REFERENCES

- Babich, I. V. and Moulijn, J. A. (2003). Science and technology of novel processed for deep desulfurization of oil refinery streams: a review. <u>Fuel</u>, 82, 607-631.
- Bhandari, V.M., Ko, C.H., Park, J.G., Han, S., Cho, S. and Kim, J. (2006). Desufurization of diesel using ion-exchanged zeolites. <u>Chemical Engineering Science</u>, 61, 2599-2608.
- Chansa, J. (2004). Removal of sulfur compounds from transportation fuels by adsorption. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Ertl, G., Knozinger, H., and Weitkamp, J. (1997). <u>Handbook of Heterogeneous Catalysis</u>. France: VCH Verlagsgesellschaft mbH, Weinhelm (Federal Republic of Germany).
- Golden, T.C., Kratz, W.C., and Wilhelm, F.C. (1992). Highly dispersed cuprous compositions. <u>United States Patent</u>, 19.
- Grant, M.H. (1992). <u>Encyclopedia of chemical technology</u>. United States of America: John Willey & Sons, Inc.
- Han, M.S., Lee, B.G., Ahn, B.S., Moon, D.J., and Hong, S.I. (2003). Surface properties of CuCl2/AC catalysts with various Cu contents: XRD, SEM, TG/DSC and CO-TPD analyses. Applied Surface Science, 211, 76-81.
- Hernández-Maldonado, A.J. and Yang, R.T. (2004a). Desulfurization of diesel fuels via π-complexation with nickel(II)-exchange X- and Y-zeolites. <u>Industrial</u> & Engineering Chemistry Research, 43, 1081-1080.
- Hernández-Maldonado, A.J. and Yang, R.T. (2004b). New sorbents for desulfurization of diesel fuels via π -complexation. <u>AIChE Journal</u>, 50, 791-801.
- Hernández-Maldonado, A.J., Yang, F.H., Qi, G. and Yang R.T. (2005). Desulfurization of transportation fuels by π-complexation sorbents: Cu(I)-, Ni(II)-, and Zn(II)-zeolites. <u>Applied Catalysis B: Environmental</u>, 56, 111-126.
- Hirai, H., Kurima, K., Wada, K. and Komiyama, M. (1985). Selective ethylene adsorbents composed of copper(I) chloride and polystyrene resins having amino groups. The Chemical Society of Japan, 1513-1516.

- Kaewboran, J. (2006). Continuous removal of thiophenic sulfur compounds from transportation fuels by using X zeolite. M.S. Thesis, The Petroleum and Petrochemical College, Bangkok, Thailand.
- Kim, J.H., Ma, X., Zhou, A. and Song, C. (2006). Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: A study on adsorptive selectivity and mechanism. <u>Catalysis</u> Today, 111, 74-83.
- King, D.L. and Faz, C. (2006). Desulfurization of Tier 2 gasoline by divalent copper-exchanged zeolite Y. <u>Applied Catalysis B: Environmental</u>, 311, 58-65.
- Linh, H.N. (2007). Adsorptive removal of sulfur compounds from transportation fuels by using zeolitic adsorbents. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok Thailand.
- Ma, X., Sun, L. and Song, C. (2002). A new approach to dees desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications. <u>Catalysis Today</u>, 77, 107-116.
- Park, J.G., Ko, C.H., Yi, K.B., Park, J., Han, S., Cho, S. and Kim, J. (2008). Reactive adsorption of sulfur compounds in diesel on nickel supported on mesoporous silica. <u>Applied Catalysis B: Environmental</u>, 81, 244-250.
- Pringprayong, S. (2006). Adsorptive removal of sulfur compounds from transportation fuels using zeolitic adsorbents. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Reut, S., and Prakash, A. (2006). Evaluation of sorbents for thiophene removal from liquid hydrocarbon. <u>Fuel Processing Technology</u>, 87, 217-222.
- Rouco, A.J. (1994). TPR study of Al₂O₃- and SiO₂-supported CuCl₂ catalysts. <u>Applied Catalyst A</u>, 117, 139-149.
- Rousseau, R.W. (1987). <u>Handbook of separation process technology</u>. United States of America: John Willey & Sons, Inc.
- Ruthven, D.M. (1984). <u>Principles of adsorption and adsorption processes</u>. United States of America: John Willey & Sons, Inc.
- Satterfield, C.N. (1991). <u>Heterogeneous catalysis in industrial practice</u>. United States of America: McGraw-Hill, Inc.

