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CHAPTER 1

INTRODUCTION f

1.1 Backgrounds

At present, digital imaging technelogies have been developed rapidly.
The use of digital devices such as digital camera, displays prevails in many
industries, including the graphic arts indusiry. CRT monitors are commonly
used as soft proofing prior to printing. In a process of color image reproduction,
a digital camera is becoming an important input device due to its expediency.
An image captured with digital cameras is readily digitized and viewed on a
monitor. The image displayed on the monitor is normally edited before
transferring to other stages in the proeess. When viewing the image under
different viewing condition, its color appearance usually differs. The
perception of color by the human visual system is different from the sensitivity
of digital devices” sensors. Human sensation of color is the processing of light
energy first by eye and later by the brain. The human-visual system perceives
colors according to viewing conditions under which images are viewed. A
visual mechamsm called chromatic adaptation is active to discount the color of
light source used to illuminate the images. On the other hand, sensors of digital
devices response to the total amount of light energy. For example, a picture of
white paper taken under a yellowish light will look more yellowish than the

real scene seen by eyes. This is because the chromatic adaptation mechanism
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takes place; therefore, the color of the light source is removed from the scene,
preserving the perception of white paper. In contrast, the picture from digital
cameras is the result of the light reflected from the paper, which has more
energy in long wavelength (yellowish) due to the effect of light source. Thus,
to achieve successful color image reproduction, a color appearance model
capable of predicting color appearance under various viewing conditions is
needed. An image is transferred from one stage to another in the process of
color reproduction wiih the color appearance match throughout the process due
to the use of color appearance model. In 1997, the International Commission on
INlumination (CIE), developed the color appearance model namely
CIECAMY7s' for general use. In 2002, CIECAMO2 was proposed to replace
CIECAM97s. The CIECAMO2 is based on CIECAM97s but predicts more

correctly chroma and saturation.””

The CIECAMO2 is able to predict the appearance of colors under different
viewing conditions. In so doing, it requires input parameters associated with
viewing conditions: surround, background, luminance of adapting field and a
reference white. The reference white of the scene is the key to correctly
predicting the color appearance. This is because the reference white represents
the eolor of light source illuminating the scene. When images are hardcopies or
in digital form with known viewing conditions, the CIECAMO02 can be applied
without any difficulty. However, when an image from a digital camera is used,
the viewing conditions under which the image was taken is usually unknown,

resulting in an unknown reference white for the image. In order to apply



CIECAMO2 successfully, the reference white needs to be estimated from the
image. The correctly estimated reference white applied to CIECAMO02 will
provide a good color match when transferred to different viewing conditions.
There are a number of ways to estimate reference whites from images, for
example, Gray world"’, Modified gray world®, White patch retinex",
Alternatively, the standard reference whites such as CIE illuminant D50 or CIE
illuminant D65 can also be applied direetly. This study thus investigated the
way to successfully apply CIECAMO2 to images having no pre-defined
reference white for use in the process of color image reproduction. Four
methods of estimating reference white: Gray world, White pate, CIE illuminant
D65 and the white point of the monitor were tested to determine which method
could be best applied to CIECAMO2 in order to produce good color matches

for images with unknown reference white.

1.2 Objective

To investigate the accuracy of methods of reference-white estimation as
to accommodate the applications of CIECAMOZ in ¢olor image reproduction,

which involve an image with unknown reference white.

1.3 Scope of research

Four methods of estimating reference white: White patch (WP), Gray
world (GW), CIE illuminant D65 (D65) and the white point of the monitor

(CRT), were tested in this study. Three digital images with different scene



contents were perturbed with yellow and then used as originals. CIECAMO02
was applied to produce color appearance matches to the originals under an
equal energy white (Sg) condition. A series of originals and reproduction
images was shown on a CRT monitor in a darkened room. Visual experiments
were conducted to identify best color matches by means of the category
judgment and the memory matching techniques. Fifteen observers with normal

color vision took part in the experiment.

1.4 Expected outcomes

An appropriately accurate method of reference-white estimation with

respect to the use of CIECAMO2 for images with unknown reference white.

1.5 Contents of the thesis

This chapter discusses the backgrounds, objective, expected outcome, as
well as the scope of this study. In Chapter II, the theory and literature reviews
of this research are described. The experimental set-up is explained in Chapter
III. Chapter IV provides details of experimental results together with their
discussions, which are followed by conclusions and suggestion of the thesis in

Chapter V.
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CHAPTER II

THEORY AND LITERATURE REVIEW

2.1 Theory

This thesis concerns the application of CIECAMO2 for digital images
having no information on their reference whites. To fully understand the aim of
this study and how the experiment had been set up, some basic theories need to
be addressed. These include the perception of color (Section 2.1.1), the CIE
color system (Section 2.1.2), some color-appearance phenomena (Section
2.1.3), viewing eondition (Section 2.1.4), chromatic adaptation (Section 2.1.5),
color appearance model (Section 2.1.6), methods of estimating reference whites

(Section 2.1.7), and psychophysics (Section 2.1.8).

2.1.1 The percéption of color *'°

Color perception involves three basic factors, i.e. the source of light,
objects under illumination; and the eyes and neural responses of observers. The
visual process begins when radiant energy from the source strikes the object
and some of this energy is reflected and passes through the lens to strike the
retina in the eye. The retina is made up of a complex network of cells and
neurons. The retina consists of a large number of cells which are sensitive to

light; these receptors cells are of two kinds, rods and cones. Rods are sensitive



to brightness of light only at low illuminate. Cones are cells of three different
types, which respond to red, blue and green regions of light, respectively, and it
is through these that all colors are seen. When the three types of cones are all
stimulated equally, the eye and the brain see achromatic, but if one type of cone
is stimulated more than the other two, the image appears to be tinted with the

corresponding primary hue.

The most central part of the retina is called the fovea and it has the
largest concentration of cells. The fovea vision is used for distinguishing very
fine detail such as reading and seeing objects at distance. Outside the fovea, the
number of cones is greatly reduced and they are situated quite apart from one
another. The rods are completely absent from the fovea and fall out to the
extreme periphery. The signals leave the retina via the optic nerve and
eventually arrive at back of the brain, The brain signals are interpreted through

mental impressions that result in perception.

2.1.2 The CIE color system

The CIE colorimeétric “system- comprises the essential standards and
procedures of measurément that are necessary to make colorimetry a useful
tool in science and technology. The CIE system is usually employed in
connection with instruments for color measurement. This system has been
established by the Commission Internationale de I" Eclairage, the French title
of international committee, or International Commission of Illumination in

1931. The CIE system started with the pn:‘:mise developed on the human color



perception process that stimulus for color is provided by the proper
combination of a source of light and on observer '

2.1.2.1 Calculation of tristimulus values from spectral data'*"

Trisimulus values are calculated from the emitted spectrum of an object,
a CIE standard illuminant, and one of the CIE standard observers. The CIE
tristimulus values X, Y and Z of a color are obtained by multiplying together

the relative power 8§, of @ CIE standard illuminant, the reflectance factor R, of
the object and the standard observer functions x,,y,,z, . The products are

summed up for all the wavelengths in the visible spectrum, and then their sums
are normalized, resulting in the CIE tristimulus values. The corresponding

mathematical equations shown as follows:

X=kY S,R,xAA (2.1)
5

Y=kY S,R,yAL (2.2)
A

=k S,R,ZAN (2.3)
A

100

k=" (2.4)
ZSARAJ”ﬂi
A

where §,is a CIE illuminant, R, is the object’s spectral reflectance
factor, x,,¥, and z, are the CIE standard observer color-matching functions,

Z represents summation across wavelength, k is a normalizing constant, and
A



AA is the measurement wavelength interval (for objects it is usually either 10 or
20 mm. By definition, CIE color-matching functions are defined from 360 nm

to 780 nm in 10 nm.

2.1.3 Color appearance phenomena

Two stimuli with identical CIE XYZ trisimulus values will match in
color for an average observer as long as certain constraints are followed".
These constraints inelude the retinal focus of stimulation, the angular subtense,
and the luminange level, In addition, the two stimuli must be viewed with
identical surrounds, backgrounds, size, shape, surface characteristics,
illumination geometry, and ete. If any of these constraints are violated, it is
likely that the color match will no longer hold. However, in many practical
applications, the constraints necessary for successful color match prediction
using simple tristimulus colorimetry can not be met. It is these applications that
require colorimetry to be enhanced to include the influences of these variables.
Such enhancements are color appearance models. The various phenomena that
“break™ the simple XYZ tostimulus system-are. the topics of the following
sections. Fig. 2.1 illustrates a simple example of one. color-appearance
phenomenon: simultaneous contrast, or induction. In Fig. 2.1 (a), the two gray
patches with identical XYZ trisimulus values match in color because they are
viewed under identical conditions (both on the same gray background). If one
of the gray patches is placed on a white background and the other on a black

background, as in Fig. 2.1 (b), the two patches no longer match in appearance.



Their tristimulus values, however, remain equal. Since the constraint that the
stimulus is viewed in identical conditions is violated in Fig. 2.1 (b), tristimulus
colorimetry can no longer predict a match. Instead, a model that includes the
effect of background luminance factor on the appearance of the patches would

be required.

:ﬁ L(;/
Fig. 2.1 An example of simultancous contrast. i_ﬁeJ gray patches on the gray

background (a) are physically identical to these on the white and black

backgrounds (b). "

There\are' many color-appearance thaf | affect changes of color
appearance due to changes of viewing condition. These phenomena justify the
need to develop color appearance models and define the required input data and
output predictions. Some of the phenomena are discussed in the following

sections.



2.1.3.1 Simultaneous contrast

Fig. 2.1 illustrates simultaneous contrast, as previously described. The
two identical gray patches presented on different backgrounds appear distinct.
The black background causes the gray patch to appear lighter, while the white
background causes the gray patch to appear darker. Simultaneous contrast
causes a stimulus to shift in color appearance when the color of its background
is changed. These apparent color shifts follow the opponent-colors theory of
color vision in a contrasiing sense along the opponent dimensions. In other
words, a light background induces a stimulus to appear darker, a dark
background induces a lighter appearance, red induce green, green induces red,
yellow induces blue, and blue induce yellow. Josef Alhﬁrs'ﬁ, in his classis study
Interaction of Color, explored various aspects of simultaneous contrast and
taught artists and designers how to avoid the pitfalls and take advantage of the
effects. More-complete explorations of the effect are available in classic color-
vision texts such as Huwich”, Bc-}rntun]s, and Fvans'®. Cornelissen and
Brenner”_explored . the relationship —between. adaptation and chromatic
induction based on the concept that induction can be at least partially explained

by localized ¢hromatic adaptation. Blackwell and Buchsbauni’' described some

of the spatial and chromatic factors that influence the degree of induction.

