บทที่ 4

ประสิทธิภาพของชิ้นส่วนแผ่นพื้นพันธุ์ทาง

ในการตรวจสอบประสิทธิภาพของขึ้นพันธุ์ทางรับแรงดัดนั้น จะทำการตรวจสอบในด้านต่างๆดังนี้คือ ความแม่นของการกระจัด ซึ่งแบ่งการทดสอบออกเป็นสามส่วนด้วยกัน ส่วนแรกคือการลู่เข้าของผลเฉลย (convergence) เมื่อทำการแบ่งขนาดของขึ้น (mesh) ให้ละเอียดขึ้น ส่วนที่สองนั้นจะทำการทดสอบความแม่น ของการกระจัดเมื่ออัตราส่วนความยาวต่อความหนาของแผ่นพื้นเปลี่ยนไป ในส่วนสุดท้ายจะทำการตรวจสอบ ความแม่นของการกระจัดเมื่ออัตราส่วนของความยาวต่อความกว้างของแผ่นพื้นเปลี่ยนไป

สมบัติด้านต่อมาที่ทำการทดสอบคือ ความแม่นของความเค้น โดยการเปรียบเทียบกับผลเฉลยที่ได้ จากวิธีการตามแบบฉบับ (classic solution) ทั้งในแง่ของ โมเมนต์ และแรงเฉือน สมบัติด้านต่อมาที่ทำการ ทดสอบนั้น คือ ประสิทธิภาพทางคอมพิวเตอร์ โดยการเปรียบเทียบเวลาที่ใช้ในการสร้างเมตริกซ์สติฟเนสของ แต่ละขึ้นส่วนด้วยการนับจำนวนการดำเนินการ (operations) ซึ่งสามารถนำมาเปรียบเทียบกันได้ สมบัติอีก ด้านที่ทำการทดสอบคือ ความยืนยง และสมบัติข้อสุดท้ายที่ทำการทดสอบคือ การทดสอบแบบหย่อม

ซึ่งการทดสอบทั้งหมดที่กล่าวมานั้น จะสอดคล้องกับคุณสมบัติของชิ้นส่วนที่ดีดังที่ได้กล่าวแล้วในบทที่ 1 ซึ่งรายละเอียดของการทดสอบสามารถแจงได้ดังนี้

4.1 ความแม่นของการกระจัด

4.1.1 การลู่เข้าของชิ้นส่วน (Convergence)

ในการทดสอบการลู่เข้าของผลเฉลยนั้น ใช้ขึ้นส่วนแผ่นพื้น ขนาดยาว 8 หน่วย กว้าง 8 หน่วย หนา 0.1 หน่วย นั่นคือแผ่นพื้นมีอัตราส่วนความยาวต่อความหนาเท่ากับ 80 ซึ่งสอดคล้องกับเงื่อนไขของแผ่นพื้นบาง

จากขนาดแผ่นพื้นดังกล่าวมีการแบ่งออกเป็น 4 ชิ้น 16 ชิ้น 36 ชิ้น 64 ชิ้น และ 100 ชิ้น ตามลำดับ ดังรูปที่ 4.1.1.1 สำหรับกรณีขึ้นส่วน 4 ขั้ว และ รูปที่ 4.1.1.2 ในกรณีขึ้นส่วน 8 ขั้ว ซึ่งสามารถเตรียมข้อมูลให้ สอดคล้องกับตัวอย่างปัญหาที่ได้แสดงไว้ได้ ในส่วนของเงื่อนไขที่ขอบนั้นมีการแบ่งออกเป็นสี่ชนิดด้วยกันคือ กรณีขอบแผ่นพื้นเป็นอิสระ (Free edges:FS) กรณีขอบแผ่นพื้นถูกรองรับแบบธรรมดาอย่างอ่อน (Soft simply supported : SS2) กรณีขอบแผ่นพื้นถูกรองรับแบบธรรมดาอย่างแข็ง (Hard simply supported : SS1) และ กรณีขอบแผ่นพื้นถูกยึดรั้งทั้งสี่ด้าน (Clamped Edges: CS) ซึ่งสามารถใส่เงื่อนไขได้ดังแสดงไว้ในรูปที่ 4.1.1.3 ซึ่งในการทดสอบนี้จะทำการทดสอบทั้งสี่กรณีดังกล่าวข้างด้น

รูปที่ 4.1.1.1 ตัวอย่างทดสอบการแบ่งขนาดที่ละเอียดขึ้น กรณีขึ้นส่วน 4 ขั้ว

รูปที่ 4.1.1.2 ตัวอย่างทดสอบการแบ่งขนาดที่ละเอียดขึ้น กรณีขึ้นส่วน 8 ขั้ว

รูปที่ 4.1.1.3 วิธีการใส่เงื่อนไขที่ขอบแผ่นพื้น

ซึ่งผลการทดสอบได้แสดงไว้ดังรูปที่ 4.1.1.6. และ 4.1.4.7 จากผลการทดสอบ พบว่าการลู่เข้าสู่คำตอบ จะไม่สามารถบอกได้ว่าเป็นการลู่แบบขอบเขตบนเหมือนระเบียบวิธีการกระจัดหรือ ขอบเขตล่างแบบระเบียบวิธี ทางแรง แต่การลู่จะสามารถเป็นไปได้ทั้งสองแบบ และการลู่จะไม่เป็นแบบทางเดียว (nonmonothonic convergence) ดังจะเห็นได้จากรูปที่ 4.1.1.6n และ 4.1.1.6ข ว่าการลู่จะมีการแกว่ง แต่ถึงอย่างไรก็ตามเมื่อ เราแบ่งขนาดให้ละเอียดขึ้นก็จะมีการลู่เข้าสู่คำตอบที่แน่นอน แต่ความแม่นของแต่ละขึ้นส่วนก็ต่างกันไป ใน กรณีของขึ้นส่วนสี่ขั้วและมีการสมมุติการกระจัดภายในขึ้นส่วน ส่วนมากจะมีความถูกต้องมากกว่าร้อยละ 90 เมื่อเทียบกับผลเฉลยแม่นตรง ทั้งในกรณีขอบแผ่นพื้นถูกรองรับแบบธรรมดาอย่างแข็ง หรือกรณีของแผ่นพื้น ถูกรองรับธรรมดาอย่างอ่อน จะมีเพียงแค่ขึ้นส่วน LH5 และ LH11 ที่เสนอโดย Spilker เท่านั้นที่จะให้ค่าการ กระจัดที่น้อยเกินไป หรือโครงสร้างที่ได้จะแข็งเกินไป

