การศึกษาและประคิษฐ์โครงสร้างนาโนของอินเดียมฟอสไฟด์ ด้วยวิธีดรอปเลทอิพิแทกซีจากลำโมเลกุล

นางสาววิภากร จิวะสุวรรณ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรคุษฎีบัณฑิต สาขาวิชาวิศวกรรมไฟฟ้า ภาควิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2552 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

STUDY AND FABRICATION OF InP NANOSTRUCTURES GROWN BY DROPLET MOLECULAR BEAM EPITAXY

Miss Wipakorn Jevasuwan

14.1

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Electrical Engineering Department of Electrical Engineering Faculty of Engineering Chulalongkorn University Academic year 2009 Copyright of Chulalongkorn University

522379

Thesis Title	STUDY AND FABRICATION OF InP NANOSTRUCTURES
	GROWN BY DROPLET MOLECULAR BEAM EPITAXY
By	Miss Wipakorn Jevasuwan
Field of Study	Electrical Engineering
Thesis Advisor	Associate Professor Somchai Ratanathammaphan, D.Eng.
Thesis Co-advisor	Professor Somsak Panyakeow, D.Eng.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

(Associate Professor Boonsom Lerdhirunwong, Dr. Ing.)

THESIS COMMITTEE

U. Suit Chairman (Professor Virulh Sa-yakanit, Ph. D.) Thesis Advisor

(Associate Professor Somchai Ratanathammaphan, D. Eng.)

Nle Clamor Thesis Co-advisor

(Professor Somsak Panyakeow, D. Eng.)

1 External Examiner

(Professor Charles W. Tu, Ph. D.)

N. Tayf.L. External Examiner

(Noppawan Tanpipat, Ph. D.)

Satophi Farmute External Examiner

(Associate Professor Satoshi Iwamoto, Ph. D.)

(Assistant Professor Tanakorn Osotchan, Ph. D.)

วิภากร จีวะสุวรรณ : การศึกษาและประคิษฐ์โครงสร้างนาโนของอินเดียมฟอสไฟด์ด้วยวิธีดรอปเลทอิพิ แทกซี่งากลำโมเลกุล. (STUDY AND FABRICATION OF InP NANOSTRUCTURES GROWN BY DROPLET MOLECULAR BEAM EPITAXY) อ. ที่ปรึกษาวิทยานิพนธ์หลัก : รศ. ดร. สมชัย รัตนธรรมพันธ์, อ. ที่ปรึกษาวิทยานิพนธ์ร่วม : ศ.ดร. สมศักดิ์ ปัญญาแก้ว, 113 หน้า.

การประดิษฐ์ควอนดัมดอดโมเลกุลรูปวงแหวนของอินเดียมฟอสไฟด์ที่ก่อตัวขึ้นเอง ถูกนำเสนอขึ้นเป็นกรั้ง แรกในวิทยานิพนธ์นี้ อิทธิพลของด้วแปรในการปลกผลึกที่มีต่อการก่อด้วและคุณสมบัติของควอนดัมดอด โมเลกลรปวงแหวนของอินเดียมฟอสไฟด์ได้มีการศึกษาอย่างละเอียด ด้วอย่างควอนดัมดอดโมเลกุลรูปวงแหวน ้ของอินเดียมฟอสไฟด์ในเมตริกซ์ของอินเดียมแกลเลียมฟอสไฟด์ที่มีส่วนผสมของอินเดียมเท่ากับ 0.5 บนแผ่น ้จานแกลเลียมอาร์เซไนด์ชนิดไม่มีการโด๊ป และมีระนาบ 001 ถกเตรียมขึ้นด้วยเครื่องปลกผลึกด้วยลำโมเลกลที่มี ้ชนิคสารตั้งค้นเป็นของแข็งและใช้เทคนิคการปลกครอปเลทอิพิแทกซี ตัวแปรที่ทำการศึกษาสัมพันธ์โดยตรงกับ ้กระบวนการสร้างอินเดียมครอปเลท และกระบวนการทำอินเดียมครอปเลทให้เป็นผลึกอินเดียมฟอสไฟค์ ซึ่ง ้ได้แก่ อุณหภูมิการสร้างอินเดียมครอปเลท, อุณหภูมิการทำให้เป็นผลึก, อัตราการสร้างอินเดียมครอปเลท และ ปริมาณอินเดียม คุณสมบัติของควอนตัมดอต โมเลกุลถูกทำการติดตามผลอย่างละเอียดระหว่างกระบวนการ และภายหลังเสร็จสิ้นกระบวนการปลกผลึก โดยการสังเกตรปแบบการเลี้ยวเบนของการสะท้อน ปลกผลึก อิเล็กตรอนพลังงานสูง (Reflection Eigh Energy Electron Diffraction), การวัดด้วยแรงอะตอม (Atomic Microscopy), การวัดด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน Force (Transmission Electron Microscopy) และ การวัดโฟโคลูมิเนสเซนด์ (Photoluminescence Spectroscopy)