Robertson™ presented an interesting example, reproduced in Fig. 2.2, of
chromatic induction that highlights the complex spatial nature of this

phenomenon. The red squares in Fig. 2.2 (a) or the cyan squares in Fig, 2.2 (b),



are all surrounded by the same chromatic edges (two yellow edges and two
blue edges for each square). If chromatic induction were strictly determined by
the colors at the edges. then all of the red squares and all of the cyan squares
should appear similar. However. it is clear from Fig. 2.2 that the squares that
appear to be falling on the vellow stripes are subject to induction from the
yellow and thus appear darker and bluer. On the other hand, the squares falling
on the blue stripes appear lighter and.wellower. Clearly, the simultaneous

contrast for these stimuli depends more on the spatial structure than simply the

b}

Fig. 2.2 Stimuli patterns that illustrate the complexity of simultaneous

local edges.

i
contrast.

Thelocal contrasts, for the lefl and right sets of squares are identical.
However, simultaneous contrast is apparently driven by the stripes on which

the square patches appear 10, rest.

2.1.3.2 Hunt Effect (Colorfulness increases with luminance)

The Hunt effect obtains its name from a study of the effects of light and

dark adaptation on color perception published by Hunt™. In that study. Hunt
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collected corresponding colors data via haploscopic matching, in which each
eye was adapted to different viewing conditions and matches were made
between stimuli presented in each eye. Fig. 2.3 shows a schematic
representation of Hunt’s results. The data points represent corresponding colors
for various level of adaptation. What these results show is that stimulus of low
colorimetric purity viewed at 10,000 ed/m’ is required to match a stimulus of
high colorimetric purity viewed at | cd/m’. Stated more directly, as the

luminance of a given gelor stimulus is increased, its perceived colorfulness also

increases.
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Fig. 2.3 A schematic representation of corresponding chromaticities across
changes in luminance showing the Hunt-effect. Points are labeled with

i 15
luminance levels.

2.1.3.3 Stevens effect (contrast increase with luminance)

The Stevens effect is a close relative of the Hunt effect. While the Hunt
effect refers to an increase in chromatic contrast (colorfulness) with luminance,

the Stevens effect refers to an increase in brightness (or lightness) contrast with
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in creasing luminance. For the purposes of understanding these effect, contrast
should be thought of as the rate of change of perceived brightness (or lightness)

with respect to luminance.

Like the Hunt effect, the Steven effect draws its name from a classic

psychophysical study (Stevens and Stevens®*). In this study, observers were
.

asked to perform magnitude estimations on the brightness of stimuli across
various adapting conditions. The results illustrated that the relationship
between perceived brightness and measured luminance tended to follow a
power function. This power function is sometimes called, in psychophysics, the
Stevens Power law. A relationship that follows a power function when plotted
on linear coordinates becomes a straight line (with slope equal to the exponent
of the power function) on log-log coordinates. Typical results from Stevens and
Stevens™ experiments are plotted on logarithmic axes in Fig. 2.4. That figure
shows average relative brightness magnitude estimations as a function of
relative luminance for four different adaptation levels. The figure shows that
the slope of this relationship (and thus the exponent of the power function)

increases with increasing adaptation lnminance.

The Stevens effect indicates that-as the luminance level increases, dark
colors will appear darker and light colors will appear lighter. While this
prediction might seem somewhat counterintuitive, it is indeed the case. The
Stevens effect can be demonstrated by viewing an image at high and low
luminance levels. A black-and-white image is particularly effective for this

demonstration. At a low luminance level, the image will appear to have rather
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low contrast. White areas will not appear very bright and, perhaps surprisingly,
dark areas will not appear very dark. If the image is then moved to a
significantly higher level of illumination, white areas appear substantially

brighter and dark areas appear darker - the perceived contrast has increased.
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Fig. 2.4 Changes in lightness contrast as a function of adapting luminance

according to the Stevens effect,'’

From Steven and Hunt effect, when the luminance level was increasing
the scene will appear more contrast and more colorfulness. Fig. 2.5 shown the

images that has different luminance level.
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Fig. 2.5 The images that were shown in difference luminance level."”

2.1.4 Viewing Condition

Some of the various color appearance phenomena that produce the need
for extensions to basic eolorimetry were presented in the previous sections. It is
clear from these-phenomena-that various-aspects of the visual field impact the
color appearance of stimulus. Different configurations of the viewing field will
result in different cogmitive-interpretations of a stimulus and, in turn, different
color per¢eptions. There-are various.definitions of standard viewing conditions
used in different‘industries. These attenmpt 10 minimize ditficulties with color

appearance by defining appropriate viewing field configurations.
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2.1.4.1 Configuration of the Viewing Field

The color appearance of stimulus depends on the stimulus itself as well
as on other stimuli that are nearby in either space of time. Temporal effects,
while important, are generally not encountered in typical color-appearance
applications. They are dealt with by ensuring that observers have had adequate
time to adapt to the viewing environment and presenting stimuli that do not
vary in time. (Howeyer, there are several recent applications, such as digital
video, that will push celor-appearance studies toward the domain of temporal
variation.) The spatial configuration of the viewing field is a way of critical
importance. (Since the eyes are constantly in motion, it is impossible, in
practical situations, to separate spatial and temporal effects.) The ideal spatial
representation of the visual field would be to have a fully specified image of
the scene. Such an image would have 1o have a spatial resolution greater than
the visual acuity of the fovea and each pixel would be represented by a
complete spectral power distribution. With such a representation of the entire
visual field, one would have almost al! of the information necessary to specify
the color appéarance of any element of the scene; however, the cognitive
experience of the observer and temporal information would still be missing.
Some interesting recent data on the impact of the spatial configuration of

stimulus and surround were published by Abramov et al.”

Such a specification of the viewing field is not practical for several
reasons. First, the extensive data required are difficult to obtained accurately,

even in a laboratory setting. It is not plausible to require such data in practical
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applications. Second, even if the data could be obtained, its huge volume would
make its use quite difficult. Third, assuming these technical issues were
overcome, one would then require a color appearance model capable of
utilizing all of that data. Such a model does not exist and is not likely to be
developed in the foreseeable future. When the inter-observer variability in
color-appearance judgments is considered, such a detailed model would

certainly be unnecessarily complex.

Given these limitations, the situation is simplified by defining a
minimum number of important components of the viewing field. The various
color appearance models use different subsets of these viewing-field
components. The most extensive set is the one presented by Hunt"™*’ for use
with his color appearance model. Since Hunt’s definition of the viewing field
includes a superset of the components required by all other models, his

definitions are presented in four components:

1. Stimulus
2. Proximal field
3. Background

4. Surround
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Surround

Background

Scene

Fig. 2.6 Schematically represents these components of the visual field.

Stimulus

Stimulus is the color element for which a measure of color appearance is
desired. Typically the stimulus is taken to be a uniform patch of about 2 degree
angular subtense. A stimulus of approximately 2° subtense is assumed to
correspond to the visual field appropriate for use of the CIE 1931 standard
colorimetric -observer. The 1931 observer is considered valid for stimuli
ranging from 1 degree to 4 degree in angular subtense™. Trichromatic vision
breaks down for substantially smaller stimuli. The CIE 1964 supplementary
standard colorimetric observer should be considered for use with large stimuli

(10° or greater angular subtense).

When viewing real scenes, observers often consider an entire object as

“uniform” stimulus. For example, one might ask, what color is that car? Even
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though different areas of the car will produce widely different color
appearances, most observers would reply with a single answer. Thus the
stimulus is not a 2° field, but rather the entire object. This occurs to a limited
extent in images. However, it is more conceivable for observers to break an

image apart into smaller image elements.

Proximal Field

A proximal field is the immediate environment of the stimulus
extending for about 2° from the edge of the stimulus in all, or most, directions.

The definition of the proximal field is useful for modeling local contrast effects

such as lightness of chromatic induction.

Background

The background is defined as the environment of the stimulus, extending
for about 10° from the edge of the stimulus (or proximal field, if defined) in all,
or most, directions. Specification of the background is absolutely necessary for
modeling simultaneous contrast. If the proximal field -is different, its

specification can be used for more complex modeling,

As with the proximal field, defining the background in imaging
applications 1s difficult. For given image element, the background usually
consists of the surrounding image areas, the exact specification of which will

change with image content and by location in the image. Thus precise
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specification of the background in images would require point-wise
recalculation of appearance-model parameters. Since this is impractical in any
typical applications, the background is usually assumed to be constant and of
some medium chromaticity and luminance factor (e.g., a neutral gray with 20%

luminance factor).

Surround

A surround is the field outside the background. In practical situations,
the surround can be considered to be the entire room or the environment in
which the image (or other stimulus) is viewed. For example, print images are
usually viewed in an illuminated (average) surround, projected slides in a dark
surround, and video displays in a dim surround. Thus, even in imaging
applications, it is easy to specify the surround. It is the area outside the image

display filling the rest of the visual field.

Specification of the surround is important for modeling induction, flare
(stimulus and within the eye), and overall image contrast effects. Practical
difficulties arise in specifying the surround precisely when typical situations
are encountered, particularly those involving a wide range of surround relative

luminances and inhomogeneous spatial configurations.
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2.1.5 Chormatic Adaptation

Chromatic adaptation is the human visual system’s capability to adjust
to widely varying colors of illumination in order to approximately preserves the
appearance of object colors'. Chromatic adaptation is the largely independent
sensitivity regulation of the mechanisms of color vision. Often it is considered
to be only the independent changes in responsivity of the three types of cone
photoreceptors. However, 1t is important to keep in mind that there are other
mechanisms of color vision (e.g., at the opponent level and even at the object
recognition level) that are capable of changes in sensitivity that can be

considered mechanisms of chromatic adaptation.

To see an example of chromatic adaptation, consider a piece of white
paper illuminated by daylight. When the paper is in a room with incandescent
light, it still appears white despite the fact that the energy reflected from the
paper has changed from predominantly blue to predominantly yellow. Fig. 2.7
shows the example of chromatic adaptation; Fig. 2.7 (a) is the original image.
Fig. 2.7 (b) is the image that was made by using green filter. And Fig. 2.7 (¢) is
the image that only banana was green by using the same filter of Fig. 2.7 (b).
The effect of chromatic adaptation was found in the banana of Fig. 2.7 (b) and

Fig. 2.7 (c), the banana looks like different colors but they are the same stimuli.
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Fig. 2.7 The example of chromatic adaptation: (a) is the original image, (b) is
the image that was used green filter and (¢) is the image that was used the same

filter of (b) only in banana."”