- Takahashi, A. Yang, F.H. and Yanr, R.T. (2000). Aromatics/aliphatics separation by adsorption: New sorbents for selective aromatics adsorption by π-complexation. <u>Industrial & Engineering Chemistry Research</u>, 39, 3856-3867.
- Takahashi, A., Yang, F. H. and Yang, R.T. (2002). New sorbents for desulfurization by π-complexation: Thiophene/Benzene adsorption. <u>Industrial & Engineering Chemistry Research</u>, 41, 2487-2496.
- Wang, Y., and Lin, Y.S. (1998). Sol-gel synthesis and gas adsorption properties of CuCl modified mesoporous alumina. <u>Journal of Sol-Gel Science and Technology</u>, 11, 185-195.
- Wang, Y., and Yang, R.T. (2007). Desulfurization of liquid fuels by adsorption on carbon-based sorbents and ultrasound-assisted sorbent regeneration.

 Langmuir, 23, 3825-3831.
- Xue, M., Chitrakar, R., Sakane, K. Hirotsu, T., Ooi, K. Yoshimura, Y., Feng, Q., and Sumida, N. (2005). Selective adsorption of thiophene and 1-benzothiophene on metal-ion-exchanged zeolites in organic medium. Journal of Colloid and Interface Science, 285, 487-492.
- Yang, R.T., and Foldes, R. (1996). New sorbents based on principles of chemical complexation: monolayer-dispersed nickel(II) for acetylene separation by π-complexation. <u>Industrial & Engineering Chemistry Research</u>, 35, 1006-1011.
- Yang, R.T., Takahashi, A., and Yang, F. H. (2001). New sorbents for desulfurization of liquid fuels by π-complexation. <u>Industrial & Engineering Chemistry Research</u>, 40, 6236-6239.
- Yang, R.T. (2003). Adsorbents Fundamentals and Applications. United States of America: John Willey & Sons, Inc.
- Zhang, Z.Y., Shi, T.B., Jia, C.Z., Ji, W.J., Chen, Y. and He, M.Y. (2008). Adsorptive removal of aromatic organosulfur compounds over the modified Na-Y zeolites. <u>Applied Catalysis B: Environmental</u>, 82, 1-10.

APPENDICES

APPENDIX A Calculation of Sample Preparation

A1 Amount of Metal Chemical for Sample Preparation

Example: Amount of CuCl₂ chemical for impregnation of macroporous alumina (Concentration of metal is corresponded to monolayer of CuCl₂ on macroporous alumina surface)

From

Monolayer of CuCl on alumina surface $= 0.095 \text{ g CuCl}/100 \text{ m}^2 \text{ of alumina}$

Surface area of macroporous alumina = $194 \text{ m}^2/\text{g}$

Monolayer of CuCl on alumina surface = $\frac{0.095 \times 194}{100}$

= 0.184 g CuCl/1 g of alumina

 $=\frac{0.184}{98.999}$

= 0.00186 mole CuCl/1 g of alumina

Starting chemical: CuCl₂

To obtain monolayer on macroporous alumina, CuCl₂ is used as the same molar concentration of CuCl.

Monolayer of CuCl2 on macroporous alumina surface

= 0.00186 mole CuCl₂ /1 g of alumina

 $= 0.00186 \times 134.45$

= $0.250 \text{ g CuCl}_2 / 1 \text{ g of alumina}$

From

Pore volume of macro porous alumina = $0.674 \text{ cm}^3/\text{g}$ of alumina

Amount of CuCl₂ used $= \frac{0.250}{0.674}$

So, amount of $CuCl_2$ used = 0.371 g $CuCl_2/cm^3$

A2 Simulated Diesel Fuel Preparation

Example: Preparation of 1000 cm³ simulated diesel (80%wt. Dodecane, 20%wt. of Paradiethylbenzene and 150 ppmw of Dibenzothiophene)

From

Density of Dodecane = 0.75 g/cm^3

Density of Paradiethylbenzene = 0.87 g/cm^3

Molecular weight of Dibenzothiophene (DBT) = 184.26

Density of simulated diesel $= \left(\frac{80 \times 0.75}{100}\right) + \left(\frac{20 \times 0.87}{100}\right)$

So, density of simulated diesel = 0.774 g/cm^3

Weight of simulated diesel = 0.774×1000

So, weight of simulated diesel = 774.00 g

Amount of Dodecane $= \left(\frac{80}{100}\right) \times 774 = 619.20 \text{ g}$

Amount of Paradiethylbenzene = $\left(\frac{20}{100}\right) \times 774 = 154.80 \text{ g}$