จากผลการทดลองแสดงให้เห็นว่า การก่อตัวของควอนดัมดอดโมเลกุลรูปวงแหวนของอินเดียมฟอสไฟด์ เกิดขึ้นเนื่องจากความสามารถของเทคนิคครอปเลทอิพิแทกซี และค่าคงดัวผลึกที่แตกค่างกัน 3.8 เปอร์เซ็นด์ของ อินเดียมฟอสไฟด์และอินเดียมแกลเลียมฟอสไฟด์ที่มีส่วนผสมของอินเดียมเท่ากับ 0.5 ความสม่ำเสมอของขนาด ควอนดัมดอดที่ดีที่สุด และจำนวนสูงสุดของควอนดัมดอดโมเลกุลเท่ากับ 46 เปอร์เซ็นด์ ที่ประกอบด้วยแปด ควอนดัมดอดที่ดีที่สุด และจำนวนสูงสุดของควอนดัมดอดโมเลกุลเท่ากับ 46 เปอร์เซ็นด์ ที่ประกอบด้วยแปด ควอนดัมดอดค่อโมเลกุล สัมฤทธิ์ผลได้โดยการใช้ อุณหภูมิการสร้างอินเดียมดรอปเลท, อุณหภูมิการทำให้เป็น ผลึก, อัตราการสร้างอินเดียมดรอปเลท และ ปริมาณอินเดียมเท่ากับ 250 °C, 200 °C, 1.6 ML/s และ 3.2 ML ตามลำดับ ค่ายอดและค่าความกว้างของสเปกตรัมโฟโตลูมิเนสเซนต์ของควอนดัมดอดโมเลกุลรูปทรงวงแหวน ของอินเดียมฟอสไฟด์ที่ได้จากเงื่อนไขการปลูกนี้มีค่าเท่ากับ 1.68 eV และ 43 meV ที่ 20 K และ 1.61 eV และ 60 meV ที่อุณหภูมิห้อง

ควอนดัมดอดโมเลกุลรูปทรงวงแหวนของอินเดียมฟอสไฟต์ที่สร้างขึ้นโดยเทคนิดดรอปเลทอิพิแทกซีถูกทำ การศึกษา และแสดงให้เห็นความเป็นไปได้ที่จะเป็นทางเลือกหนึ่ง ในการนำไปใช้กับเทคโนโลยีควอนดัม คอมพิวเตอร์ ความสำเร็จที่ได้จากการทดลองประดิษฐ์ควอนดัมดอดโมเลกุลรูปทรงวงแหวนของอินเดียมฟอส ไฟด์ในวิทยานิพนธ์ฉบับนี้ นับเป็นจุดเริ่มด้นที่น่าสนใจในฐานะระบบสารที่ให้โครงสร้างควอนดัมดอดโมเลกุล รูปทรงวงแหวน ซึ่งจะเป็นด้วหลักสำคัญในการพัฒนาโครงสร้างดังกล่าวต่อไปในอนาดด

ภาควิชา	วิศวกรรมไฟฟ้า	ลายมือชื่อนิสิด ว็ภาทร จีวะสวรรณ
สาขาวิชา	วิศวกรรมไฟฟ้า	ลายมือซื้ออ. ที่ปรึกษาวิทยานิพนธ์หลัก
ปีการศึกษา	2552	ลายมือชื่ออ. ที่ปรึกษาวิทยานิพนธ์ร่วม

4871875321 : MAJOR ELECTRICAL ENGINEERING KEYWORDS: InP / InGaP / GaAs / NANOSTRUCTURES / MOLECULAR BEAM EPITAXY / DROPLET EPITAXY

WIPAKORN JEVASUWAN : STUDY AND FABRICATION OF INP NANOSTRUCTURES GROWN BY DROPLET MOLECULAR BEAM EPITAXY. THESIS ADVISOR : ASSOC. PROF. SOMCHAI RATANATHAMMAPHAN, D. Eng., THESIS CO-ADVISOR : PROF. SOMSAK PANYAKEOW, D. Eng., 113 pp.

The fabrication of self-assembled InP ring-shaped QDMs has been first proposed in this thesis. The influences of growth parameters on the formation and characteristics of InP ring-shaped QDMs have been intensively studied. The InP ringshaped QDMs samples were prepared using solid-source MBE via droplet epitaxy technique in $In_{0.5}Ga_{0.5}P$ matrices on semi-insulating GaAs (001) substrate. The investigated parameters relating to the In droplet deposition and crystallization process were deposition temperature, crystallization temperature, In deposition rate and In amount. The InP ring-shaped QDMs properties were thoroughly evaluated by both *in situ* and *ex situ* monitoring including Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), and Photoluminescence Spectroscopy (PL).

The experimental results have shown that the formation of InP ring-shaped quantum dot molecules (QDMs) is owing to the performance of droplet epitaxy technique and the lattice mismatched between InP and $In_{0.5}Ga_{0.5}P$ of 3.8%. The best QD size homogeneity and the highest number of QDMs (46%) which consist of eight QDs per QDM was achieved with the deposition temperature, crystallization temperatures, In deposition rate and In coverage of 250 °C, 200 °C, 1.6 ML/s and 3.2 ML, respectively. The PL peaks and FWHMs of these InP ring-shaped QDMs are 1.68 eV and 43 meV at 20 K and 1.61 eV and 60 meV at room temperature.

InP ring-shaped QDMs grown by droplet epitaxy technique has been investigated and shows the feasibility as an alternative material system for quantum computing technologies. The achievement on this thesis should renew the interest of InP ring-shaped QDMs as a promising system and also be an important mile stone in the development of ring-shaped QDM structure.