ในกรณีชิ้นส่วนแปดขั้วนั้น คำตอบที่ได้จะมีความผิดพลาดมากกว่าในกรณีชิ้นส่วนสี่ขั้ว แสดงให้เห็นว่า การใช้จำนวนขั้วที่มากขึ้นไม่ได้ส่งผลให้การกระจัดที่ได้ดีขึ้นตามไปด้วย กลับค่าการกระจัดออกมาน้อย หรือขึ้น ส่วนแข็งจนเกินไป

และจำนวนความเค้นสามัญที่สมมุติก็จะมีผลต่อคำตอบที่ได้ การสมมุติจำนวนความเค้นสามัญที่มาก เกินไปจะทำให้ขึ้นส่วนที่ได้แข็งกว่าปกติ หรือค่าการกระจัดที่ได้จะน้อยเกินไป ซึ่งเห็นได้ดังรูปที่ 4.1.1.4 เพราะ ขึ้นส่วน LH5 และ LH11 และ LH-OP มีการสมมุติสนามกระจัดเหมือนกันทุกประการ แต่มีการสมมุติสนาม ความเค้นที่ต่างกัน ขึ้นส่วน LH5 และ LH11 มีการสมมุติจำนวนความเค้นสามัญถึง 12 ตัว เมื่อเทียบกับ LH3 และ LH-OP ที่ทำการสมมุติแค่เพียง 9 ตัว ทำให้การกระจัดที่ได้มีค่าน้อยกว่า ผลของการสมมุติจำนวนความ เค้นสามัญก็เห็นได้อีกเช่นกันจากผลการทดสอบในกรณีของชิ้นส่วนแปดขั้วที่สมมุติการกระจัดภายในชิ้นส่วน เพราะชิ้นส่วน QH-OP จะให้ค่าการกระจัดที่มากที่สุด เมื่อเทียบกับชิ้นส่วนอื่นๆ ทั้งนี้เพราะว่า QH-OP ใช้ จำนวนความเค้นสามัญเพียงแค่ 21 ตัว และชิ้นส่วน QH4 จะให้ค่าการกระจัดที่น้อยที่สุด เพราะมีการใช้จำนวน ความเค้นสามัญถึง 30 ตัว

รูปที่ 4.1.1.4 เปรียบเทียบการกระจัดในกรณีที่สมมุติจำนวนความเค้นสามัญไม่เท่ากัน

ในส่วนของการใช้ตัวคูณลากรองจ์นั้นจะทำให้ขึ้นส่วนที่ได้มีความแม่นของการกระจัดที่ดีขึ้นเมื่อเทียบ กับกรณีของการเพิ่มจำนวนการสมมุติความเค้นสามัญ พิจารณาได้จากรูปที่ 4.1.1.5 ขึ้นส่วนทั้งสามชิ้นมีการ สมมุติสนามความเค้นและสนามการกระจัดสอดคล้องที่เหมือนกันทุกประการ จะแตกต่างกันก็เพียงแค่ขึ้นส่วน HSC1และ HSC2 ซึ่งมีการสมมุติตัวคูณลากรองจ์เพิ่มเข้าไปด้วย

Log N

รูปที่ 4.1.1.5 เปรียบเทียบการกระจัดในกรณีการเพิ่มตัวคูณลากรองจ์

n) กรณีขอบของแผ่นพื้นถูกรองรับแบบธรรมดาอย่างแข็ง (SS1)

ข) กรณีขอบของแผ่นพื้นถูกรองรับแบบธรรมดาอย่างอ่อน (SS2)

รูปที่ 4.1.1.6 การลู่เข้าของขึ้นส่วน 4 ขั้ว เมื่อมีการแบ่งขนาดละเอียดขึ้น

Log N

ค) กรณีขอบของแผ่นพื้นถูกยึดรั้งทั้งสี่ด้าน (CS)

รูปที่ 4.1.1.6(ต่อ) การลู่เข้าของขึ้นส่วน 4 ขั้ว เมื่อมีการแบ่งขนาดละเอียดขึ้น

n) กรณีขอบของแผ่นพื้นถูกรองรับธรรมดาอย่างแข็ง (SS1)

กรณีขอบของแผ่นพื้นถูกรองรับธรรมดาอย่างอ่อน (SS2)

รูปที่ 4.1.1.7 การลู่เข้าของขึ้นส่วน 8 ขั้ว เมื่อมีการแบ่งขนาดละเอียดขึ้น

ค) กรณีขอบของแผ่นพื้นถูกยึดรั้งทั้งสี่ด้าน (CS)

ง) กรณีขอบของแผ่นพื้นเป็นอิสระสามด้าน (FS)