Dibenzothiophene concentration = 150 ppmw

$$=\frac{150}{10^6}$$

= 0.00015 g of S/g of simulated diesel

$$=\frac{0.00015}{32}$$

= 4.69×10^{-6} mole of S/g of simulated diesel

$$= (4.69 \times 10^{-6}) \times 184.26$$

= 8.64×10^{-4} g of DBT/g of simulated diesel

Amount of Dibenzothiophene = $(8.64 \times 10^{-4}) \times 774.00$

So, amount of Dibenzothiophene = 0.6685 g

APPENDIX B Calculations of Amount of Metal Loading on Adsorbents

B1 Amount of Metal Loading on Adsorbent

From

$$C_{i;1} = C_{i;2} \times T$$

$$M = C_{i,2} \times V_0 \times 10^{-6}$$

$$\%wt = \frac{M}{A_0} \times 100\%$$
(A1.1.1)

Where,

 $C_{i,1}$ = Concentration before dilution ($\mu g/ml$)

 $C_{i,2}$ = Concentration after dilution of metal solution ($\mu g/ml$)

T = Times of dilution

M = Amount of metal loading on adsorbent (g)

V_o = Initial volume of metal solution (ml)

%wt = Weight percent (%)

 A_0 = Weight of initial adsorbent (g)

Example: Amount of Ni²⁺ loading on macroporous alumina

Result data from AAS ($C_{Ni,2}$) = 2.30 μ g/ml

Times of dilution (T) = 5

Therefore, concentration before dilution (C_{Ni.1})

$$= 2.30 \times 5$$

 $= 11.50 \mu g/ml$

Initial volume of metal solution $(V_0) = 100 \text{ ml}$

So, amount of metal loading on macroporous alumina

$$= 11.50 \times 100 \times 10^{-6}$$

= 0.001150 g

Weight of initial adsorbent (A_0) = 0.0263 g

Weight percent (%wt)
$$= \frac{0.001150}{0.0263} \times 100$$
$$= 2.04 \%$$

APPENDIX C Calculation of Amount of Adsorption of Sulfur Compounds in Dynamic Adsorption Experiment

Cl Death-Volume of Fixed Bed Reactor

To find out the death-volume of fixed bed reactor, the breakthrough curve of simulated diesel fuel (80% dodecane, 20% paradiethylbenzene and 150 dibenzothhiophene) without adsorbent was performed in this study. By applying first moment of the breakthrough curve (μ), we can determine the death-volume:

$$\mu_1 = \mu = \int_0^\infty (1 - y) dV$$
 $y = \frac{c(V)}{c_0}$

Where µ: mean breakthrough volume

C: concentration of sulfur compounds in the feed (mole or g)

Figure C1. Breakthrough curve without adsorbent.

Hence, Death-volume = μ = 1.932 ml

C2 <u>Amount of Adsorption of Sulfur Compounds in Dynamic Adsorption</u> Experiment

Example: Adsorption of dibenzothiophene in simulated diesel fuel (72.6% dodecane, 20% paradiethylbenzene, 7% naphthalene, 0.4% phenanthrene, 150 ppmw sulfur content) on Ni²⁺ impregnated on mesoporous alumina

Setting parameter of breakthrough adsorption experiment:

Number of the collected vials	= 80
Collected time	= 4.50 min
Waste time	= 4.83 min
Wait time	= 5.94 min
Flow rate (F)	$= 0.4 \text{ cm}^3/\text{min}$
Death-volume	$= 1.932 \text{ cm}^3$
Diameter of grain	= 0.25 mm
Structural density (ρ_s)	$= 2.739 \text{ g/cm}^3$
Macroporous volume (V _M)	$= 0.009 \text{ cm}^3/\text{g}$
Mesoporous volume (V _m)	$= 0.654 \text{ cm}^3/\text{g}$
Microperous volume (V_{μ})	$= 0.000 \text{ cm}^3/\text{g}$
Mass of adsorbent	= 5.93 g
Density of simulated diesel fuel (d)	$= 0.774 \text{ g/cm}^3$
Particle density (ρ_{P})	$=0.575~\mathrm{g/cm^3}$
Bulk density $(\rho_{\scriptscriptstyle B})$	$= 0.675 \text{ g/cm}^3$
C ₀ (DBT)	= 150 ppm

 T_a = Waste time + Wait time/2

= 7.800 min

 T_p = Total time / Numbers of vials

= 10.440 min

u (superficial liquid velocity in empty column, cm/min)

= flow rate / column section

= 0.509 cm/min

Particle porosity
$$(\varepsilon_P)$$
 = Partical density \times V_M = 0.005
Interparticle porosity (ε_I) = 1- $\left(\frac{\rho_B}{\rho_P}\right)$ = 0.000