2.1.6 Color appearance model

A colorappearance model tries to model how the human visual system
perceives colors ol an objeet under different lighting conditions and with
different backgrounds. It aims to make a mathematical link between the basic
colorimetry of light sources, materials and the viewing environment and the
apparent color.of a given stimulus in that environment, as described by its color
appearance attributes. An image that is viewed unider one lighting condition can
be adjusted to appear to have the same colors if it were viewed under a
completely different lighting condition. The  ability of a color appearance
model do_perform this task means that it can_be used to_develop a device-
independent way of storing images. For example, if an image is scanned into a
computer, the color appearance model. knowing the scanner's illumination
conditions. can transform the image into its internal representation. When the

image would be displayed on a monitor or printed, again the color appearance,
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knowing the output display's illumination conditions. can transform its internal
representation on the image to the correct representation for the output

i )
display™.

For example, Fig. 2.8 (a) is one of color appearance phenomena,
simultaneous contrast, a gray patch on the black background looks lighter than
a gray paich on the white background but they are actually the same color
patches. Fig. 2.8 (b) the patch on the white background was predicted by
CIECAMO2 color appéarance model™ and looks more like the patch on the

black backgroundthan Fig, 2.8 (a).

(b)

¥ F - . -t

Fig. 2.8 The example ol using color appearance model: (a) is the same color
patch that was placed on different backgrounds, (b) is the patch that was
predicted from CIECAMO2 (right paich) to make two patches look the same on

different backgrounds.™
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2.1.6.1 The CIECAMO2 color appearance model

The CIECAMO2 color appearance model builds upon the basic structure
and form of the CIECAM97s color appearance model." It provides a viewing
condition specific means for transforming tristimulus values to or from
perceptual attribute correlates. The two major pieces of this model are a
chromatic adaptation transform and equations for computing correlates of
perceptual attributes, such as brightness, lightness, chroma, saturation,
colorfulness and hue. The chromatic adaptation transform takes into account
changes in the chromaticity of the adopted white point. In addition, the
luminance of the adepted white point can influence the degree to which an
observer adapts to that white point. The degree of adaptation or D factor is
therefore another aspect of the chromatic adaptation transform. Generally,
between the chromatic adaptation transform and computing perceptual
attributes correlates there is also a non-linear résponse compression. The
chromatic adaptation transform and D factor was derived based on
experimental data. The non-linear response compression was derived based on
physiological data and other considerations. The perceptual attribute correlates
were derived by comparing predictions to magnitude estimation. experiments,
such as various phases of the LUTCHI data’', and other data sets, such as the
Munsell Book of Color. Finally the entire structure of the model is generally
constrained to be invertible in closed form and to take into account a sub-set of

color appearance phenomena.’
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Steps for calculate CIECAMO2 forward model

Step 1 Set the viewing condition paramster of CIECAMO02
It is convenient to begin by computing viewing condition dependent
constants. First the surround is selected and then values for F, ¢ and Nc can be

read from Table 2.1.

Table 2.1 Viewing condition parameters for different surrounds

Surround F C _Ne¢
Average 1.0 0.69 1.0
Dim 0.9 0.59 0.95
Dark 0.8 0.52 0.8

The value of F| can be computed using Equations 2.1 and 2.2, where L,

is the luminance of the adapting field in ¢d/m’.

g =3
5T +1

(2.5)

F,o=02kGL)s 0= Y61, (26)

The value n is-a function of the luminance factor of the background and
provides ‘a very limited model ‘of spatial color appearance. The value of n
ranges from 0 fora background luminance factor of zero to 1 for a background
luminance factor equal to the luminance factor of the adopted white point. The
n value can then be used to compute Ny, N, and z, which are then used during
the computation of several of the perceptual attribute correlates. These

calculations can be performed once for a given viewing condition.
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=1 2.7
n y (2.7)
l 0.2
Ny, =N, = u.?zs(-] (2.8)
n
z2=148++n (2.9)

Step 2 Compute the chromatic adaptation

Once the viewing condition parameters have been computed, input
tristimulus values can be processed. The processing begins with the chromatic
adaptation transform. This transform consists of three major components. First
is the space in which the transform is applied. Second is the specific transform

and third is a model of incomplete adaptation.

The tristimulus values (XYZ) are transformed to CATO02 space (RGB)

by using the equation below.
R
G|l=Mgpel ¥ (2.10)
B

0.7328  0.4296 —0.1624
M e = | = 07036 1.6975 © 0.0061 (2.11)
0.0030 0.0136 0.9834

The D factor or degree of adaptation is a function of the surround and L,
and in theory could range from 0 for no adaptation to the adopted white point
to 1 for complete adaptation to the adopted white point. The D factor is

computed by using Equation 2,12,
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e F{l—[ﬁ]e[i&fﬁ]] 2.12)

Given the D factor and data transformed using Mcatoz, the full

chromatic adaptation transform can be written:

% [[Yf*]+ (i -u]]fa @.13)

w

Where the w subseript denotes the corresponding value for the white
point and the ¢ subscript denotes stimuli values. G and B, can be calculated in
a similar manner, as can R, G, and B.,,. Equation 2.13 includes the factor Y,
in the calculation so that the adaptation is independent of the luminance factor

of the adopted white point.

The R., G. and B, values are then converted to Hunt-Pointer-Estevez
space’” by using Equation 2.14 before the post-adaptation nonlinear response

compression is applied.

R R,
G' =MHME.:'T¢2 Ge (2.14)
B B,

0.38971 . 0.68898  —0.07868
M, =|-0.22981 1.18340. 0.04641 (2.15)
0.00000  0.00000  1.00000

1.096124 —0.278869 0.182745
M2, =| 0454369 0473533 0.072098| (2.16)
~0.009628 —0.005698 1.015326
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And the last step for achromatic adaptation, the post-adaptation non-
linear response compression is then applied to the output from Equation 10.
This function is based on a generalized Michaelis-Menten equation™ and is
consistent with Valeton and van Norren’s physiologically derived data™.

400(F, R'/100)"*
W= 1+ 0.1
27.13 + (F,R/100) " |

T

(2.17)

Step 3 Compute the perceptual attribute correlates

Preliminary Cariesian coordinates (a, b) are computed from the output

from Equation 2.17. These values are used, in turn, to compute a preliminary

magnitude t.
B
O 7 i 2.18
g A i)
b=(1/9KR" +G',=28",) (2.19)
7 g2
e[a +b ) (2.20)

"R+, +21/20)8",)

A hue angle (h) is computed and this angle is also used to compute an
eccentricity factor, e This ‘eccentricity value ranges from 0.8 to 1.2 as a

function of the value of h.

h=tan"(h/a) (2.21)

e =(125ﬂﬂ N, N.-h]}“[""%"'zj""lg] (2.22)

13
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The achromatic response (A) can then be computed, as can be seen in
Equation 2.23 and the value for lightness (J) is computed using the same

equation as for CIECAM97s.
A=[2R ,+G',+(1/20)B',-0.305|N,, (2.23)
J=100(4/ A4, )* (2.24)

Given lightness and the temporary magnitude, t, the value for chroma

can then be computed as shown in Equation 2.25.

C=1"J77100(1.64 029" " (2.25)

Finally, the tristimulus values (X, Y, Z) are transformed to CIECAMO02
color space that have three major values, lightness (J), Chroma (C) and hue (h).
The data output from CIECAMO02 forward model (J, C, h) can be used for
predicting the colors in other environments via CIECAMO2 inverse model with
appropriate viewing parameters of the second environment. The equations of

CIECAMO2 inverse model are given in Appendix A.

2.1.7 Reference white estimation

When digital images are taken under unknown light sources, one form
of reference white estimations is applied in order to process the images into
further stages such as color correction. Two methods of reference white

estimations used in this study are described below.
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Gray world

The chromaticity of the illuminant is determined from the average of all
the pixels in an image. Gray world assumes that the average color of the scene
is gray and that any departure from this average in the image is caused by the
color of the illuminant. The performance of this method will be poor when the
test images have different average distributions from the ones used for

computing the database average.’

White patch

The white patch algorithm determines white from the maximum R,
maximum G and maximum B found in the image, and hence the illuminant
color. This algorithm has roots in the family of retinex algorithms, but it is only

equivalent to it under restricted circumstances.”

2.1.8 Psychophysics

A scientific method of finding a relationship between physical stimuli
intensity and human perception is called psychophysics. This study conducted
visual | experiments -to <identify ‘a good performing method of estimating
reference white using some forms of psychophysics. They were the memory

viewing and category judgment techniques, which are described below.
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2.1.8.1 Memory viewing technique

In the memory viewing technique®, the original images and the
reproduction images cannot be viewed at the same time. It is a technique that
allows observers to fully adapt to a particular viewing condition. Observers
have to adapt to an initial set of conditions for at least 1 minute in order to
reach the steady state of adaptation before viewing images under these
conditions. After memorizing the images, observers adapt to the second
viewing conditions for at least 1 minute, the view the reproductions under the

second conditions without viewing the original again.

2.1.8.2 Category judgmem} g

This scaling method is based on Torgerson’s Law of Categorical
Judgment’’. The law of categorical judgments may be expressed

mathematically as

B, —R, =z, (-::r_f +o, -2r,0,0, )i (2.26)
where
B, =the mean location of the k" category boundary,
R, =the mean response to stimulus J,
o, =the dispersion of the k" category boundary,

o, =the dispersion of stimulus j,
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r, =the correlation between momentary positions of stimulus k and

category boundary k on the scale,

z, = the normal deviate corresponding to the proportion of times

stimulus j is placed below boundary k.