รูปที่ 4.1.1.7 การลู่เข้าของขึ้นส่วน 8 ขั้ว เมื่อมีการแบ่งขนาดละเอียดขึ้น

การตรวจสอบสมบัติด้านนี้ของขึ้นส่วนเพื่อเป็นการทดสอบว่าเมื่อขึ้นส่วนมีความหน_่เทิ่มากเกินไป หรือ ในกรณีที่ขึ้นส่วนบางเกินไป จะทำให้ความแม่นของการกระจัดเปลี่ยนแปลงไปอย่างไร ซึ่งนับเป็นข้อจำกัดของ ขึ้นส่วนโดยทั่วไป เพราะเมื่อแผ่นพื้นตัวอย่างหนาเกินไป ทฤษฏีของแผ่นพื้นบางก็จะไม่สามารถให้ผลที่ถูกต้อง ได้ หรือแม้แต่ในกรณีที่แผ่นพื้นมีความบางมากเกินไป ก็อาจจะทำให้เกิดการยึดเนื่องจากแรงเจือนได้ (shear locking) การทดสอบด้านนี้จึงมีความจำเป็นอย่างยิ่ง นอกเหนือจากการทดสอบการสู่เข้าสู่คำตอบ

ในการทดสอบเปลี่ยนความหนาของตัวอย่างทดสอบ [ในรูปที่ 4.1.2.1 และ 4.1.2.2]เป็นค่าต่างๆ คือ 0.8 0.4 0.2 0.1 0.08 0.04 นั่นคือสามารถเขียนได้ว่า

Т	= 0.8	\rightarrow	$\frac{L}{T} = 10$
Т	= 0.4	\rightarrow	$\frac{L}{T} = 20$
Т	= 0.2	\rightarrow	$\frac{L}{T} = 40$
Т	= 0.1	\rightarrow	$\frac{L}{T} = 80$
T	= 0.08	\rightarrow	$\frac{L}{T} = 100$
Т	= 0.04	\rightarrow	$\frac{L}{T} = 200$

โดยตัวอย่างที่นำมาทดสอบจะเป็นตัวอย่างเดียวกับที่ใช้ทดสอบการลู่เข้าสู่คำตอบในกรณีการแบ่งออกเป็น 16 ชิ้น จะทำการทดสอบกรณีเงื่อนไขที่ขอบทั้งสามกรณีเช่นเดียวกับการทดสอบการลู่เข้าสู่คำตอบ

จากผลการทดสอบที่แสดงไว้ในรูปที่ 4.1.2.3 และ 4.1.2.4 แสดงให้เห็นว่า โดยส่วนใหญ่แล้ว ซิ้นส่วน จะไม่มีปัญหาในเรื่องความแม่นของการกระจัดถึงแม้ว่าความหนาของแผ่นพื้นจะบางมากก็ตาม จะมีบ้างก็บาง ขึ้นส่วน เช่น LH5 และ LH11 ที่เสนอโดย Spilker เนื่องจากว่าการสมมุติความเค้นสามัญที่มากเกินไปจะทำให้ ขึ้นส่วนแข็งขึ้นเมื่อแผ่นพื้นที่นำมาทดสอบมีความหนาน้อยลง [ในรูปที่ 4.1.2.3] หรือ QH4 [ในรูปที่ 4.1.2.4] ที่ มีการสมมุติจำนวนความเค้นถึง 30 ตัว นอกจากนั้นยังสามารถสรุปได้ว่า ส่วนใหญ่ขึ้นส่วนจะมีความแม่นของ การกระจัดคงที่ไม่เปลี่ยนแปลงตามความหนาของแผ่นพื้น ถึงแม้ว่าแผ่นพื้นที่นำมาทดสอบนั้นมีอัตราส่วนความ ยาวต่อความหนาสูงๆก็ตาม

รูปที่ 4.1.2.1 ตัวอย่างการทดสอบความหนาต่อความยาวกรณีขึ้นส่วน 4 ขั้ว

รูปที่ 4.1.2.2 ตัวอย่างการทดสอบความหนาต่อความยาวกรณีขึ้นส่วน 8 ขั้ว

n) กรณีขอบของแผ่นพื้นถูกรองรับแบบธรรมดาอย่างแข็ง (SS1)

รูปที่ 4.1.2.3 การลู่เข้าของชิ้นส่วน 4 ขั้วเมื่ออัตราส่วนความยาวต่อความหนาเปลี่ยนไป

รูปที่ 4.1.2.3(ต่อ) การลู่เข้าของขึ้นส่วน 4 ขั้วเมื่ออัตราส่วนความยาวต่อความหนาเปลี่ยนไป

n) กรณีขอบของแผ่นพื้นถูกรองรับแบบธรรมดาอย่างแข็ง (SS1) รูปที่ 4.1.2.4 การลู่เข้าของขึ้นส่วน 8 ขั้วเมื่ออัตราส่วนความยาวต่อความหนาเปลี่ยนไป

0.85 0.8

4.1.3 การแปรเปลี่ยนอัตราส่วนความกว้างต่อความยาว

ทำการทดสอบในทำนองเดียวกันกับการทดสอบอัตราส่วนความยาวต่อความหนา แต่ในที่นี้จะทำการ เปลี่ยนความอัตราส่วนความกว้างต่อความยาวดังนี้

$$H = 8 \rightarrow \frac{H}{L} = 1.0$$

$$H = 12 \rightarrow \frac{H}{L} = 1.5$$

$$H = 16 \rightarrow \frac{H}{L} = 2.0$$

$$H = 20 \rightarrow \frac{H}{L} = 2.5$$

$$H = 24 \rightarrow \frac{H}{L} = 3.0$$

โดยจะใช้ตัวอย่างทดสอบในทำนองเดียวกันกับวิธีการทดสอบการลู่เข้าสู่คำตอบในกรณีการแบ่งขึ้นส่วน 16 ขึ้น แต่จะทำการเปลี่ยนความกว้างดังที่กล่าวไว้ ซึ่งตัวอย่างขึ้นทดสอบแสดงดังรูปที่ 4.1.3.1 และ 4.1.3.2

