund (2004~2008).
- 5. Best Oral Presentation, RGJ-Ph.D. Congress VII, Chonburi, Thailand (2006).
- 6. Best Oral Presentation (Advanced Energy Technology Session), NSTDA Annual Conference, Pathumthani, Thailand (2007).