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ABSTRACT
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Pyrolysis, thermal decomposition, is applied to simultaneously treat and
stabilize sewage sludge. Liquid and solid products are generated and be able to utilized
for providing energy and valuable chemicals. Thermal decomposition of sewage sludge
was carried out under atmospheres NZand CO? by means ofthermogravimetric analysis
(TGA). The results show that the thermal decomposition of sewage sludge under N2 and
co? atmospheres are quite similar and can be described by a pseudo bi-component
separated state model (PBSM). The decomposition shows two decomposition steps
under both N2 and CO?2 atmospheres. Under co? atmosphere, however, the primary
reaction was significantly accelerated whereas the secondary reaction temperature was
shifted to a lower temperature. The apparent activation energies for the first reaction
corresponded to the main decomposition temperature under N2 and CO2 atmospheres at
30500 is 72 k] mol'l while that ofthe second decomposition at ca. 400-500°C is found
to decrease from 154 to 104 k] m ollunder COZatmosphere. Typical reaction order is in
the range of 1.0-1.5. In the presence ofCO2, the solid yield is slightly reduced while the
gas and liquid yields are improved. Furthermore, co? influenced the liquid product by
increasing the oxygenated compounds and lessoning the olefins through the insertion of
cO?2 to the unsaturated compounds. To improve the pyrolytic liquid to meet the
requirement of the conventional diesel fuel, the upgrading via deoxygenation of
pyrolytic liquid is required. The result showed that the deoxygenation of pyrolytic liquid
model compound, oleic acid (Cl7H33COOH), over Cei_erX02 catalyst can be achieved
by direct removal of the carboxylic part of oleic acid and generating CO and CcOZ as

major product in the gas phase. The upgraded liquid contained mainly clr-



hydrocarbons. Moreover, the utilization of pyrolytic solid (sewage sludge char) to
provide energy in the form of heat and as a cheap adsorbent for dye removal were also

studied.
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