Department: Electrical Engineering Field of study: Electrical Engineering Academic year: 2009 Student's signature <u>Wipakorn</u> jevasuwan Advisor's signature <u>Survay</u> Co-advisor's signature

ACKNOWLEDGEMENTS

The success of this thesis has been attributed to the extensive support and assistance from my advisor, Assoc. Prof. Dr. Somchai Ratanathammaphan, and my co-advisor, Prof. Dr. Somsak Panyakeow. I am grateful for valuable advice and guidance in this research, for kindness in examining the research instrument, providing suggestions for improvement and offering many good opportunities.

I deeply thank to other lecturers and staffs of the Semiconductor Device Research Laboratory (SDRL), Assoc. Prof. Dr. Montri Sawadsaringkarn, Assoc. Prof. Dr. Banyong Toprasertpong, Assoc. Prof. Dr. Choompol Antarasena, Assoc. Prof. Dr. Songpol Kanjanachuchai, Dr. Chanin Wissawinthanon, Mrs. Bunditha Ratwiset, Mr. Supachock Thainoi, Mr. Pornchai Changmoang, Mr. Pattana Phuntuwong and Mrs. Kwanruan Thainoi, for their valuable advice, cheerfulness and kind support and thanks also go to my seniors, friends and juniors in the SDRL family especially Mr. Poonyasiri Boonpeng and Mr. Hassanet Sodabanlu for their help, encouragement and very kind assistance.

I would like to thank Dr. Noppadon Nuntawong and Ms. Puenisara Limnonthakul at National Electronics and Computer Technology Center (NECTEC) for their help and kindness advising for transmission electron microscopy that used in this research.

I wish to make deep acknowledgement to members of the thesis committee, Prof. Dr. Virulh Sa-yakanit, Prof. Dr. Charles W. Tu, Dr. Noppawan Tanpipat, Assoc. Prof. Dr. Satoshi Iwamoto, and Assist. Prof. Dr. Tanakorn Osotchan for their advice and helpful suggestion.

I would like to express my appreciation to Chulalongkorn University.

I would like to thank Toshiba Corporation that gave me a scholarship and a great opportunity for good experience in Japan.

I would like to give special thanks to the Royal Golden Jubilee (RGJ) scholarship for the research fund and financial support.

Finally, I am grateful to my family for their support, entirely care and love. The usefulness of this thesis, I dedicate to my father, my mother, all the teachers and all benefactors who have taught me since my childhood.

CONTENTS

Page

Abstract (Tha	i) iv
Abstract (Eng	lish) v
Acknowledge	ements vi
Contents	vii
List of Tables	s x
List of Figure	xixi
List of Symbo	ols xxi
Chapter I	Introduction 1
1.1	Historical Background and Motivation1
1.2	Objective 4
1.4	Significant Benefits of the Research 4
1.5	Synopses 5
Chapter II	Theories and Principles6
2.1	Basic Concepts of Low-Dimensional Nanostructures6
2.2	Strain Effect on Low-Dimensional Nanostructures 10
2.3	Growth of Self-Assembled Quantum Dots 15
	2.3.1 Molecular Beam Epitaxy Growth Modes 15
	2.3.2 Self-Assembled Growth in Stranski Krastanow Growth
	Mode 17
	2.3.3 Thermodynamic and Kinetic theories of Self-Assembled
	Quantum Dot Formation in Equilibrium System 18
	2.3.3.1 Thermodynamically Limited Growth 18
	2.3.3.2 Kinetically Controlled Growth 22
	2.3.4 Self-Assembled Growth by Droplet Epitaxy Technique 24
	2.3.5 Thermodynamic and Kinetic Theories of Self-Assembled
	Ring-Shaped Nanostructures in Non-Equilibrium System 26

CONTENTS (continued)

viii

2.4	Quantum Information Processing	. 30
	2.4.1 Quantum Cellular Automata	31
	2.4.2 Extended Quantum Cellular Automata	33
2.5	Material Considerations	35
Chapter III	Experimental Details	. 38
3.1	Molecular Beam Epitaxy	. 38
	3.1.1 Solid-Source Molecular Beam Epitaxy System Overview	. 39
3.2	Reflection High Energy Electron Diffraction	. 41
	3.2.1 RHEED Pattern Observation and Calibration	. 43
3.3	Scanning Electron Microscopy	. 47
3.4	High Resolution X-ray Diffractometer	. 48
3.5	Atomic Force Microscopy	50
3.6	Transmission Electron Microscopy	. 52
3.7	Photoluminescence Spectroscopy	53
3.8	Sample Preparation	56
Chapter IV	Experimental Results and Discussions	. 59
4.1	Characterization of In _{0.5} Ga _{0.5} P layer on GaAs Substrate	. 59
4.2	Monitoring of the InP ring-shaped Quantum Dot Molecule	
	Formation by in situ RHEED Pattern	. 63
4.3	Possible Formation Mechanism of InP Ring-shaped Quantum Dot	
	Molecules	. 64
4.4	Effect of Deposition Temperature on the Properties of InP	
	Ring-shaped Quantum Dot Molecules	. 65
4.5	Effect of Crystallization Temperature on the Properties of InP	
	Ring-shaped Quantum Dot Molecules	. 72
4.6	Effect of Indium Deposition Rate on the Properties of InP	
	Ring-shaped Quantum Dot Molecules	. 78

CONTENTS (continued)

ix

4.7	Effect of Indium Thickness on the Properties of InP	
	Ring-shaped Quantum Dot Molecules	83
4.8	Power Dependence Photoluminescence of InP Ring-shaped	
	Quantum Dot Molecules	88
4.9	Temperature Dependence Photoluminescence of InP Ring-shaped	
	Quantum Dot Molecules	90
4.10	Characterization of InP Ring-shaped Quantum Dot Molecules by	
	Transmission Electron Microscopy	. 92
Chapter V	Conclusions	. 94
References		97
Appendix		104
List of	Publications	105
List of	Presentations	108
Vitae		113

LIST OF TABLES

Table 2.1	Properties of InP, In _{0.5} Ga _{0.5} P and GaAs semiconductors at	
	room temperature (300 K) (Jalali and Pearton, 1995).	

