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The hydrophobic modification of sulfite cellulose fiber (CF) and cellulose
microfibril (CMF) was conducted by grafting 1-Octadecanol (180H) on the surfaces
via covalent coupling agent, Tolylene 2 4-diisocyanate (TDI), which induced the
isocyanate functionality onto the fibers surface. The grafting of 180H onto cellulose
fibers was confirmed by FTIR spectra with a peak that present a decreasing of the O-
H bond of the grafted fibers. The thermogravimetric analysis (TGA) indicates the
amount of grafting yield which is 4.38% and 5.79% for CF-g-TDI/180H and CMF-
g-TDI/180H, respectively. Moreover, the surface morphology and hydrophobicity of
the grafted fibers and the PP-based composites were investigated by scanning
electron microscopy (SEM) and static contact angle measurement which resulting in
the improvement of the interfacial interaction between cellulose fibers and pp
matrix.
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