รูปที่ 4.1.3.1 ตัวอย่างการทดสอบความกว้างต่อความยาว กรณีชิ้นส่วน 4 ขั้ว

รูปที่ 4.1.3.2 ตัวอย่างการทดสอบความกว้างต่อความยาว กรณีขึ้นส่วน 8 ขั้ว

การทดสอบความแม่นของการกระจัดเมื่อมีการเปลี่ยนขนาดอัตราส่วนความยาวต่อความกว้างเป็นการ ทดสอบความสมบูรณ์ของการสมมติสนามความเค้นและสนามการกระจัดไปในตัว เนื่องจากว่าหากสนามทั้ง สอง บริบูรณ์ การเปลี่ยนอัตราส่วนความยาวต่อความกว้างจะต้องไม่มีผลต่อความแม่นของการกระจัด

จากผลการทดสอบ [ดังรูปที่ 4.1.3.3 และ 4.1.3.4] แสดงให้เห็นว่าขึ้นส่วนโดยส่วนใหญ่จะให้ค่าการ กระจัดที่มีความแม่นแม้ว่าอัตราส่วนของความยาวต่อความกว้างจะเปลี่ยนไป โดยเฉพาะในกรณีขึ้นส่วน 8 ขั้ว จะมีขึ้นส่วน 4 ขั้วบางขึ้นเช่น QHMID ที่จะให้ค่าการกระจัดที่ผิดพลาดเป็นอย่างมากในกรณีที่อัตราส่วนความ ยาวต่อความกว้างสูงๆ หรือพูดอีกนัยหนึ่งคือ ถ้าเป็นขึ้นส่วนแผ่นพื้นมีความแคบ QHMID จะให้ค่าการกระจัดที่มี ความผิดพลาดสูงมาก แสดงให้เห็นว่าเป็นขึ้นส่วนที่ไม่ดี ถึงแม้ว่าก่อนหน้านี้ที่ทำการทดสอบสมบัติด้านอื่นๆมา แล้วแสดงให้เห็นว่ามีคุณสมบัติดีก็ตามที

n) กรณีขอบของแผ่นพื้นถูกรองรับแบบธรรมดาอย่างแข็ง (SS1)

ข) กรณีขอบของแผ่นพื้นถูกรองรับธรรมดาอย่างอ่อน (SS2)4.1.3.3 การลู่เข้าของขึ้นส่วน 4 ขั้วเมื่อมีการเปลี่ยนอัตราความกว้างต่อความยาว

4.1.3.4 การลู่เข้าของชิ้นส่วน 8 ขั้วเมื่อมีการเปลี่ยนอัตราความกว้างต่อความยาว

4.1.3.4(ต่อ) การลู่เข้าของขึ้นส่วน 8 ขั้วเมื่อมีการเปลี่ยนอัตราความกว้างต่อความยาว

ในการทดสอบความแม่นของความเค้น จะใช้ตัวอย่างของการทดสอบเดียวกันกับการทดสอบการลู่เข้า สู่คำตอบของขึ้นส่วน

จากรูปที่ 4.2.1 แสดงให้เห็นว่าความแม่นของความเค้นที่ได้ของแต่ละขึ้นส่วนมีความสอดคล้องกับการ เลือกสนามความเค้นเป็นอย่างมาก ในกรณีของขึ้นส่วนสีขั้วที่มีการสมมุติการกระจัดภายในนั้น ส่วนมากแล้ว ความแม่นจะอยู่ในขอบเขตร้อยละ 90 จะมีขึ้นส่วนบางขึ้นเท่านั้นที่ให้ค่าความแม่นน้อยกว่านี้ อย่างเช่น ขึ้นส่วน LH5 และ LH11 ที่เสนอโดย Spilker ทั้งนี้จะเห็นได้ว่าขึ้นส่วนแปดขั้วจะลู่เข้าสู่ผลเฉลยแม่นตรงที่เร็วกว่า แต่ก็ไม่ ได้แสดงว่าผลสุดท้ายจะดีกว่าเสมอไป และจากตารางที่ 4.2 แสดงให้เห็นชัดเจนว่า ขึ้นส่วนโดยส่วนใหญ่จะมี ความแม่นยำในแง่ของโมเมนต์มากว่าแรงเจือนตั้งจาก การเลือกใช้จำนวนสนามความเค้นสามัญที่มากเกิน ความจำเป็นก็จะทำให้ขึ้นส่วนแข็งเกินไป สังเกตได้จากกรณีของขึ้นส่วน LH11 หรือ QH1 ที่จะให้ผลของคำตอบ ที่มีความผิดพลาดสูงกว่าในกรณีอื่นๆ แต่ในทางกลับกันการเลือกสนามความเค้นที่มีจำนวนพอเหมาะ อย่างเช่น กรณีของ LH4 หรือ QH2 QH1 ก็จะทำให้ความเค้นที่ได้มีความแม่นยำมาก ส่วนตัวคูณลากรองจ์นั้นจะไม่ทำให้ ค่าความเค้นที่ได้แม่นยำสูงขึ้นเลย สังเกตได้จากก่าวมเค้นของ HSC1 HSC2 จะไม่ต่างกับ LH_OP เลย

Log N

n) กรณีขอบของแผ่นพื้นถูกรองรับแบบธรรมดาอย่างแข็ง (SS1)

รูปที่ 4.2.1 การลู่เข้าของขึ้นส่วน

element	(<i>M</i> ,) _{m a x}	(M ,)	(Q ,) _{m a x}	(Q ,) _{m . x}
EXACT	0.0479 <i>q</i> a ²	$0.0479 q a^{2}$	0.338 <i>q</i> a	0.338 <i>q a</i>
LH3	0.95	0.95	0.68	0.98
LH4	0.99	0.99	0.75	1.14
LH5	0.78	0.74	0.95	1.45
LH11	0.74	0.78	1.03	1.50
LH_OP	1.00	0.98	1.02	1.49
HSC1	1.00	1.00	0.75	1.07
HSC2	0.97	0.99	0.75	1.07
QHMID	0.85	0.85	0.92	1.34
QHMID_OP	0.85	0.85	0.92	1.34
QRDH	0.99	0.99	1.10	1.59
QRHD_OP	0.97	0.99	1.10	1.64
QH4	0.94	0.89	0.99	1.59
QН3	0.96	1.08	1.12	1.64
QH2	1.01	1.00	1.21	1.74
QH1	1.04	1.01	0.88	1.28
QH_OP	1.00	1.00	1.02	1.47