LIST OF FIGURES

Figure 2.1	Schematic views and graphs of density of states (D.O.S.)
	in semiconductor structures of decreasing dimensionality:
	bulk (3D), quantum well (2D), quantum wire (1D),
	quantum dot (0D). 7
Figure 2.2	Size- and material-dependent emission spectra of several surfactants
	coated semiconductor nanocrystal QDs (NCQDs) in a variety of sizes.
	The blue spectral lines are emitted by CdSe NCQDs with diameters
	of 2.1, 2.4, 3.1, 3.6, and 4.6 nm (from right to left). The green series
	is emitted by InP NCQDs with diameters of 3.0, 3.5, and 4.6 nm.
	The red series is emitted by InAs NCQDs with diameters of 2.8, 3.6,
	4.6, and 6.0 nm. Within each color the wavelength is fine tuned by
	controlling the size of the QDs. The inset shows schematically
	the dependence of the fluorescence energy on the size of the QDs.
	(Redrawn from Hitchman, 1993) 9
Figure 2.3	Schematic representation of (a) unstrained layer, (b) compressive
	strained layer, and (c) tensile strained layer. The closed circles
	represent atoms of the substrate material and the open circles
	are atoms of the deposited material. In (b) and (c) the lattice
	constant of the deposited material are different from the epitaxial
	layer. The arrows in (b) and (c) represent forces (stresses)
	exerted on the epitaxial layer 10
Figure 2.4	(a) A schematic representation of the band structure of an unstrained
	direct-gap tetrahedral semiconductor. The light-hole (LH) and heavy-
	hole (HH) bands degenerate at the Brillouin zone center Γ and the
	spin-split-off (SO) band lies lower in energy. The lowest conduction
	band (CB) is separated by the band gap energy (E_g) from the valence
	bands. Note that the k_{\parallel} is perpendicular to the growth and strain
	direction. (b) Under biaxial compression. (c) Under biaxial tension.
	The lower panel shows the VB diagram of the quantum well

xii

Page	
------	--

	structure in case of (a) unstrained, (b) compressive strained and	
	(c) tensile strain. (Redrawn from O'Reilly, 1989)	. 14
Figure 2.5	Strain distribution for a pyramidal QD with a 45° facet	
	angle in the (xz) plane through the pyramid top. Identical	
	isotropic elastic constants and $\sigma = 1/3$ are taken throughout the	
	structure. ε_{xx} , ε_{yy} , ε_{zz} , ε_{xz} are shown; due to symmetry in this	
	plane, ε_{xy} , and ε_{yz} are zero. (Bimberg et al., 1999)	15
Figure 2.6	Schematic representation of the three crystal growth modes	
	(a) Layer-by-layer or Frank-van der Merwe; (b) island or	
	Volmer-Weber; (c) layer-plus-island or Stranski-Krastanow	
	mode.	16
Figure 2.7	Schematic representations of island formation during epitaxial	
	growth of a semiconductor material on top of another one with a	
	smaller lattice constant in Stranski-Krastanow growth mode.	18
Figure 2.8	Energy of an array of 3D coherently strained islands per one	
	atom versus island size L. The control parameter α depends on	
	the contribution from the surface energy and the edge energy	
	(Bimberg et al., 1999).	20
Figure 2.9	Equilibrium phase diagram of lattice-mismatched heteroepitaxial	
	system as a function of the total amount of deposited material and	
	lattice mismatch. The small panels on the top and the bottom	
	illustrate the morphology of the surface in the six growth modes.	
	The small empty triangles indicate the presence of stable islands,	
	while the large shaded ones refer to ripened islands (Daruka and	
	Barabási, 1997).	21
Figure 2.10	(a) Schematic representation of the local strain energy density	
	in and around the QD. The energy barrier for the adatom's	
	diffusion to the QD has a maximum at the edge of the QD	
	(Seifert et al., 1996). (b) The variation of the surface strain ε_s	