Total Macroporous volume
$$= V_M \times Mass$$
 of adsorbent

$$= 0.053 \text{ cm}^3$$

Total Microporous volume
$$= V_{\mu} \times Mass$$
 of adsorbent

$$= 0.000 \text{ cm}^3$$

Total Macroporous and Microporous volume

$$= 0.053 \text{ cm}^3$$

Total Bed porosity
$$(\varepsilon_B)$$
 = Total Macroporous and Microporous

volume/Volume of column

$$= 0.006$$

At the Collected vials number i:

Average time
$$= T_a + \left(i - \frac{1}{2}\right) \times T_p$$

Average volume of fuel =
$$(T_a \times F) + (i - \frac{1}{2}) \times T_p \times F$$

Amount of treated volume = Average volume of fuel – Death volume

Hence, Cumulative effluent volume of DBT

=
$$\mu_{DBT}$$

= 6.984 cm³
= 6.984 / mass of adsorbent
= 1.178 cm³g-adsorbent

Mass of cumulative effluent volume of DBT

$$= \mu_{DBT} \times d_{DBT}$$
$$= 0.946 \text{ g}$$

Amount of DBT in the column (M_{DBT})

$$= \mu_{DBT} \times d_{DBT} \times C_0$$

$$= 0.062 g$$

Amount of DBT adsorbed = $M_{DBT} \times (1 - \varepsilon_B)$

= 0.062 g

= 0.062×1000 /mass of adsorbent

= 62 mg/g-adsorbent

= 62 / molecular weight of DBT

= 0.336 mmole/g-adsorbent

Cumulative effluent volume of Naphthalene

$$=\mu_N$$

$$= 6.825 \text{ cm}^3$$

= 6.825 / mass of adsorbent

= $1.151 \text{ cm}^3/\text{g-adsorbent}$

Mass of Cumulative effluent volume of Naphthalene

$$= \mu_N \times d_N$$

$$= 0.925 g$$

Amount of Naphthalene in the column (M_N)

$$= \mu_N \times d_N \times C_0$$

$$= 7.057 g$$

Amount of Naphthalene adsorbed

$$= M_N \times (1 - \varepsilon_B)$$

$$= 7.015 g$$

= 7.015×1000 /mass of adsorbent

= 7015 mg/g-adsorbent

= 7015 / molecular weight of Toluene

= 54.732 mmole/g-adsorbent

Cumulative effluent volume of Phenanthrene

=
$$\mu_P$$

= 10.336 cm³
= 10.336 / mass of adsorbent
= 1.743 cm³/g-adsorbent

Mass of Cumulative effluent volume of Phenanthrene

$$= \mu_P \times d_P$$
$$= 1.340 \text{ g}$$

Amount of Phenanthrene in the column (M_P)

$$= \mu_p \times d_p \times C_0$$
$$= 0.570 \text{ g}$$

Amount of Phenanthrene adsorbed

=
$$M_P \times (1 - \varepsilon_B)$$

= 0.567 g
= 0.567 × 1000/mass of adsorbent
= 567 mg/g-adsorbent
= 567 / molecular weight of Toluene
= 3.181 mmole/g-adsorbent

Selectivity of DBT over Naphthalene

$$= \alpha_{Sul/Nap}$$

$$= \frac{q_{sul}/C_{sul}}{q_{Nap}/C_{Nap}}$$

$$= 2.275$$

Selectivity of Phenanthrene over Naphthalene

$$= \alpha_{Phe/Nap}$$

$$= \frac{q_{Phe}/C_{Phe}}{q_{Nap}/C_{Nap}}$$

$$= 2.275$$

CURRICULUM VITAE

Name: Ms. Sirapa Prateepamornkul

Date of Birth: February 14, 1985

Nationality: Thai

University Education:

2003-2006 Bachelor Degree of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

Academic Awards:

1. Certificates

- Completing training period from IFP, 2009.
- Academic presentation, Faculty of Science, Chulalongkorn University, 2007.
- The SCG talent scholarship (Runner-up), 2007.
- Completing training program from TOC-1/TOC-2 section of technology department, Thaioil Public Company Limited, 2006.

Proceeding:

 Prateepamornkul, S.; Malakul, P.; and Michel, T. (2009, April 22) Adsorptive removal of sulfur compounds from diesel using activated carbon and alumina modified with Cu(I) and Ni(II). <u>The 15th PPC Symposium on Petroleum</u>, <u>Petrochemicals</u>, and <u>Polymers</u>, Bangkok, Thailand.