ตารางที่ 4.2.1 ก) เปรียบเทียบความแม่นงด้านความเค้น(stress/stress exact) กรณี SS1

ตารางที่ 4.2.1 ข) เปรียบเทียบความแม่นด้านความเค้น(stress/stress exact) กรณี SS2

element	(M ,) _{m **}	(M .),	(Q ,) _{m + x}	(Q ,) _{m **}
EXACT	0.0479 <i>qa</i> ²	0.0479 <i>q</i> a ²	0.338 <i>q</i> a	0.338 <i>q</i> a
LH3	1.08	1.10	0.89	0.88
LH4	0.99	1.01	0.84	0.76
LH5	0.85	0.79	1.19	1.15
LH11	0.77	0.79	1.08	1.08
LH_OP	1.05	1.00	1.02	0.99
HSC1	1.09	1.08	0.95	1.02
HSC2	0.98	1.00	0.98	0.94
QHMID	0.85	0.85	0.92	0.92
QHMID_OP	0.85	0.85	0.92	0.92
QRDH	1.03	0.99	0.80	1.11
QRHD_OP	1.03	1.01	0.80	1.07
QH4	0.89	0.89	0.99	1.05
QH3	0.96	1.08	1.09	1.11
QH2	1.00	1.07	0.94	1.13
QH1	1.02	0.98	0.99	1.00
QH_OP	1.00	1.00	0.99	0.99

จะสามารถทำการตรวจสอบโดยการเปรียบเทียบจำนวนการดำเนินการ (operation) ในการสร้าง เมตริกซ์สติฟเนส โดยจะทำการนับจำนวนครั้ง การบวก ลบ คุณ และหาร ถ้าหากว่ามี $[A]_{n imes n}$ และ $[B]_{n imes n}$ สามารถนับการดำเนินการได้ดังนี้

A + B	จะมีการดำเนินการ	n^2
$A \times B$	จะมีการดำเนินการ	$2n^3$
A ¹⁰⁰	จะมีการดำเนินการ	$99 \times 2n^3$
LU(A)	จะมีการดำเนินการ	$\frac{2}{3}n^{3}$

จากการทดสอบแสดงขัดเจนมากว่ายิ่งสมมติความเค้นสามัญมากขึ้นเท่าไร หรือกำลังสูงขึ้นเท่าไรก็จะ ยิ่งทำให้จำนวนการปฏิบัติการสูงขึ้นเท่านั้น พิจารณาได้จากจำนวนการดำเนินการของ LH11 มากกว่า LH_OP ถึง ร้อยละ 50 หรือถึงแม้ว่าจะสมมุติจำนวนความเค้นสามัญที่เท่ากันแต่ถ้าหากเลือกโหมดที่กำลังสูงก็จะทำให้ จำนวนการปฏิบัติการเพิ่มขึ้นทั้งสิ้น ซึ่งสามารถดูได้จาก QHMID_OP และ LH_OP และโดยเฉพาะการใช้ตัวคูณ ลากรองจ์นั้นจะทำให้จำนวนปฏิบัติการสูงขึ้นอย่างมากสังเกตได้จากการที่ HSC1 และ HSC2 มีการดำเนินการ มากกว่า LH_OP ถึงประมาณร้อยละ 69 และ ร้อยละ 55 ตามลำดับ ซึ่งจำนวนการดำเนินการจะมีผลโดยตรง ต่อเวลาที่ใช้ในการคำนวณ ยิ่งจำนวนการปฏิบัติการมากเท่าไรก็ยิ่งทำให้ต้องใช้เวลาในการทำงานมากขึ้นเท่านั้น

เมื่อนำจำนวนการดำเนินการของการสร้างเมตริกซ์สติฟเนส มาเทียบกับการดำเนินการทั้งหมดในการ แก้ปัญหานั้น [ดังแสดงในรูปที่ 4.3.1] จะเห็นได้ว่า ในกรณีที่ปัญหามีขนาดใหญ่ขึ้นเรื่อยๆ จำนวนการดำเนิน การของการสร้างเมตริกซ์สติฟเนส จะมีความสำคัญน้อยลง หรือจำนวนร้อยละเทียบกับจำนวนการดำเนินการทั้ง หมดจะมีค่าน้อยลง แต่อย่างไรก็ตามในปัญหาที่มีขนาดเล็ก เวลาที่ใช้ในการสร้างเมตริกซ์สติฟเนสจะเป็นส่วน ที่สำคัญที่สุด

รูปที่ 4.3.1 อัตราส่วนของจำนวนการดำเนินการในการสร้างเมตริกซ์สติฟเนสต่อจำนวนการดำเนินการทั้งหมด

สามารถทดสอบได้โดยการสลับค่าของพิกัดของขึ้นส่วนที่ใส่เข้าไป [ดังแสดงในรูปที่ 4.4.1] แล้วทำ การตรวจสอบว่าสติฟเนสของขึ้นส่วนที่ได้จากทั้งสองแบบที่สอดคล้องกับระดับขั้นความอิสระเดียวกันมีค่าเท่า กันหรือไม่ ถ้าหากว่าสติฟเนสที่ได้มีค่าเท่ากันแสดงว่าขึ้นส่วนที่ทำการทดสอบมีความยืนยง รวมทั้งสามารถ ตรวจสอบได้จากค่าเจาะจง โดยค่าเจาะจงของทั้งสองกรณีจะต้องเท่ากัน