xiii

 ε_{xx} in the island (Chen and Washburn, 1996). Figure 2.11 Schematic illustration of SK QDs formation process (a) initial stage of wetting layer formation (b) the wetting layer (c) 2D to 3D islands transition, (d) non-uniform 3D islands (e) self-regulation process and (f) misfit dislocation formation. Figure 2.12 Two basic processes of droplet epitaxy technique: (a) deposition of the group III elements to crate the initial droplets (b) crystallization with the group V flux to form the semiconductor 	
 Figure 2.11 Schematic illustration of SK QDs formation process (a) initial stage of wetting layer formation (b) the wetting layer (c) 2D to 3D islands transition, (d) non-uniform 3D islands (e) self-regulation process and (f) misfit dislocation formation. Figure 2.12 Two basic processes of droplet epitaxy technique: (a) deposition of the group III elements to crate the initial droplets (b) crystallization with the group V flux to form the semiconductor 	23
 stage of wetting layer formation (b) the wetting layer (c) 2D to 3D islands transition, (d) non-uniform 3D islands (e) self-regulation process and (f) misfit dislocation formation. Figure 2.12 Two basic processes of droplet epitaxy technique: (a) deposition of the group III elements to crate the initial droplets (b) crystallization with the group V flux to form the semiconductor 	
 islands transition, (d) non-uniform 3D islands (e) self-regulation process and (f) misfit dislocation formation. Figure 2.12 Two basic processes of droplet epitaxy technique: (a) deposition of the group III elements to crate the initial droplets (b) crystallization with the group V flux to form the semiconductor 	
Figure 2.12 Two basic processes of droplet epitaxy technique: (a) deposition of the group III elements to crate the initial droplets (b) crystallization with the group V flux to form the semiconductor	
Figure 2.12 Two basic processes of droplet epitaxy technique: (a) deposition of the group III elements to crate the initial droplets (b) crystallization with the group V flux to form the semiconductor	24
of the group III elements to crate the initial droplets (b) crystallization with the group V flux to form the semiconductor	
crystallization with the group V flux to form the semiconductor	
nanostructures and (c) some possible forming of semiconductor	
nanostructures with different group V flux intensity.	
(Redrawn from Mano et al., 2000)	25
Figure 2.13Schematic illustration of the kinetic process of group III droplet	
with group V ambience. The arrows denote the direction of surface	;
diffusions of group V atoms (green points) and group III atoms	
(red points) (Redrawn from Lee and Yang, (2009).	27
Figure 2.14 Layout of the four-dot QCA cell with two electrons and the two	
distinct electron configurations corresponding to their maximum	
spatial separation, which can be labeled logic "0" and "1"	
(Bajec et al., 2006).	. 32
Figure 2.15 The binary wire; propagation of enforced logical values 0 and 1	
along a line of QCA cells (Bajec et al., 2006).	. 32
Figure 2.16 The QCA majority gate: AND, OR, and NOT (Bajec et al., 2006).	. 32
Figure 2.17 Layout of the eight-dot EQCA cell with two electrons and the four	
distinct electron configurations corresponding to their maximum	
spatial separation, which can be labeled logic "0", "1" and "1/2"	
(Bajec et al., 2006).	33
Figure 2.18 The ternary wire; propagation of enforced configuration 'A' or	
'B' along a line of EQCA cells.	. 33

xiv

Figure 2.19	The EQCA majority gate truth table, AND and OR	
	(Bajec et al., 2006).	34
Figure 2.20	Lattice constant versus energy gap at room temperature for the	
	III-Vs material system. The solid line is for direct band gap	
	material and the dotted line is for indirect band gap material.	35
Figure 2.21	The zinc blende crystal structure.	. 36
Figure 3.1	The RIBER 32P SS-MBE machine at semiconductor devices	
	research laboratory (SDRL), Chulalongkorn University.	40
Figure 3.2	A schematic drawing of the RIBER 32P SS-MBE growth	
	chamber.	40
Figure 3.3	A schematic representation of the RHEED observation system.	42
Figure 3.4	(a) a schematic representation of the RHEED geometry (Herman	
	and Sitter, 1989), (b) the imaging of RHEED pattern that is	
	determined by the Laue method-intersection of Ewald sphere in	
	reciprocal lattice space and (c) an example of Ewald sphere	
	construction for a reconstructed surface in [110] azimuth and	
	RHEED pattern of GaAs (001) 2×4 surface in [110] and [110]	
	azimuth (Ichimiya and Cohen, 2004).	42
Figure 3.5	(a) Schematic representation of top view, side view of relaxed	
	structure (Esser et al., 2001) and c(4×4) RHEED pattern of GaAs	
	surface at 460°C in [110] and [100] azimuths; and (b) Schematic	
	representation of top view, side view of relaxed structure	
	(LaBella et al., 1999) and (2×4) RHEED pattern of GaAs surface	
	at 580°C in $[1\overline{10}]$ and $[110]$ azimuths. Filled and empty circles	
	represent As and Ga, respectively. Larger circles represent atoms	
	closer to the surface.	44
Figure 3.6	The RHEED pattern transition of temperature calibration	
	process of GaAs in $[1\overline{10}]$ azimuth ($T_{\text{transition}}$ (500 °C) =	

xv

	$(T_1+T_2+T_3+T_4) / 4).$. 44
Figure 3.7	(a) Schematic representation of the interpretation of RHEED	
-	intensity oscillations and (b) are experimental results obtained	
	during the growth of GaAs. The intensity signals were detected	
	in the pattern area marked by white boxes shown in the insets	
	(Shchukin and Bimberg, 1999).	45
Figure 3.8	Figure 3.8 Plots of growth rates of GaAs (a) and InAs (b) as a	
	function of BEP. The GaAs growth rates were calibrated by	
	RHEED intensity oscillation while the InAs growth rate was	
	obtained from RHEED pattern transition during the growth	
	of self-assembled QDs. All RHEED data were obtained from	
	a 2×2 cm ² GaAs substrate glued in the middle of a molybdenum	
	block under As-rich condition.	46
Figure 3.9	A JEOL JSM-5400 electron microscope at Analytical Instrument	
	Center and Laboratory (AICL), Chulalongkorn University and	
	schematic of SEM measurement.	48
Figure 3.10	Lattice planes and Bragg's law.	49
Figure 3.11	The PHILIPS X' Pert PRO diffractometer at Nakano-Sugiyama-	
	Tanemura Laboratory, The University of Tokyo.	50
Figure 3.12	The SEIKO SPA 400-AFM at SDRL, Chulalongkorn University	
	and a schematic of AFM measurement.	51
Figure 3.13	Modes of AFM measurement.	51
Figure 3.14	A JEOL JEM-2010 electron microscope at National Electronics	
	and Computer Technology Center (NECTEC) and its schematic	
	diagram.	52
Figure 3.15	The micro-PL system at Nakano-Sugiyama-Tanemura Laboratory,	
	The University of Tokyo.	54
Figure 3.16	The macro-PL setup and its schematic at SDRL, Chulalongkorn	
	University.	54