Equation 2.26 represents the complete law of categorical judgments.
Thurstone™® stated five cases for that law, and Mosteller’’ has since added a
sixth case. Each of these cases invokes certain assumptions, and the form of
expression for seale values varies for simplifying assumptions. Table 2.2 sets
forth the expressions for the six cases. Case I assumes replications over the
judgments of one observer. For Case II, replications are over observers. In both
cases the expression is the same as in Equation 2.26. Case III makes the
simplifying assumption that the discriminal processes are independent, and thus
their correlations are zero. Case IV assumes that, in addition, the discriminal
dispersions are nearly equal, whereas Case V assumes that they are actually
equal. Case Va relaxes the assumption of Case V in that the correlation of the

discriminal, processes may simply be constant rather than zero. It is common

practice- to_set the scale unit equal to &(2)"* In Case V and equal to
-::r{z{l—ru]]”2 in Case Va, so that the scale unit is simply equal to z,in both

Casgs.
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Table 2.2 Cases of the law of category judgment

Case o Constraints r Constraints Expression
I o, unrelated to o, O<r, =1 Equation (2.26)
i o, unrelated to o, O<r, <1 Equation (2.26)
1
1 o, unrelated to o, r, =0 B,—R, =z ("'.-‘7 +o? )3
1
v 0,=0, r; =0 B, -R, =(2"212), (67 + 02 )
]
V 9, =0; rﬁf.:u Hk_RJ :Zr}(z}i
|
Va I Sl - Bk_szzu(z[l_rﬂ])i

i W . —— e —
In practice, we seldom know the values of @ and r (although they can be
estimated). Instead, experimenters assume one of the cases. Occasionally, Case
I1I is assumed to apply, but more often Case V or Va is used so that the scale
values are simply values of z. In practice, then, we usually need only to
determine the proportion of times one stimulus 1s preferred over another and
calculate the standard normal deviate corresponding to that proportion to
determine the interval-scale wvalue of a stimulus. This can be done by
comparing each stimulus with every other stimulus in turn to decide which
stimulus shows more of the attribute under study. The steps for calculating the

category judgment are given in Appendix B,

2.2 Literature review

Moroney et al’ described the newly proposed of color appearance
model, called CIECAMG2, which is based on CIECAM97s but included many
revisions and some simplifications. A partial list of revisions includes a linear

chromatic adaptation transform, a new non-linear response compression
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function and modifications to the calculation for the perceptual attribute
correlates. The forward equations of the CIECAMO?2 are also given in his paper.
Li et al.’ showed the three major drawbacks of the CIECAM97s model, and
how the new model performed in various color regions. Both CIECAM97s and
CIECAMO2 models were tested using available data groups and the results are
consistent in that CIECAMO2 performed as well as, or better than,
CIECAMO7s in almost all cases. There was a large improvement in the
prediction of saturation. Tn addition, CIECAMO02 model can be considered as a
possible replacement for EI_ECM?TS for all image applications. But
CIECAMO2 has to use the reference white in model’s prediction. That problem
makes CIECAMO2 hard to use with general digital images because there are
not reference white data attached with digital images. This thesis thus tried to
estimate the reference white from digital images by using reference white
estimation models (Gray world and White patch), standard reference white
(D65), and the white point of the viewing monitor, so as to find the parameter
that can be used with unknown reference white images to make CIECAMO2

predict the exact result.



CHAPTER III

EXPERIMENT

3.1 Apparatus

3.1.1 CRT monitor
Model: LaCIE Blue Electr22B4
Size: 22 inches (view available: 20 inches)
Maximum resolution: 2048 x 1536 dpi
Dot pitch: 0.24 mm.
3.1.2 Power PC Intel Pentium III processor
3.1.3 Spectrophotometer: Gretag Macbeth spectrolino scan

3.1.4 Calibration software: Profile Maker Pro 5.0

3.2 Experimental setup
3.2.1 Monitor calibration and characterization

The CRT monitor was calibrated using Profile Maker pro version 5.0
with itscwhite point set to CIE illuminant D50, It was then characterized using
the-GOG model”’. The performance of monitor characterization was tested
based on 27 color patches that were generated from combinations of RGB (0,

127, 255) values. It was found to be AE*,;= 0.7120.51.
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3.2.2 Original images

Three images were selected from a set of [SO standard images. The
images are shown in Fig. 3.1. The first scene, “Fruits”, is a high saturation
picture containing many kinds of fruits in a brown basket. The second scene,
*Wine”. is an achromatic picture. The third scene. “Orchid™. is a high contrast

picture containing a white dish on a dark background.

ISO image Yellow filter

150 image Yellow filter

ISO image Yellow filter Orchid

Fig. 3.1 Experimental original images obtained from applying yellow filters to

the ISO images.
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3.2.3 Reproduction images

The original images were processed through the CIECAMO02 color
appearance model to obtain reproduction images. In this experiment, four
reference whites were input to the forward CIECAMO2 model: white patch
(WP), gray world (GW), CIE Hluminant D65 (D65) and white point of the
CRT monitor (CRT). Thus, four reproduction images were produced for one
original images’ scene. The total number of reproduction images generated was
then 12 (4 models x 3 scenes). The estimation methods to obtain the four

difference reference whites used in the forward model of CIECAMO2 are

described below.

White patch (WF)

The maximum valués of channels R, G and B (Ryux, Gax, Bmax) of the
original image were used as a reference white. By using GOG model, the RGB

data were transformed to XYZ tristimulus values (XY .Z..).

Rinaxs Ginaxs Bpnax ¥ RNNEy
GOG model

Gray world (GW)

Based on the gray world lhf:{:-r}f‘*, the average values of channels R, G
and B of the original image were taken to be the reference white. The average

RGB were processed via the GOG model to obtain the XYZ tristimulus values
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(XYZ). After that, the XYZ tnstimulus values were transformed to the CIE
chromaticity coordinates (xy). The xy chromaticity coordinate of that color was
then used as a chromaticity coordinate of the reference white. The XYZ
tristimulus values of the reference white (X, Y.Z,) were estimated from that

chromaticity coordinate with a maximum luminance factor (Y) of 100.

Ra\rcragn G:wragem wamg: — o — e x},rY

GO model l

X YuZy +—— xyY.(Y.~=100)

The chromaticity coordinates (xy) were calculated using Equation 3.1
and Equation 3.2
X = X/(X+Y+Z) (3.1)

y = YI(X+Y+Z) (3.2)

CIE Huminant D65 (D635)

The XYZ7 tristimulus wvalues of the CIE llluminant D65 were used

directly as-the reference white.

XY Zy =95.05, 100, 108.88
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White point of the monitor (CRT)

The maximum RGB (255, 255, 255) values of the monitor were
processed via the GOG model to obtain the XYZ tristimulus values. The XYZ

values were then used as the reference white.

R.G.B. (255, 255, 255) - > X.,.Y.Z,
GOG model

For the WP and GW, the reference whites are image-dependent, while
the reference white of the D65 and the white point of the testing monitor are
constant values for all of the images. The reference whites were used as input

parameters in CIECAMO2 are summarized in Table 3.1.

Table 3.1 The reference whites used in forward CIECAMO02.

e —————————
Reference whites

Model Fruits Wine Orchid

X Y Z X = % Y g
WP 4320 4593 2609 9287 9810 63.97 9130 9733 55.73
GW 117.34 100 6264 96.55 100 62.64 10056 100 76.54
D65 9505 100 108.88 9505 100 108.88 9505 100 108.88
CRT 96.69 100 - 84.03 96.69 100 84.03 96.69 100 84.03

The reference white is not the only parameter requireéd.-in CIECAMO02,
but there are three parameters that needed to ‘use together with the reference
white: Luminance of adapting field (L), Luminance of background (Y), and
Surrounding. The estimation of each parameter is described below and the

input data of each parameter are shown in Table 3.2.
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Luminance of adapting field (L)

The luminance of adapting field or L, was calculated from the average
luminance of the scene by using Equation 3.3 where Y is the average Y
tristimulus values of original images; L is the absolute luminance of white
point of the monitor. For this experiment, the monitor had luminance of 102.7
cd/ m”,

YL
= L 3
Ly Yoo (3.3)

Background luminance (Y;)

For the experiment, the images were displayed full frame on the monitor.
There was no real background; hence, the background luminance (Y,) was set,
in all cases, to at 20, that is the general value of background luminance,

implicitly assuming a gray world assumption.

Surrounding

Surrounding was set. up to dim surround, ~which includes three
paramelers; factor for -degree; of adaptation (F) was setto 0.9, chromatic

induction factor (N¢) was set to 0.9, and impact of surround (c) was set to 0.59

in all cases.
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Table 3.2 The input viewing condition parameters of each image in each model.

R —
Input viewing condition parameters

Images
La Yy Surround
Fruits 0.42 20 Dim
Wine 33.49 20 Dim
Orchids 15.42 20 Dim

-_— e

3.2.4 Generation of reproduction images

Fig. 3.2 shows a flow chart of processing reproduction images. The
explanation for each step of image processing is as follows.

Step 1: The RGB data of the original images were converted to XYZ
data based on a pixel-by-pixel basis using the forward GOG model.

Step 2: The XYZ data were processed via the forward CIECAMO02
model using four different reference whites. The JCh data were then obtained.

Step 3: The JCh data were transformed back to the XYZ tristimulus
values (X'Y’Z") via the inverse CIECAMO02 model with Si as the reference
white (X,,=Y ,=Zw=100).

Step 4: The X'Y'Z’* data were then converted to RGB data using the
inverse GOG model. The original images together with the reproduction

images used in the experiment are shown in Fig. 3.3.
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Criginal image
(RGB)

1
ﬂmﬂd GOG
- XYZ i
2 White Gray D65 CRT CIECAMD?
patch world Forward model
CIECAMO2 CIECAMO2 CIECAMO2 CIECAMOD2
— color order color order color order color order pe—
system (JCh1) system (JCh2) system (JCh3) system (JCh4)
3
S Se Se Se CIECAMOD2
Inverse model
i X'Y'Z' 1l K'Y'Z'2 " X'Y'Z'3 1 X'Y'Z' 4 —
4 Inverse Iﬁvm Inverse Inverse
GOG GOG GOG GOG
Testing image 1 Testing image 2 Testing image 3 Testing image 4
(RGB) (RGB) (RGB) (RGB)

Fig. 3.2 A flow chart of image processing.
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Fig. 3.3 The original images and the reproduction images used in the

experiment.




3.2.5 Viewing configuration

The original images and the reproductions were displayed on a
calibrated CRT monitor LaCIE Blue Electr22B4 at 72 dpi. All images had the
same physical size of 12 inches x 16 inches, which covered the whole screen of

the monitor. The white point of the CRT was set to the CIE Illuminant D50.

An observer sat approximately 35 inches away from the CRT screen in a

darkened room, as shown in Fig. 3.4.

Dark room
CRT

Full screen 357
image ¢

Ohm

Fig. 3.4 Viewing configuration.