รูปที่ 4.4.1 ตัวอย่างทดสอบความยืนยง

จากผลการทดสอบ [แสดงในตารางที่ 4.5.1 และตารางที่ 4.5.2] แสดงให้เห็นว่าในกรณีของขึ้นส่วนแปดขั้วนั้น ทุกขึ้นส่วนมีความยืนยง แต่ในกรณีของขึ้นส่วนสี่ขั้วที่สมมุติการกระจัดภายใน จะมีขึ้นส่วน LH3 LH4 LH5 LH11 LH-OP QHMID QHMID-OP และ QRDH-OP เท่านั้นที่มีความยืนยง

4.5 การทดสอบแบบหย่อม

การทดสอบแบบหย่อมเป็นการยืนยันการลู่เข้าของชิ้นส่วน เพราะการลู่เข้าของผลเฉลยอย่างแน่นอนนั้นจะ ต้องมีทั้งเงื่อนไข ความเข้ากันได้ (Consistency) และความเสถียร (Stability) โดยความเข้ากันได้ คือการที่ชิ้น ส่วนมีขนาดเล็ก (*h* → 0) สมการจะสอดคล้องกับสมการอนุพันธ์ และเป็นไปตามเงื่อนไขที่ขอบ ซึ่งการ ทดสอบชิ้นปะ จะทำให้เราตรวจสอบสมบัติข้อนี้นั่นเอง [ผลการทดสอบแสดงในตารางที่ 4.5.1 และ 4.5.2]

ส่วน ความเสถียร นั้นคือการที่มีคำตอบเฉพาะ(Unique) และปราศจากกระกระจัดที่ไร้พลังงาน ซึ่งตรวจ สอบจากการที่ เมตริกซ์สามารถหา เมตริกซ์ผกผันได้

ขึ้นส่วน	จำนว	นปฏิบัติการ	ความยื่นยง		ทดสอบแบบหย่อม	
	ครั้ง	เทียบเทำ	1	การดัด	แรงเฉือน	การบิด
LH3	30762	1.06	ยืนยง	ไม่ผ่าน	ผ่าน	ผ่าน
LH4	38824	1.34	ยืนยง	ไม่ผ่าน	ไม่ผ่าน	ไม่ผ่าน
LH4_B	82776	2.85	ไม่ยืนยง	ไม่ผ่าน	ไม่ผ่าน	ไม่ผ่าน
LH5	38932	1.34	ยืนยง	ไม่ผ่าน	ไม่ผ่าน	ไม่ผ่าน
LH11	43617	1.50	ยืนยง	ไม่ผ่าน	ไม่ผ่าน	ไม่ผ่าน
LH_OP	31162	1.07	ยืนยง	ไม่ผ่าน	ไม่ผ่าน	ไม่ผ่าน
HSC1	49121	1.69	ไม่ยื่นยง	ไม่ผ่าน	ไม่ผ่าน	ไม่ผ่าน
HSC2	44892	1.55	ไม่ยืนยง	ไม่ผ่าน	ไม่ผ่าน	ไม่ผ่าน
QHMID	63184	2.18	ยื่นยง	ไม่ผ่าน	ไม่ผ่าน	ไม่ผ่าน
QHMID_OP	29037	1.00	ยืนยง	ผ่าน	ผ่าน ไม่ผ่าน	
QRDH	38902	1.34	ไม่ยืนยง	ไม่ผ่าน	ไม่ผ่าน	ไม่ผ่าน
QRHD_OP	31065	1.07	ยืนยง	ไม่ผ่าน	ไม่ผ่าน	ไม่ผ่าน

ตารางที่ 4.5.1 ผลการทดสอบขึ้นส่วน 4 ขั้วและ 8 ขั้ว

ตารางที่ 4.5.2 ผลการทดสอบขึ้นส่วน 8 ขั้ว

ชิ้นส่วน จำนวนปฏิ		ปฏิบัติกา ร	ความยืนยง	ทดสอบแบบหย่อม		
	ครั้ง	เทียบเท่า	1	การดัด	แรงเฉือน	การบิด
QH4	623856	1.49	ยืนยง	ไม่ผ่าน	ไม่ผ่าน	ไม่ผ่าน
QH3	562571	1.35	ยืนยง	ไม่ผ่าน	ไม่ผ่าน	ไม่ผ่าน
QH2	529605	1.27	ยืนยง	ไม่ผ่าน	ไม่ผ่าน	ไม่ผ่าน
QH1	442614	1.06	ยืนยง	ไม่ผ่าน	ไม่ผ่าน	ไม่ผ่าน
QH_OP	417977	1.00	ยื่นยง	ไม่ผ่าน	ไม่ผ่าน	ไม่ผ่าน

จากผลการทดสอบจะเห็นได้ว่าส่วนใหญ่ชิ้นส่วนจะไม่ผ่านการทดสอบแบบหย่อม แต่อย่างไรก็ตามชิ้น ส่วนก็ยังมีการลู่เข้าสู่คำตอบอยู่ดี ดังนั้น เราจึงสรุปได้ว่าการทดสอบชิ้นปะไม่มีผลต่อการลู่เข้าสู่คำตอบในกรณี ของระเบียบวิธีพันธุ์ทาง เพราะการลู่เข้าสู่คำตอบของชิ้นส่วนพันธ์ทางจะเป็นการลู่แบบไม่ใช่ทางเดียว

รูปที่ 4.5.1 ชิ้นส่วนที่ใช้ในการทดสอบแบบหย่อม

4.6 หลักการเลือกสนามความเค้นที่มีประสิทธิภาพ

ประสิทธิภาพของขึ้นส่วนพันธุ์ทางตามที่ได้ทำการทดสอบมาทั้งหมดนั้นจะเห็นได้ว่ามีความแตกต่าง กันขึ้นอยู่กับการสมมติสนามการกระจัด และสนามความเค้นเป็นสำคัญ