Figure 3.17	Simple interpretation of the PL data obtained from a QD	
	structure. In case of small QD (a): the PL peak energy position	
	is higher compared with large QD (b).	55
Figure 3.18	Simple interpretation of the PL spectrum obtained from the QD	
	structure. In (a) the PL spectrum is very narrow due to the delta-	
	function like density of states; and in (b) the average dot size	
	corresponds to the PL peak energy position and the PL linewidth	
	corresponds to the size distribution of the array.	55
Figure 3.19	Schematic diagram of the sample structure grown in this work.	
	The growth conditions for the InP ring-shaped QDMs layer were	
	given in the text.	58
Figure 4.1	The SEM image of 1-µm-thick InGaP layer grown on GaAs (001)	
	substrate.	60
Figure 4.2	The XRD spectrum of 200 nm InGaP layer grown on GaAs (001)	
	substrate in (004).	61
Figure 4.3	The room temperature (300 K) PL spectrum of 200-nm-thick	
	InGaP layer grown on GaAs (001) substrate.	62
Figure 4.4	RHEED patterns of each experimental procedure in $[1\overline{10}]$ azimuth	
	and [110] azimuth.	63
Figure 4.5	Schematic representations of the self-organized InP ring-shaped	
-	QDMs formation: (a) In droplet deposits on $In_{0.5}Ga_{0.5}P$ layer and	
	creates the initial droplet with the InP thin layer. (b) during	
	crystallization time, In migrates away from center to periphery	
	of the droplet, P atoms diffuse into the droplet and the lattice	
	mismatch between the InP and In _{0.5} Ga _{0.5} P layer form the QDMs	
	structure (c).	65
Figure 4.6	The 2D top-view and 3D tiled-view AFM images and	
	cross-sectional line-profiles along [110] of InP ring-shaped QDMs	
	formed at different deposition temperature of (a) 120°C (b) 150°C	

xvii

	(c) 180°C (d) 210°C (e) 250°C and (f) 290°C and crystallization at 200°C. The 3.2-ML thick indium coverage was deposited at	
	a of 0.8 ML/s.	66
Figure 4.7	The dependence of InP QDs and ring-shaped QDMs densities	
	and average outer and inner diameters of InP ring-shaped QDMs	
	on the deposition temperature.	67
Figure 4.8	Distributions of the number of InP QDs per InP ring-shaped	
	QDM ((a-f)-1), height ((a-f)-2) and lateral size of InP QDs	
	((a-f)-3) with various deposition temperatures.	68
Figure 4.9	The dependence of the number of InP QDs per InP ring-shaped	
	QDM, height and lateral size of InP QDs on the deposition	
	temperature.	69
Figure 4.10	The 2D top-view AFM images of InP ring-shaped QDMs formed	
	at deposition temperature of 250 °C, the crystallization	
	temperature of 200 °C, the In deposition rate of 0.8 ML/s and	
	the In deposition rate of 3.2 ML with different substrate	
	temperature ramping of (a) 250°C (b) 300°C and (c) 350°C	
	after crystallization.	71
Figure 4.11	PL spectra of InP ring-shaped QDMs with various deposition	
	temperatures measured by the macro-PL system at 20 K.	71
Figure 4.12	PL spectra of InP ring-shaped QDMs with various deposition	
	temperatures measured by the micro-PL system at room	
	temperature.	72
Figure 4.13	The 2D top-view and 3D tiled-view AFM images and	
	cross-sectional line- profiles along [110] of InP ring-shaped	
	QDMs formed at different crystallization temperature of (a) 150°C	
	(b) 200°C (c) 250°C and (d) 300°C. The deposition temperature	
	was 200°C with coverage of 3.2 ML indium droplet and	
	indium deposition rate of 0.8 ML/s.	73

Page

Figure 4.14	The dependence of InP QDs and ring-shaped QDMs densities	
	and average outer and inner diameters of InP ring-shaped	
	QDMs on the crystallization temperature.	74
Figure 4.15	Distributions of the number of InP QDs per InP ring-shaped	
	QDM ((a-d)-1), height ((a-d)-2) and lateral size of InP QDs	
	((a-d)-3) with various crystallization temperatures.	75
Figure 4.16	The dependence of the number of InP QDs per InP ring-shaped	
	QDM, height and lateral size of InP QDs on the crystallization	
	temperature.	76
Figure 4.17	PL spectra of InP ring-shaped QDMs with various crystallization	
	temperatures measured by the macro-PL system at 20 K.	77
Figure 4.18	PL spectra of InP ring-shaped QDMs with various crystallization	
	temperatures measured by the micro-PL system at room	
	temperature.	77
Figure 4.19	The 2D top-view and 3D tiled-view AFM images and	
	cross-sectional line- profiles along [110] of InP ring-shaped	
	QDMs formed at different indium deposition rate of (a) 0.2 ML/s	
	(b) 0.4 ML/s, (c) 0.8 ML/s and (d) 1.6 ML/s. The deposition and	
	crystallization temperature was 250°C and 200°C, respectively	
	with coverage of 3.2 ML indium droplet.	79
Figure 4.20	The dependence of InP QDs and ring-shaped QDMs densities	
	and average outer and inner diameters of InP ring-shaped QDMs	
	on the indium deposition rate.	80
Figure 4.21	Distributions of the number of InP QDs per InP ring-shaped	
	QDM ((a-d)-1), height ((a-d)-2) and lateral size of InP QDs	
	((a-d)-3) with various indium deposition rate.	81
Figure 4.22	The dependence of the number of InP QDs per InP ring-shaped	
	QDM, height and lateral size of InP QDs on the indium	
	deposition rate.	82