3.3 Psychophysical experiments

Fifteen observers, 9 males and 6 females, between ages of 20 to 24,
undertook the color blindness test to ensure that they had normal color vision
before carrying out the experiments. Observers had to compare the original
image to a set of reproduction images using the memory viewing technique™.
Observers made a judgment in terms of how well the colors in the images
matched the originals using a 1-7 integer scale, where | was defined as a
complete mismatch, 2, very serious mismatch, 3, serious mismatch, 4, an

acceptable match, 5 close match, 6 very close match and 7, a perfect match.
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The numbers in between represented the equal differences of a color match
between the neighboring categories. The original images were displayed on the
monitor for 2 minutes, followed by four reproduction images, each for 1
minute. Before changing to the next image, a uniform black image was
displayed to eliminate the effect of afterimage and to aid the full adaptation of
the next image. The reproduction images were displayed in a random order. All
images were displayed using Irfanview software™. An observer spent
approximately 30 minutes to perform three sets of experimental images. First,
the observer practiced on bow to make judgments for about 3 minutes. Three
sets of experimental images were then presented in a random order to the
observer. Each observer spent around 9 minutes to complete one set of

experimental images.



CHAPTER 1V

RESULTS AND DISCUSSIONS

4.1 Experimental data

Three digital images with unknown reference whites were used as
original images in this study. Four models: White patch (WP), Gray world
(GW), CIE Illuminant D65 (D65) and white point of the monitor (CRT), were
used to estimate the reference whites of the original images. The reproduction
images were produced via CIECAMO2 with the reference white obtained from
each model. The images reproduced from closely estimated reference whites

would match the originals. The degree of color matches indicates the

performance of the model.

Fifteen observers made a judgment in terms of how well the colors in
the reproduction images matched the originals using a 1-7 integer scale, where
| was defined as a complete mismatch, 4, an acceptable match, and 7, a perfect
match. Two approaches were used for data analysis. First, an average of
observer raw_data was used directly. The other way was to use the Law of
Category Judgment™ to transform the raw data onto an interval scale. The

results are called z-scores indicating model’s accuracy.
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The accuracy of z-score values was described in terms of a 95%

confidence interval, which can be calculated by

2 1960
- IN

(4.1)

where u 1s the mean value of z-scores. N is the number of observations from an

image sample. Because one unit on the interval scale equals+/2o, the standard

gk ; g 1 ?
deviation, o, of a given value is ﬁ units. Therefore, the 95% confidence

1.3 !
scale can be calculated by u:T: . For instance, to calculate the averaged

results in All images (results combined from three images), N = 45 (15
observers x 3 images). Thus, the confidence interval around each z-score value
was 0.21. If the mean of one model overlaps another model’s confidence
interval, the two models are considered not to be significantly different and can

lead to the same conclusion.

The experimental raw data are presented in terms of the frequencies of

times an image was placed in‘each catégory and ar¢ shown in Table 4.1.
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Table 4.1 Experimental raw data.

e ———

Images Model Scores

P

WP

GW
D65
CRT
WP

GW
D65

CRT
WP

GW

D65

CRT

Fruits

Wine

Orchid
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4.2 Observer aceuracy

The observer accuracy was estimated using a coefficient of variation
(CV) measure. This measure indicates an agreement between two sets of data,
which can be computed as shown in Equation 4.2. In this study, an agreement
between each eobserver's result and the mean result calculated from all
observers represents the observer accuracy. Thus, the vanables in Equation 4.2

are described as follows: nis the number of observations, x,is the individual’s

result, and ¥ i the mean value of all observers” scores. A CV value of 20
means 20% error of individual from the mean. The results for observer

accuracy are summarized in Table 4.2.

100 2. =%)

cV = ; = (4.2)
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Table 4.2 Coefficient of Variation (CV %) of observers

e ————

WP GW D65 CRT Mean
Fruits 23 21 15 14 18
Wine 25 24 24 20 23
Orchids 25 23 20 20 22
Mean 24 23 20 18 21

Considering an impact of image content on observer accuracy from
Table 4.2, it can be seen that “Wine™ has the highest mean CV of 23, followed
by “Orchids™ (22) and “Fruits” (18). The difference between mean CV values
across images was 3%, revealing that the models® performance was affected by
image content. “Wine” containing mainly neutral colors was found to be most
difficult to judge, implying that all modes® performed similarly. On the other
hand, the image with color variety “Fruits” had low observer error because the
reproduction images were distinctly different and thus easy to categorize. For
the observer aceuracy for each model, the maximum CV was found for WP
(24), followed by GW (23), D65 (20), and CRT (18). This result shows that
WP and GW were most image-dependent, while D65 and CRT showed
consistent performance across images. The overall- mean of observer errors was
21%, which considered quite reasonable. This is mainly due to the nature of
visual experiments using category judgment and memory matching techniques.
An ability to memorize color for each observer was different. The criteria for
which each observer used were also different. Some of observers gave priority

to hue while judging the images. Some may have used brightness.
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4.3 Model’s performance

The results indicating the model’s performance, which include an
average of categories (Mean), z-scores on an interval scale, and rank order of
model’s performance, are summarized in Table 4.3. For each model, a rank was
given by comparing z-score results among different models using 95%
confidence interval criteria. Discussions of the results for each image and the

results combined from all images are given in the following sections.

Table 4.3 A summary of model’s performance.

Images Model 95%CL
WP GW D65 CRT
Mean 4.60 347 6.13 5.69
Fruits Z-SCOres 1.97 1.15 2,98 2.74 0.36
Rank 2 3 1 |
Mean 493 5.00 5.60 5.33
Wine Z-sCores 2.00 2.11 2.43 2.30 0.36
Rank | 1 1 |
Mean 4.67 5.13 5.07 5.80
Orchids  z-scores 1.79 2.19 2.19 2.67 0.36
Rank . 2 2 ]

4.3.1 Fruits

From Table 4.3, D65 has the highest mean value followed by CRT, WP
and GW, respectively. The mean values indicate that D65 and CRT provided
good color matches while WP and GW gave an acceptable match and a poor
match, respectively. This result agreed with the result from z-scores, where an

descending order of z-scores was exactly the same as that of the mean values,
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i.e. D65. CRT. WP. and GW. However, when considering the 95% confidence
interval. it was found that D65 and CRT were in the same rank (Fig. 4.1).

indicating that the two models gave similar degrees of color matches.

4.00

in “Fruits”

-
d
j
|
Q_anudaa 030 035 840 045 nm

PO EIEONT LNV TY I R—
ANIRINTUNRTINGIRE

9 Fig. 4.2 shows colors of reference whites estimated by each model tested.
The CIECAMO2 model required a reference white as one of input parameters
in order to compensate changes of color appearance due to the color of light

source under which the sample is viewed. This is because the chromatic
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adaptation mechanism in the human visual system attempting to retain color
appearance of the sample as when viewed under daylight. Thus, when
chromatic adaptation takes place, as assumed in CIECAMO2, the color of light

source 1s removed from the sample.

As can be seen from Fig. 4.2, a reference white estimated by GW was
more reddish than those of other models. This resulted in the reproduction
image predicted by CIECAMO2 becoming too bluish. On the other hand, the
reference whites of D63 and CRT were very close and not much different from
the equal energy white (Sg); therefore, the reproduction images were still
yellowish. The reason why these two models gave the best performance could
be that the state of chromatic adaptation was incomplete, so the color of light
source could not be completely removed. The yellowish images would

therefore provide closer matches to the original yellowish images.

4.3.2 Wine

From Table 4.3, D65 has the highest mean value (5.60) followed by
CRT (5.33), GW (5.00) and- WP (4.93). However, the results of z-scores
showed that all-meodels had very similar performance; as the mean z-scores of
each model overlapped other models’ confidence intervals (Fig. 4.3). This
leads to the result that all models provided reasonable matches to the originals:

no model perform better than any others.
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Reference whites estimated by each model are showed in Fig. 4.4. It can
be seen that reference whites of WP and GW are very similar and slightly
vellowish. Since most colors in “Wine™ are neutral, the deviation from a neutral
color of reference whites is the impact of light source’s color. Note that

reference whites of D65 and CRT are image-independent, i.e. they are constant

for all images tested, whilﬁj@“ ‘ﬁ'f/‘: whites of WP and GW are image-

N

dependent. This lmpw GW _é___york well for neutral images or
_ 3 7

color contained in the images are about the same.

’ﬂW’]@\‘iﬂE

035

00
020 025 030 035 040 045 050

Fig. 4.4 Chromaticity coordinates (xy) of each reference white for “Wine”
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4.3.3 Orchids

The results from Table 4.3 showed that CRT provided the best match,
followed by GW, D65, and WP, respectively. GW performed as well as D65
for “Orchids™ (Fig 4.5). However. the reference white of GW was closer to

CRT than that of D65 (Fig. 4.6).

Z-S00ES
s
2
-
|
—_—
i
3

045

040

0.35

PRI

oI

020 -
dzo) 025 B39, 035 ‘os ' gas osd

Fig. 4.6 Chromaticity coordinates (xy) of each reference white for “Orchids™

“Orchids™ is a high contrast image containing a white dish on a black

background. The white dish was the key that observers used to consider the
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reproduction images. Therefore, the dish should not be too yeliowish or too
bluish. Fig. 4.6 shows that the reference white of D65 is slightly bluish while
that of CRT is slightly yellowish. When the bluish reference white of D65 was
input into CIECAMO2, the model interpreted the yellow color casting over the
entire image as the actual color of the objects in the image. CIECAMO2 thus
predicted the reproduction image with the dish in particular to be too yellowish.
On the contrary, when the input reference white was too yellowish,
CIECAMO?2 interpreted that the yellow color came from the light source and
removed it from the 1mage. Thus the dish of the reproduction image obtained

from WP became too bluish.

4.3.4 All images

For this section, mean values and z-scores of all images were averaged
to consider overall performance regarding how well each model estimated the
reference white to be applied to CIECAMO2, as to producing close color
matches to originals. The results are summarized in Table 4.4. The models’

performance for each model (z-scores) is plotted in Fig. 4.7.

Table 4.4 The averaged mean value, z-scores and a rank of each model

e —————— e e e T1, ] e m— T Y R

WP GW D65 CRT 95%CL
All Mean 4.73 4.53 5.60 5.60
. Z-SCOres 1.92 1.82 2.54 2.57 0.21
images

Rank 2 2 | |
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All images
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Fig. 4.7 Models’ performance in all images (averaged from all of experimental

images).

The results from all images combined showed that WP and GW
reference whites gave similar resulis. Both models provided *close match” to
the original. D65 and CRT also gave similar results and outperformed WP and
GW. This might be due to the fact that the state of chromatic adaptation was
incomplete; therefore, the human visual system could not completely remove
the yellow cast. The images were still perceived as yellowish. The WP and GW
models might estimate so yellowish reference whites that CIECAMO02 removed
too much yellow from the images, resulting in too less yellowish, or too bluish
in_some cases,-or too bright images. In the case of D65 and CRT, both models
gave near equal energy white (Sg). Hence, the reproduction images were still
yellowish as little was removed as a result of CIECAMO02, which yielded closer

matches to the originals.
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4.4 Image dependency

The performance of each model for each image is compared in Fig. 4.8

so as to evaluate the degree of image dependency for each model.