ในส่วนของการสมมติสนามความเค้นนั้น เงื่อนไขเบื้องต้นในการสมมุติจำนวนความเค้นสามัญคือ

$$m \ge n-l \qquad \dots .4.6.1$$

เมื่อ

- m แทนจำนวนของความเค้นสามัญ (generalized stresses : β) ที่ทำการสมมุติ
- n แทนจำนวนของระดับขั้นความอิสระ (degree of freedom : dof) ของขึ้นส่วน
- *เ* แทนระดับขั้นของความอิสระที่มีการเคลื่อนที่แบบไรพลังงาน (rigid body degree of freedom)

การเลือก *m* ที่มากเกินไป จะทำให้ขึ้นส่วนที่ได้แข็งเกินไป แต่การใช้ฟังก์ชันพหุนามที่มีกำลังสูงจะทำให้คำตอบ ที่ได้ดีขึ้น [ดังแสดงในรูปที่ 4.6.1]

รูปที่ 4.6.1 การเลือกสนามตัวแปร

ปกติการเลือกสนามความเค้นไม่จำเป็นที่จะต้องสอดคล้องกับเงื่อนไขที่ขอบ แต่ในปัญหาขนาดใหญ่ การสมมติสนามความเค้นให้สอดคล้องกับเงื่อนไขที่ชอบจะได้คำตอบที่ดีขึ้น การสมมติสนามความเค้นให้เกิด การกระจัดครบทุกโหมด จะทำให้ขึ้นส่วนเกิดความยืนยงขึ้นในตัวโดยอัตโนมัติ และการสมมุติสนามความเค้นที่ มีความสมมาตรจะใช้ได้ดีกับโครงสร้างที่มีสมมาตร

4.6.1 การพิจารณาจากพลังงานการเปลี่ยนรูป (Deformation Energy)

พิจารณาจากสมการ

$$U_{d} = \int_{\mathcal{V}} \{\sigma\}^{T} [\varepsilon] dV = \int_{\mathcal{V}} \{\sigma\}^{T} ([\partial] \{u\}) dV = \{\beta\}^{T} [H] \{r\} \qquad \dots 4.6.1.1$$

เมื่อ

$$\{u\} = \left[\overline{L}\right] \begin{cases} \alpha \\ R \end{cases} \qquad \dots \dots 4.6.1.2$$

R คือ โหมดการกระจัดแบบไร้พลังงาน l โหมด

lpha คือ โหมดการกระจัดปกติ

และ

$$\{r\} = [T] \begin{cases} \alpha \\ R \end{cases} \qquad \dots 4.6.1.3$$

$$U_{d} = \{\beta\}^{T} [H][T] \begin{cases} \alpha \\ R \end{cases} = \{\beta\}^{T} [G_{\alpha} \quad G_{R}] \begin{cases} \alpha \\ R \end{cases} = \{\beta\}^{T} [G_{\alpha}] \{\alpha\} \qquad \dots 4.6.1.4$$

เพราะไม่มีพลังงานการกระจัดในการเคลื่อนที่แบบไร้พลังงาน หาก U_d เป็นศูนย์ในแต่ละหมู่ของ lpha แสดงให้ เห็นว่าเป็นโหมดจลนะ (kinematic mode)

หรือพิจารณาพลังงานในแต่ละโหมดจากสมการ

$$I_{i} = \int_{V} [P]_{i} ([\partial] \{N_{i}\}) dV \neq 0 \qquad \dots 4.6.1.5$$

4.6.2 หลักการพิจารณาโหมดการเปลี่ยนรูปธรรมชาติ (Natural Deformation Mode)

พิจารณาจากสมการสมดุลของการกระจัดในแต่ละชิ้นส่วน

 $[K]{q} = {F}$ 4.6.2.1

ถ้าหากว่าเวกเตอร์ของแรงที่ขั้วเป็นสัดส่วนกับเวกเตอร์การกระจัดที่ขั้ว สมการสมดุลจะเปลี่ยนไปเป็น

 $\left(\begin{bmatrix} K \end{bmatrix} - \lambda \begin{bmatrix} I \end{bmatrix} \right) \{q\} = 0 \qquad \dots 4.6.2.2$

ซึ่งรูปแบบดังกล่าวจะเรียกว่าสมการค่าเจาะจง (eigenvalue equation) โดยสมการดังกล่าวจะให้ค่าเจาะจงที่ไม่ เป็นศูนย์เท่ากับ *n* – *l* ค่า ซึ่งสอดคล้องกับโหมดการเปลี่ยนธรรมชาติ (natural deformation mode) *n* – *l* โหมดและจะให้ค่าเจาะจงที่เป็นศูนย์ *l* ค่าที่สอดคล้องกับการกระจัดแบบไร้พลังงาน *l* โหมด ในขึ้นส่วนพันธุ์ทาง ค่าเจาะจงและเวคเตอร์เจาะจง (eigenvectors) จะมีความเปลี่ยนแปลงขึ้นอยู่กับ การสมมุติสนามความเค้น ถ้าหากว่าการสมมุติสนามความเค้นที่บริบูรณ์จะได้ค่าเจาะจงที่ไม่เป็นศูนย์ *n* – *l* ค่า และค่าเจาะจงที่เป็นศูนย์ *l* ค่า ตามรูปแบบการกระจัดตามธรรมชาติ

หลักการ: ในขึ้นส่วนพันธุ์ทางจะมีโหมดการกระจัดธรรมชาติเพียง m = n - l โหมดเท่านั้น การ สมมุติการกระจัดทั้งหมดจะสามารถแยกออกเป็นโหมดของความเค้นได้ทั้งหมด *m* โหมดที่สอดคล้องกับการ กระจัดธรรมชาติ *m* โหมด และกลุ่มการกระจัดไร้พลังงานที่สอดคล้องกับโหมดการกระจัดแบบไร้พลังงาน *l* โหมด ดังนั้นในขึ้นส่วนพันธุ์ทางจะสามารถแยกความเค้นที่สมมุติออกได้ทั้งหมด n - l + 1 กลุ่ม