xviii

xix

Figure 4.23	PL spectra of InP ring-shaped QDMs with various indium	
	deposition rate measured by the macro-PL system at 20 K.	82
Figure 4.24	PL spectra of InP ring-shaped QDMs with various indium	
	deposition rate measured by the micro-PL system at room	
	temperature.	83
Figure 4.25	The 2D top-view and 3D tiled-view images and cross-	
	sectional line-profiles along [110] of InP ring-shaped QDMs	
	formed at different indium thickness of (a) 1.6 ML (b) 3.2	
	ML, (c) 4.8 ML and (d) 6.4 ML. The deposition and	
	crystallization temperature were 250°C and 200°C,	
	respectively with indium deposition rate of 0.8 ML/s.	84
Figure 4.26	The dependence of InP QRs, QDs and ring-shaped QDMs	
	densities and average outer and inner diameters of InP QRs and	
	ring-shaped QDMs on the indium thickness.	85
Figure 4.27	Distributions of the number of InP QDs per InP ring-shaped	
	QDM ((b-d)-1), height ((a-d)-2) and lateral size of InP QRs and	
	QDs ((a-d)-3) with various indium thickness.	86
Figure 4.28	The dependence of the number of InP QDs per InP ring-shaped	
	QDM, height and lateral size of InP QRs and QDs on the indium	
	thickness.	87
Figure 4.29	PL spectra of InP QRs and ring-shaped QDMs with various	
	indium thickness measured by the macro-PL system at 20 K.	87
Figure 4.30	PL spectra of InP QRs and ring-shaped QDMs with various	
	indium thickness measured by the micro-PL system at room	
	temperature.	88
Figure 4.31	Power dependent PL spectra of InP ring-shaped QDMs which	
	have the deposition temperature of 250 °C, the crystallization	
	temperature of 200 °C, the In deposition rate of 1.6 ML/s and	

xx

	the In deposition rate of 3.2 ML.	89
Figure 4.32	The relationship between excitation powers, FWHMs and peak	
	emission positions.	90
Figure 4.33	Temperature dependent PL spectra of InP ring-shaped QDMs	
	which have the deposition temperature of 250 °C, the	
	crystallization temperature of 200 °C, the In deposition rate of	
	1.6 ML/s and the In deposition rate of 3.2 ML.	91
Figure 4.34	The relationship between temperatures, FWHMs and peak	
	emission positions.	91
Figure 4.35	(a) Schematic of sample structure for TEM measurement, (b)	
	Overview cross-sectional TEM micrograph of InP ring-shaped	
	QDM sample with the deposition temperature of 250 °C, the	
	crystallization temperature of 200 °C, the indium deposition rate	
	of 1.6 ML/s and the indium deposition rate of 3.2 ML and (c)	
	Cross-sectional TEM micrograph of the upper InP	
	ring-shaped QDMs layer.	93

LIST OF SYMBOLS

∇^2	Laplacian operator
α	control parameter
\mathbf{a}_0	space between surface sites
a //	parallel lattice constant
a⊥	perpendicular lattice constant
a _e	lattice constant of deposited material
as	lattice constant of substrate material
A	surface area
AFM	atomic force microscopy
AICL	Analytical Instrument Center and Laboratory
Ar ⁺	argon
As	arsenic
AsBr ₃	arsenic tribromide
AsH ₃	arsine
BEP	beam equivalent pressure
C ₀	concentration of group III atoms on the droplet boundary
C ₁₁ , C ₁₂	elastic constant of epitaxial layer
CB	conduction band
CCD	charge-coupled device
CdSe	cadmium selenide
CEO	cleaved-edge overgrowth
CRT	cathode ray tube
0D	zero dimension
1D	one dimension
2D	two dimension
3D	three dimension
δ	delta function
∆h	height of nanostructure
Δt	short time
	or limit time
Δγ	change of surface free energy

d ₀	strained epitaxial film thickness
d ₁	substrate thickness
D _{0,111}	prefactor
$D_{bulk}(E)$	bulk density of state
D _{III}	diffusion coefficient of group III atoms
D _{QW} (E)	quantum well density of state
$D_{QWR}(E)$	quantum wire density of state
$D_{\mathrm{QD}}(E)$	quantum dot density of state
D.O.S.	density of state
ε	lattice mismatch or misfit strain
Exx	axial strain in x-direction
Еуу	axial strain in y-direction
EZZ	axial strain in z-direction
Exz	shear strain on x-plane directed through z-direction
Exy	shear strain on x-plane directed through y-direction
Eyz	shear strain on y-plane directed through z-direction
E //	in-plane strain
\mathcal{E}_{ot}	strain in perpendicular to the growth direction
E	carrier energy
	or total energy per unit cell
E(L)	total energy per unit volume
E ₀	characteristic energy
Ea	adsorption energy and the
E _{bulk}	carrier energy of bulk
Ed	energy barrier for the hopping between surface sites
Eg	band gap energy
E _{l,x}	quantized energy in x-direction
E _{m, y}	quantized energy in y-direction
E _{n,z}	quantized energy in z-direction
E _{QW}	carrier energy of quantum well
E _{QWR}	carrier energy of quantum wire