4.00 —

] wFruits. * Wine. & Orchid

sl | 1
= gige i

we
GwW

Fig. 4.8 Models” performance for each image

The performance of some models might highly depend on images, e.g. a
model could give very close color match for some types of images but very
poor match for other types. Such a model would not be desirable in general and
careful consideration should be taken when using such the model. From Fig.
4.8, it can be seen that the performance of GW spreads out quite widely in
comparison with other model’s. In this study, a quantitative measure of the
degree of image dependency was obtained by calculating differences between
the highest and lowest z-scores for each model. The results are shown in Table

4.5.
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Table 4.5 The degree of image dependency ( Az ) for each model

e —

WP GW D65 CRT

Image
dbnenidine 0.21 1.04 0.78 0.44

e e ——— Y

From Table 4.5, WP has the lowest image dependency, indicating that
WP will give similar performance for all types of images. GW is considered to

be inconsistent, as can be seen in Fig. 4.8 that it performed badly for “Fruits™.

4.5 Comparisons between z-scores and image dependency

In general, the good performing model should provide good color
matches for all types of images. That means the model should have high
model’s accuracy (z-scores) and low image dependency (Az). If a model has
low image dependency but poor model’s accuracy, it should not be used for
any images. However, a model that has high image dependency and also high
or reasonable model’s accuracy, it can be used for some types of images.
Hence, both model’s accuracy and 1image dependency need to be considered in

order to correctly select the model to be used.
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Fig. 4.9 The correlation between model’s accuracy (z-scores) and image

dependency (Az)

Fig. 4.9 shows a plot between model’s accuracy and image dependency.
The results showed that although WP and GW gave similar performance, WP
had the best image dependency while GW had the worst. This indicates that
GW can be used for some types of images while WP is not recommended for
any. D65 had high model’s accuracy as well as image dependency. On the

other hand, CRT showed good performance with reasonably low image

dependency.

Note that the original images as well as the reproduction images covered
the full frame of the monitor. The adapting fields varied for each image,
depending on color contents in an image. As a result, the degree of chromatic
adaptation was different for different images. This could explain why a fixed
reference white such as D65 gave inconstant performance over the images

tested. For example, the chromatic adaptation was more complete for
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“Orchids” than that for “Fruits” because there were more neutral colors in
“Orchids”. The human visual system was able to discount more amount of
yellow cast on “Orchids” than “Fruits”. Thus the use of D65 as a reference
white yielded too yellowish reproduction image for “Orchids™ while giving a
close match for “Fruits”, as CIECAMO02 removed the same amount of

yellowness from both images.

All in all, a proper reference white to be applied to CIECAMO02 should
be image-dependent. This is because even the best performing model, i.e. CRT,
did not produce “a very close match” for all types of images tested. The reason
why CRT performed best for all images could be that the originals were all
perturbed with yellow color and the chromatic adaptation was not complete
when viewed these images, which resulted in the perception of yellowish
originals. The white point of the CRT was set to D50, which is slightly
yellowish. Therefore, when input D50 as the reference white to CIECAMO2,
little amount of yellowness was removed and yellowish reproduction images
were obtained, which provided good color matches to the originals. If the

originals were perturbed with other colors, the results might be different.



CHAPTER V

CONCLUSIONS AND SUGGESTIONS

5.1 Conclusions

To obtain color matches of images viewed under difference viewing
conditions, the use of color appearance models is needed in a process of color
image reproduction. However, to successfully implement a color appearance
model, a certain number of input parameters is required, and one of the
important parameters i§ a reference white. For images captured with digital
cameras, reference whites arc often unknown. Hence, the aim of this thesis was
to investigate the means of applying color appearance models to images with
unknown reference whites. The CIECAMO2 color appearance model was
selected because it has been recommended by the CIE. The investigation was
done by estimating reference whites of digital images using two methods, i.e.
gray world (GW) and white patch (WP), a standard reference white, i.e. D65,
and the white point set to display the images on a CRT monitor, i.e. D50. Thus,
four different reference whites estimated by four different models, i.e. white
patch (WP), gray world (GW), the CIE illuminant D65 (D65) and the white
point of testing monitor (CRT), were tested to be used as the parameter in
CIECAMO2. Images reproduced via CIECAMO2 with suitable reference whites
would give good color matches to the original images. The degree of color

matches indicated the accuracy of reference-white estimation models tested in
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conjunction with CIECAMO2 in color image reproduction. Three different
images were tested in the study, so as to investigate the impact of image
contents on the performance of the estimation models. Fifteen observers
participated in visual experiments in involving the memory matching and the

category judgment techniques. The major findings of this study are as follows:

* The performance of the reference-whites estimation methods
depended on the types of images used. Even for the methods that their
reference white were changeable according to image content, their performance

were inconsistent.

*  White paich that got the reference white from the maximum values
of channels R, G and B of the images was the method that had the lowest
degree of image dependency but the overall results of White patch was “ Close

match” which was not the best performance among models tested.

* Gray world was the method that assumed the reference white from
the average value of channels R, G and B. It had the highest degree of image

dependency, means that the performance of this method depends on the image

content,

* Gray world performed well for “Wine”, the image with mainly

neutral colors. However, it did not work well for the colorful image “Fruits™.

* The CIE illuminant D65 was image-dependent. High degree of

image dependency was found for this method. The performance of D65 was
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very good for the colorful image (Fruits) but for the other cases its performance

was not better than the other models.

* The white point of the monitor (CRT) was the method that had low
degree of image dependency. It was found that this method gave “Very close

match™ for “Fruits” and “Orchids”, and “Close match™ for “Wine”.

In conclusion, the white point set for the CRT monitor used to display
images is recommended for applications of CIECAMO02 for general images that
their reference whites were unknown. This recommendation is based on the
results showing that the CRT method provided good color match with

reasonably low image dependency.

5.2 Suggestions

A reference white of an image displayed and covered the full screen of a
monitor is expected to depend on color contents of the image due to the fact
that the chromatic adaptation is dependent on the scene content. However, the
results from this thesis showed that the reference white estimation models that
are image-dependent did not give the good performance for all images. This
might be because the chromatic adaptation was not complete when viewed the
originals. In the case of the good performing model CRT, the white point of the
monitor was set to CIE illuminant D50 that is slightly yellowish, little
yellowness was removed and yellowish reproduction images were obtained,

which provided good color matches to the originals. Note that yellowish
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images were used as the originals in this thesis; thus different results might be
obtained if the experimental images were changed. Further work should
consider other methods of estimating reference whites and more kinds of
images as well as changing the filter that was used to produce original images

to other colors such as green or red filter.
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CIECAMUO2 Inverse Model

[nput Data;

1. Color appearance data (J, C, h)

2. Reference white (X, Yu. Zy)

3. Luminance of adapting field (L, cd/m®)
4. Relative luminance of Background (Yy)

5. Surround (F, ¢, N,)

Step-1 Calculate A, e and t

4 =4, (7hoof'=1)
én ((E;—@-)Ntﬁf&)[ms(ﬁ[f;—ﬂ—] + 2] + 3.3]
\(@)
t= 5 |
{;—06.54- 029" )"

where A, can calculated by CIECAMO02 Forward model

Step-2 Calculate a, b
Ift=0;
a=0,b=0
. ( hx hx
If P —
5’"(131}] “5[1%]

= [C
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A o305 )24 222
. N, 22 | 1403
E sin
4(; J__+ 2 0Y 2203 01127, - 6300 h )
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Step-3 Calculate R,, G,, and B,

! L
460 A4 +0.305 +—45 ] a+ 288 b

1403 0 ) 1403 1403

/ b
460 ( A o0\ 891 261,

1403{ N, | 1403" 1403

* “1403| N, 1403 1403

4&[1[ A mns] 220 6300
Nis

Step-4 Calculate R, G’, and B’

o {z?.ta[ﬁ]][ﬁ)[%]

Step-5 Calculate R, G, and B¢

Re R
GC =MgmMHHt G.
Be B

Step-6 Calculate R, G, and B

Re

D—g“i+(1—ﬂ)

W

-

Step-7 Calculate XYZ tristimulus values

X R
¥ =f’i’ff:4:|"n_=._1 G
1 £ B
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Law of category judgment

The following is an example of data analysis of an experiment
conducted using the categorical-judgment technique. The condition given here
is that four observers categorized 3 images (A, B and C) into 1-7 integer scale
in accordance with how well they matched to the original. Category 1
represents the worst match and 7 the best. Numbers in between represent equal
interval of color maiches. Note that the data used here are arbitrary and for the
purpose of demonstrating the data analysis procedure described in Chapter 4.

First, the transformation between logistic functions and z scores was
defined by plotting LG data against z scores and calculating an equation to fit
the data, as shown in Fig. B.l. For the present example, 41 proportions
between 0 and 1 (0.005, 0.995 and 39 values at equal intervals between 0.025
and 0.975) were chosen for which the corresponding LG and z-score values
were calculated. Note that the LG values depend on the sample size (Number

of observations); therefore, the scaling parameter for LG and z-score

conversion must be calculated in relation to sample size.
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Raw data

N=

m = number of catcganas ?

o= Y] £1177179

AWIRHNTUNNINENRE

Category | 1 | 2 | 3 | 4 | 5 [ 6

7

A 1 1 1 0 1

0
B 0 0 0 2 1 1
C 1 1 0 1 1 0

0
0
0
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Cumulative Frequency Matrix (CF)

CF.= Y F,
=0+1+1+1+0
Category | 1 2 3 4 5 6
A 0 1 2 3 3 4
B 0 0 0 2 3 4
B 1 2 2 3 4 4
Cumulative Proportion Matrix (CP)
cp=EE
N
&
4
Category | 1 2 3 4 5 6
A 0 025 /05 10.75]0.75 |1
B 0 0 0 05 (07511
C 025105 {05 [0.75 |1 1
Logistic Function Matrix (LG)
LG = LN( (CPN +0.5)
(V-cPN + n.s)?
_ (1x4 +0.5)
T (4-1x4+0.5)
Category 1 2 3 4 5 6
A -2.197 | -0.847 | 0.000 0.847 | 0.847 | 2.197
B 2,197 | <2197 1 | <2197, {0:000 |0.847 | 2:197
¢ -0.847. 1,0.000- | 0.000 « | 0.847 | 2.197 | 2.197




Z-score Matrix (7)

Z = LGx0.9244
= 2.197x0.9244

Category 1 2 3 4 5 6

A -2.030 [-0.783 |0.000 0.783 | 0.783 | 2.030

B -2.030  |-2.030 [-2.030 |0.000|0.783|2.030

C -0.783 | 0.000 0.000 0.783 | 2.030 | 2.030

Difference Matrix (DM)

DMHT ~ zﬂh—l _z-
=2.030-0.783

Category 1 2 3 4 5
A 1.247 10.783 |0.783 |0.000 | 1.247
B 0.000 |0.000 [2.030 |0.783|1.247
C 0.783 10.0000 |10.783 |1.247|0

Category | 2 3 4 5
| Mean (D) |0.677 [0.261]1.199[0.677 [ 0.832 ]

Category Boundary Estimates (T)

7,=0
o o 2 D

e

=0.832x2.813

Category | "1 ) 13 4 > 6 7
boundary | 0 0:677 | 0.938 | 2.136 | 2.813 | 3.645
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Scale Values (S)

§=T-2
= 3.645-2.030

Category | 1 2 3 4 5 6 | Mean | Category
A 2.030 | 1.460 | 0.938 | 1.353 | 2.030 | 1.615 | 1.571 4
B 2.030 [ 2.707 | 2.968 | 2.136 | 2.030 | 1.615 | 2.248 5

[ 0.783 | 0.677 | 0.9 ’1 353 10.783 | 1.615 | 1.025 4
95% confident interval //

95%CL = 1.

=0.693

Fig. C-2 Color-match sco od for Images A, B, and C.

=
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Calculate GOG
function [data] = CalGOG(flare,xyzMax, XYZ);

drgb = [0 32 64 96 128 160 192 224 255];

RGB = inv(xyzMax)*XYZ;

R = RGB(1,:)/max(RGB(1,:));

G = RGB(2,:)/max(RGB(2,’)):

B = RGB(3,:)/max(RGB(3,:));

maxRGB = [max(RGB(1,:));max(RGB(2.:)):max(RGB(3,:))];

%Calculate constance%
SumDeltal = 100;

for 1= 0:300
Gm = 1+i*0.01;
for j = 0:100
Kg=j*0.01;
Ko = 1-Kg;
fork=1:9
result(k) = (Kg*(drgb(k)/255)+Ko)*Gm;
if result(k)<=1
delta(k) = abs(result(k)-R(k));
else
delta(k) = 100;
end;
end;
SumDelta2 = sum(delta);
if SumDelta2 = SumbDeltal
GammaR = Gm;
GainR = Kg;
OffsetR = Ko;
SumDeltal = SumDelia2;
end;
end;
end;

SumDeltal = 100;
for 1= 0:300
Gm = 1+1*0.01;
for j = 0:100
Kg =3*0.01;
Ko = 1-Kg;
fork=1:9
result(k) = (Kg*(drgb(k)/255)+Ko)"Gm:;
if result(k)<=1
delta(k) = abs(result(k)-G(k));



else
delta(k) = 100;

end;
end;
SumDelta2 = sum(delta);
if SumDelta2 < SumDeltal

GammaG = Gm;

GainG = Kg;

OffsetG = Ko;

SumDeltal = SumDelta2;
end;
end;
end:

SumDeltal = 100;
for1=0:300
Gm = 1+1*0.01;
for j=0:100
Kg=j*0.01;
Ko=1-Kg;
fork=1:9
result(k) = (Kg*(drgb(k)/255)+Ko)"Gm;
if result(k)<=1
delta(k) = abs(result(k)-B(k));
else
delta(k) = 100;
end;
end;
SumDelta2 = sum(delta);
if SumDelta2 < SumDeltal
GammaB = Gm;
GainB = Kg;
OffsetB = Ko;
SumDeltal = SumDelta2;
end;
end;
end;
data = [GammaR GammaG GammaB;
GainR GainG GainB;
OffsetR OffsetG OffsetB;
maxRGB(1) maxRGB(2) maxRGB(3);
flare(1) flare(2) flare(3)];

GOG Forward Model
function [data] = GOGmodel(dR kg,gamma);

8l



[m,n]=size(dR);
ko=1-kg;
fori=1:m
for j=1:n
data(i,)) = (kg*(dR(1,])/255)+ko)"gamma;
end;
end;

GOG Inverse Model
function [data] = InvGOGmodel(R kg, gamma);

[m,n]=size(R);
ko=1-kg:
InvGamma=1/gamma;
for i=1:m
for j=1:n
if R{i,j)==10;
data(i,j) = 0;
elses
data(ij) = uint8((((R(i,j)*InvGamma)-ko)/kg)*255);
end;
end;
end;

CIECAMO02 Forward Model (XYZ data > JCh data)
function [data] = CIECAMO2Fwd(xyz,xyzW,La,Yb,surrounds);

%step 1 Chromatic transform
Yw=xyzW(2);

%surround

if surrounds=—=1 %average
F£\%

c=0.69:

Ne¢ = 1;

elseif surrounds=—=2 %dim
F=0.9;

c=10.59;

Nc = 0.95;

elseif surrounds==3 %dark
F=0.28;

c=0.525:;

Nc = 0.8;
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end;

k = 1/((5*La)+1);

D = F*(1-(1/3.6)*exp(((-1*La)-42)/92));

FL = (0.2*%(k"4))*(5*La)+0.1*((1-k"4)"2)*((5*La)*(1/3)):
n=Yb/Yw:

Ncb =0.725*((1/n)"0.2);

MNbb = Ncb:

z = 1.48+(n"0.5);

%Mcat metrix
Mcat = [0.7328 0.4296 -0.1624; -0.7036 1.6975 0.0061: 0.0030 0.0136 0.9834];

rgbW = Mcat*xyzW;
rgb = Mcat*xyz;

Rw = rgbW(l1);

Gw = rgbW(2);

Bw =rgbW(3);

r=rgb(1);
g = rgb(2);
b = rgb(3);

%ecalculate RGBc

Re = ((D*(Yw/Rw))+(1-D))*r;
Ge = (D*(Yw/Gw))#(1-D))*g;
Be = ((D*(Yw/Bw))}(1-D))*b;

Rwe = ((D*(YW/Rw))+(1-D))*Rw;
Gwe = ((D*(Yw/Gw))+(1-D)*Gw;
Bwce = ((D*(Yw/Bw))+(1-D))*Bw;

rgbhe = [Re; Ge; Bel:
rgbWe = [Rwe; Gwe; Bwel;

%calculate RGB'

MH =[0.38971 0.68898 -0.07868;
-0.22981 1.18340 0.04641;
0.00000 0.00000 1.000001];

rgb2 = MH*inv(Mcat)*rgbc;
rgbW2 = MH*inv(Mcat)*rgbWe;

r2 =rgb2(1);
g2 = rgb2(2);



b2 =rgb2(3);

W2 =rgbW2(1);
eW2 =rgbW2(2);
bW2 = rgbW2(3);

%calculate RGBa

ra = ((400*(FL*r2/100)0.42)/(27.13+((FL*r2/100)"0.42)))+0.1;
ga = ((400*(FL*g2/100)"0.42)/(27.13+((FL*22/100)"0.42)))+0.1;
ba = ((400*(FL*b2/100)"0.42)/(27.13+((FL*b2/100)*0.42)))+0.1;

rWa = ((400*(FL*rW2/100)10.42)/(27.134((FL*rW2/100)0.42)))+0.1;
gWa = ((400*(FL*gW2/100)/0.42)i(27.13+((FL*gW2/100)"0.42)))+0.1;
bWa = ((400*(FL*bW2/100)10.42)/(27.13+((FL*bW2/100)"0.42)))+0.1;

%ostep 2 Perceptual
a=ra-(12*%ga/l 1)+(ba’ll);
b = (1/9)*(rat+ga-(2*ba));

%calculate Hue
if a==0 && b==0
h=10;
elseif b==0
h = 360+((360/(2*pi))*atanZ(b,a));
else '
h = 360/(2*pi)*atan2(b,a);
end;

e = ((12500/13)*Nc*Ncb)*(cos(h™*(pi/180)+2)+3.8);

A = (2*ra+ga+(1/20)*ba-0.305)*Nbb;
Aw = (2*rWa+gWa+(1/20)*bWa-0.305)*Nbb;

I = 100*(A/AW)(c*z):
t = (e*((a2)+(b"2))"0.5)/(ra+ga+((21/20)*ba));
C = (110,9)*((J/100)0.5)*((1.64-(0.29"n))"0.73);

data= [J; C; h;];

CIECAMOZ2 Inverse Model (JCh data > XYZ data)
function [data] = CIECAMO2Inv(JCh,xyzW,La,Yb,surrounds);

J=ICh(1);
C=ICh(2);
h=JCh(3);
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%surround
if surrounds==1 %average
F=1;
c=0.69;
Nc=1;

elseif surrounds==2 %dim
F=0.9;
c=0.59;
Nc =0.95;

elseif surrounds=—3 %dark
F=10.8;
c=10.525;
Nec=0.8;

end;

k = 1/((5*La)+1);
D = F*(1-(1/3.6)*exp(((-1*La)-42)/92));
FL = (0.2*%(k"4))*(5*La)+0.1%((1-k*4)"2)*((5*La)’(1/3));

Yw=xyzW(2);
H=(2*pi/360)*h;

n=YbYw:

Ncb = 0.725%((1/n)"0.2);
MNbb = Ncb;

z = 1.48+(n"0.5);

%Mcat metrix

Mcat = [0.7328 0.4296 -0.1624;
-0.7036.1,6975 0.0061;
0.0030 0.0136 0.9834];

rebW = Mcat*xyzW;

Rw'= rghW(l);
Gw = rgbW(2);
Bw = rgbW(3);

Rwe = ((D*(Yw/Rw))+(1-D))*Rw;
Gwe = (D*(YW/Gw))+(1-D))*Gw:
Bwe = ((D*(Yw/Bw))+(1-D))*Bw;

rgbWe = [Rwe; Gwe; Bwel;
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%calculate RGBw'

MH = [0.38971 0.68898 -0.07868;
-0.22981 1.18340 0.04641;
0.00000 0.00000 1.00000];

rgbW2 = MH*inv(Mcat)*rgbWc;

r'w2 =rgbW2(1);
gW2 =rgbW2(2);
bW2 = rgbhW2(3);

rWa = ((400*(FL*rW2/100)10.42)/(27.13+((FL*rW2/100)"0.42)))+0.1;
gWa = ((400*(FL*gW2/100)"0.42)/(27.13+((FL*2W2/100)"0.42)))+0.1;
bWa = ((400*(FL*bW2/100)"0.42)/(27.13+((FL*bW2/100)"0.42)))+0.1;