E _{QD}	carrier energy of quantum dot
E _{WL}	energy of wetting layer
E _{rip}	energy of ripened island
Eisland	energy of single island
Eelastic	elastic strain energy
E _{st}	strain energy
E _{surface}	island surface energy
E _{edge}	island edge energy
EQCA	extended quantum dot cellular automata
F(r)	envelope wave function
FM	Frank van der Merwe
FWHM	full width at half maximum
γe	surface free energy of the epilayer/vacuum interface
γ_i	surface free energy of epilayer/substrate interface
γs	surface free energy of the substrate/vacuum interface
G	reciprocal lattice vector
Ga	gallium
GaAs	gallium arsenide
GaP	gallium phosphide
GaSb	gallium antimony
Ge	germanium
GS-MBE	gas-source molecular beam epitaxy
h	Planck's constant
	or height of pyramidal quantum dot
	or final height
ħ	reduced Planck's constant
h ₀	thickness of monolayer
h _c	critical thickness of strained layer
НН	heavy-hole band
InAs	indium arsenide
InGaAs	indium gallium arsenide

InGaP	indium gallium phosphide
InP	indium phosphide
k	Boltzmann constant
	or amplitude of wave vector
K	Knudsen
k _B	Boltzmann's constant
k _{//}	amplitude of in-plane (y-z) wave vector
\mathbf{k}_{\perp}	amplitude of wave vector in x-direction
$\mathbf{k}=(\mathbf{k}_{\mathbf{x}},\mathbf{k}_{\mathbf{y}},\mathbf{k}_{\mathbf{z}})$	carrier wave vector
k _{in}	wave vectors of incident electron
k _{diff}	wave vectors of diffraction electron
λ	elastic modulus
	or wavelength of the x-ray
$\lambda_{de Broglie}$	de Broglie wavelength
1	quantum number in x-direction
L	macroscopic length scale
	or base size of pyramidal quantum dot
L ₀	characteristic length
LaB ₆	Lanthanum Hexaboride
L _{opt}	optimal island size
LH	light-hole band
LN_2	liquid nitrogen
LPE	liquid phase epitaxy
m	quantum number in y-direction
	or mass of an group V atom
m	mass of an electron, 9.11×10^{-31} kg
m _e	effective electron mass
m _h	effective electron mass
m*	carrier effective mass
MBE	molecular beam epitaxial or molecular beam epitaxy
ML	monolayer

Mo	molybdenum
MOCVD	metalorganic chemical vapour deposition
MO-MBE	metal-organic molecular beam epitaxy
υ_{PR}	Poisson's ratio
n	quantum number in z-direction
	or an integer representing the order of the diffraction peak
N _A	Avogadro constant
N _D	volume density of quantum dot
N _{(i)III-V}	final shape of nanostructures
NIII	amount of diffused group III atoms
N _{III-V}	total amount per unit time
Nv	amount of the trapped group V atoms
Nwi	area density of the quantum wires
р	carrier momentum
Р	intensity of group V flux
P ₂	phosphorus dimers
P ₄	phosphorous tetramers
PBN	pyrolytic boron nitride
PH ₃	phosphine
PL	photoluminescence
Q	total deposited material (monolayer)
Q ₁	deposited material that form wetting layer
Q ₂	deposited material that form coherent 3D island
QCA	quantum dot cellular automata
QW	quantum well
QWR	quantum wire
QD	quantum dot
QDM	quantum dot molecule
QR	quantum ring
r _c	trapping radius of droplet
r _{GaAs}	growth rate of gallium arsenide

r _{III}	atomic radius of group III atoms
۲ _{InAs}	growth rate of indium arsenide
r _{InGaAs}	growth rates of indium gallium arsenide
r = (x , y , z)	carrier position vector
R	amount of impacting group V atoms on
	the substrate per unit time
Re	rhenium
RHEED	reflection high-electron energy diffraction
RT	room temperature
SDRL	semiconductor devices research laboratory
SEM	scanning electron microscopy
SK	Stranski Krastanow
SO	spin-split-off band
SS-MBE	solid-source molecular beam epitaxy
STM	scanning tunneling microscope
Θ	Heaviside's unit step function
θ	scattering angle
t	film thickness
t _m	time of crystallization process
Т	temperature
T ₁	first temperature
T ₂	second temperature
T ₃	third temperature
T ₄	fourth temperature
T _{sub}	substrate temperature
T _{buffer} growth	buffer growth temperature
T _{transition}	transition temperature
TEGa	triethylgallium
TEM	transmission electron microscopy
Ti	titanium
TMIn	trimethylindium

UHV	ultra-high vacuum
ν_1	thermal vibration frequencies for the upward direction
ν_0	thermal vibration frequencies for the lateral direction
V _{droplet}	volume of droplet
V _{mIII}	molar volume of droplet
V(r)	confinement potential
VPE	vapor phase epitaxy
VW	Volmer Weber
W	tungsten
WL	wetting layer
X _{in}	In composition

xxvii