Aw = (2*rWa+gWa+(1/20)*bWa-0,305)*Nbb:

A = Aw*((J/100)°(I/(c*2))):

e = ((12500/13)*Nc*Nch)* (cos(h*(pi/1 80)+2)+3.8):
t = (C/((/100)°0.5)*(1.64-(0.29*0))"0.73))(1/ 0.9):

if t==0

elseif abs(sin(h*pi/180)) == abs(cos(h*pi/180))

a =
(((A/Nbb)+0.305)*(2+(21/20))*(460/1403))/(((e/t)/sin(h*pi/180))+(2+(21/20))
*(220/1403)*(cos(h*pi/180)/sin(h*pi/180))-
(27/1403)+H21/200*(6300/1403))*(cos(h*pi/ 180)/sin(h*pi/180));

b=
(((A/Nbb)+0.305)*(2+(21/20))*(460/1403))/(((e/t)/sin(h*pi/180))+(2+(21/20))
*(220/1403)*(cos(h*pi/180)/sin(h*pi/180))-(27/1403)+(21/20)*(6300/1403));

else

q=

(((A/Nbb)+0.305)*(2+(2 1/20))*(460/1403 ))/(((e/t)/cos(h*pi/180))+(2+(21/20))
*(220/1403)-((27/1403)-(21/20)*(6300/1403))*(sin(h*pi/180)/cos(h*pi/180)));
b=

(((A/Nbb)+0.305)*(2+(21/20))*(460/1403))/(((e/t)/cos(h*pi/ 1 80))+((2-+21/20)
)*¥(220/1403))-((27/1403)-
(21/20)*(6300/1403))*(sin(h*pi/180)/cos(h*pi/180)))*sin(h*pi/180)/cos(h*pi/1
80);

end;

% Calculate non-linear response



Ra = (460/1403)*((A/Nbb)+0.305)+(451/1403)*a+(288/1403)*b;
Ga = (460/1403)*((A/Nbb)+0.305)-(891/1103)*a-(261/1403)*b;
Ba = (460/1403)*((A/Nbb)+0.305)-(220/1403)*a-(6300/1403)*b;

R2 = (27.13%*(Ra-0.1)/(400.1-Ra))*(1/0.42)*100/FL;
G2 = (27.13%(Ga-0.1)/(400.1-Ga))"(1/0.42)*100/FL;
B2 = (27.13*(Ba-0.1)/(400.1-Ba))"(1/0.42)*100/FL;

RGB2 = [R2; G2; B2];
RGBc = (Mcat*inv(MH))*RGB2;

r = RGBc(1)/((D*(Yw/Rw))+(1-D));
g = RGBc(2)/((D*(YW/Gw))+(1-D));
b = RGBc(3)/((D*(Yw/Bw))*(1-D));

rgb = [r; g; b];
xyz = inv(Mcat)*rgb;

data=[xyz(1); xyz(2); xyz(3)];

CIECAMO0?2

function [data] =
CIECAMO2(PicXYZ,RefWhitel,RefWhite2,L.al,Yb1,La2,Yb2, surrounds);
[m,n,0]=size(PicXYZ);

%forward model
for i=1:m
for j=1:n
Pixel = [PicXYZ(i,j,1); PicXYZ(i,j,2); PicXYZ(i,).3)];
JCh=
CIECAMO2Fwd(double(Pixel),double(RefWhite1),Lal,Yb1, surrounds):

J(1,))=JCh(1);
C(1,))=ICh(Z);
h(i,j))=ICh(3);
end;
end;

%inverse model
for i=1:m
for j=1:n
JCh = [J(i,j);
C(j);
h(i,))];
XyzZ =
CIECAMO2Inv(double(JCh),double(RefWhite2),La2, Yb2,surrounds):;



data(i,j,1)=xyz(1);
data(i,j,2)=xyz(2);
data(i,j,3)=xyz(3);

end;
end;

RGBtoXYZ
function [data] = RGBtoXYZ(xyzMax,RGB,GOG)
rgbMax = [GOG(4,1) GOG(4,2) GOG(4,3)];
flare = [GOG(5,1); GOG(5.2); GOG(5,3)k:
[m,n,0]=size(RGB);
for i=1:m
for j=1:n
pixel = [RGB(igj,1);: RGB(i,},2); RGB(i.},3)];
r = GOGmedel(double(pixel(1)),GOG(2,1),GOG(1,1));
g = GOGmodel(double(pixel(2)),GOG(2,2),GOG(1,2));
b = GOGmodel(double(pixel(3)),GOG(2,3),GOG(1,3));

R = r*rgbMax(1);
G = g*rgbMax(2);
B = b*rgbMax(3);

rgb = [R; G; B];
xyz = flare + xyzMax*rgh;

data(i,j,1) =xyz(1);
data(i,j,2) = xyz(2);
data(i.j,3) = xyz(3);

end;
end;

XYZtoRGB
function [datal,data2] = XYZtoRGB(xyzMax. XY Z,GOG);
rgbMax = [GOG(4,1) GOG(4,2) GOG(4,3)];
flare = [GOG(5,1); GOG(5,2); GOG(5,3)];
[m,n,0]=size(XYZ);
for i=1:m

for j=1:n

pixel = [XYZ(i,,1); XYZ(1,),2); XYZ(1,1,3)];

pixel2 = pixel-flare;

RGB = inv(xyzMax)*(pixel2);

R(i,) = RGB(1)/rgbMax(1);

G(i,)) = RGB(2)/rgbMax(2);
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B(i,j) = RGB(3)/rgbMax(3):

if R(1,j)=1

Err(i,j,1) = uint8(255);
elseif R(i.j)<0

Err(i,j,1) = uint8(0);
else

Err(i,j,1) = uint8(128);
end;
if G(1,j)=1

Err(i,j,2) = uint8(255);
elseif G(1,j)<0

Err(i,j,2) = uint8(0);
else

Err(i,j,2) = uint8(128);
end;
if B(1,))=1

Err(i,j,3) = uint8(255);
elseif B(i,j)<0

Err(i,j,3) = uint8(0);
else

Err(i,j,3) = uint&(128);
end;
end;

end;

dr = invGOGmedel(R,GOG(2,1),GOG(1,1));
dg = invGOGmodel(G,GOG(2.2),GOG(1,2));
db = invGOGmodel(B,GOG(2,3),GOG(1,3));

datal(:,:,1)=dr;
datal(:,:,2)=dg;
datal(:,:,3)=db;
data2 = Err;

White Patch

function [data] = WP _rgb(xyzMax,X,GOG);
%X = PictureRGB

WhiteRGB = max(max(X));

r = WhiteRGB(1);

g = WhiteRGB(2);

b = WhiteRGB(3);

WhitePoint = RGBtoXYZ_point(xyzMax, WhiteRGB,GOG);
data = [WhitePoint(1); WhitePoint(2); WhitePoint(3)];
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Gray World

function [data] = GWrgh(xyzMax,X,GOG);
%X = PictureRGB

MeanRGB = mean(mean(X));

r= MeanRGB(1);

g = MeanRGB(2);

b = MeanRGB(3);

MeanXYZ = RGBtoXYZ_point(xyzMax,MeanRGB,GOG):
X = MeanXYZ(1)/sum(MeanXYZ);

y = MeanXYZ(2)/sum(MeanXYZ);

X =x*100/y;

Z = (1-x-y)*100/y;

data = [X; 100; Z];

CIEtest

function [datal,data2] =
ClEtest(xyzMax,filename,RefWhite,La,Yb,RefWhite2, GOG);

Picture = imread(filename);
PicXYZ1 = RGBtoXY Z(xyzMax,Picture, GOG);

%%% Calculate Reference White %%%
%White patch RGB
WpRGB = WP_rgb(xyzMax,Picture, GOG);

%% %% D65
D65 = [95.047; 100; 108.88];

%Grey world RGB
GwRGB = GWrgb(xyzMax,Picture, GOG);

%Monitor
Momitor = [255; 255; 255];
Monttor = RGBtoXYZ_point(xyzMax,Monitor,GOG);

%% fix Output condition %%
if RefWhite2'==1

Ref2 = [100; 100; 100];
elseif RefWhite2 ==

Ref2 =[95.05; 100; 108.88]; %%%D65
elseif RefWhite2 ==

Ref2 = [96.42; 100; 82.49]; %%%D50
end;

Yb2 = 20;



if RefWhite ==
Refl = WpRGB;
elseif RefWhite ==
Refl = GwWRGB;
elseif RefWhite =3
Refl = Monitor;
elseif RefWhite ==4

Refl = D65;
end:
if Lal==0

Lal = mean(mean(PicXYZI(:,:,2)));
clse

Lal=La;
end:
if Yb==0

Ybl = 20;
clse

Ybl = Yb;
end:

PicXYZ2 = CIECAMO2(PicXYZ1,Refl,Ref2,Lal,Ybl,Lal,Ybl,2);
[datal,data2] = XY ZtoRGB(xyzMax PicXYZ2,GOG);

e eeeem---Sample of The Calculation-------====n----
%xyzMax is the tristimulus value of Rmax Gmax and Bmax of the monitor
% xyzMax = [Xr Xg Xb;
Yo Yr Yg Yb;
% Zr Zg 7b];
xyzMax =[50.63291139 © 32.0350535513.14508277;

27.45861733 65.530671866.523855891;

4.381694255 10.51606621 69.03602726];

%XY7Z is the tristimulus value of Grey scale (drgb)

%XYZ = [X...;
% Y...
% Z.];

XYZ= [01.265822785 5.258033106 12.3661149 22.78481013
36.51411879 53.75851996 73.70983447 96.59201558;
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0 1.265822785 5.35540409 13.04771178 23.56377799 37.68257059
55.3067186 76.24148004 99.90262902;

0 1.071080818 4.381694255 10.51606621 19.47419669 31.1587147
46.05647517 63.68062317 83.93378773];

flare = [0.097370983; 0.097370983; 0.097370983];

%%Finding Gain Offset Gamma%%
GOG = CalGOG(flare,xyzMax, XYZ);

%%[PicRGB,Err] = ClEtest(xyzMax,'A} tif \RefWhite,Lal,Yb1,GOG);

[PicRGB,Err] = ClEtest(xyzMax,'A_1.tif',1,0,0,1,GOG);
imwrite(PicRGB(:,:,:),'’A_1WPtoSE.tif"); imwrite(Err(:,:,:),/OutA_1WPtoSe.tif');
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