จากหลักการดังกล่าวเราสามารถที่จะแยกการสมมุติความเค้นออกเป็นกลุ่มความเค้นได้ทั้งหมด m กลุ่มดังนี้

(0)

$$\{\sigma\} = [P]\{\beta\} = \left[\sum_{l_1=1}^{n_1} \{\sigma_{l_1}\} \sum_{l_2=2}^{n_2} \{\sigma_{l_2}\} \dots \sum_{l_m=1}^{n_m} \{\sigma_{l_m}\}\right] \left[\beta_2 \\ \vdots \\ \beta_m\right] = \sum_{i=1}^{m} [P_i]\{\beta_i\} \dots 4.6.2.3$$

นั่นคือความเค้นในแต่ละโหมดที่ไม่ได้เป็นความเค้นในโหมดไร้พลังงาน จะสามารถที่แยกให้อยู่ในโหมดธรรมชาติ ได้ โดยการเลือกสนามความเค้นจะต้องเลือกให้มีโหมดของการกระจัดครบทุกโหมดยกเว้นโหมดการกระจัดไร้ พลังงาน ทำให้จำเป็นที่จะต้องเลือกความเค้นให้ครบ *m* โหมด โดยการเลือกความเค้นในโหมดเดียวกันมา หลายตัวก็ไม่ได้ทำให้ได้คำตอบที่ดีขึ้น ยังส่งผลให้ขึ้นส่วนแข็งเกินไป

4.6.3 ขั้นตอนในการแยกโหมดความเค้น

จากวิธีการที่กล่าวใน 4.6.2 เราสามารถแยกรายละเอียดขั้นตอนได้ดังนี้

- 1. หา $[P]_{iso}$ ด้วยวิธีพังก์ขันเหมือน (iso function) หรือการสมมติขึ้นมาโดยวิธีการใดก็ได้
- เลือกรูปแบบความเค้นใน [P]_{iso} เพื่อสร้าง [P₁]แล้วทำการหาค่า สติฟเนส ตรวจสอบค่าเจาะจงว่า เป็นศูนย์หรือไม่ ในการเลือกรูปแบบความเค้นให้เลือกจากกำลังต่ำไปหากำลังสูง
- 3. เลือกรูปแบบความเค้นที่ให้ค่าเจาะจงเป็นศูนย์ออกจาก $[P]_{iso}$ ให้เลือก $\{\sigma_1\}$ เป็น $[P_1]$
- 4. สร้าง $\left[P_2
 ight]$ โดยการเพิ่มรูปแบบของความเค้นจาก $\left[P
 ight]_{
 m iso}$

$$[P_2] = [\{\sigma_1\} \ \{\sigma_2\}]$$

- หาค่าสติฟเนสรวมทั้งหาค่าเจาะจง ถ้าค่าเจาะจงไม่เป็นศูนย์ทั้งสองตัวให้ข้ามไปขั้นที่ 7 แต่ถ้าไม่เป็น ศูนย์ค่าเดียวก็ทำในขั้นที่ 6 ต่อไป
- รูปแบบความเค้นที่เลือกมาอยู่ในหมวดที่ 1 แล้วทำการเลือกรูปแบบต่อไปมาเพิ่มแล้วกลับไปทำขึ้นที่ 4
- ทั้งสองรูปแบบความเค้นแสดงหมวดของความเค้นที่ต่างกัน
- 8. เพิ่มรูปแบบความเค้นใน $\left[P_2
 ight]$ เป็น $\left[P_3
 ight]$

 $[P_3] = [\{\sigma_1\} \quad \{\sigma_2\} \quad \{\sigma_3\}]$

 ถ้าหาค่าเจาะจงที่ไม่เป็นศูนย์ได้สองค่าให้ทำขั้นตอนที่ 10 ต่อ หากได้ค่าที่ไม่เป็นศูนย์สามค่าให้ข้ามไป ทำขั้นตอนที่ 11 ขั้นตอนนี้จะต้องแยกให้ได้ว่ารูปแบบความเค้นที่เลือกมาอยู่ในหมวดไหนของความเค้น

$$\begin{bmatrix} P_2' \end{bmatrix} = \begin{bmatrix} \{\sigma_1\} & \{\sigma_3\} \end{bmatrix} \text{ use} \begin{bmatrix} P_2'' \end{bmatrix} = \begin{bmatrix} \{\sigma_2\} & \{\sigma_3\} \end{bmatrix}$$

ทำการทดสอบแบบเดิม

- 11. แสดงว่ารูปแบบที่เลือกมาเป็นหมวดความเค้นอีกหมวดหนึ่ง
- 12. ทำการเพิ่มรูปแบบความเค้นเข้าไปแล้วทำแบบเดิม
- ในที่สุดเราก็จะสามารถแบ่งหมวดของความเค้นได้ทั้งหมด m + l แบบ

4.6.4 การพัฒนาชิ้นส่วน

จากการพิจารณาการเปลี่ยนรูปธรรมชาติ นั้น ทำให้เราสามารถนำมาใช้ในพัฒนาสนามความเค้นได้ ดังเช่นตัวอย่างการพัฒนาชิ้นส่วน LH-OP

นำสนามความเค้นที่ Spilker ได้เสนอและใช้กับขึ้นส่วน LH3 LH4 LH4_B LH5 LH11 พิจารณาแต่ ละโหมดเพื่อต้องการที่ทราบว่ามีโหมดการกระจัดไร้พลังงานเป็นโหมดไดบ้างตามขั้นตอนดังกล่าวข้างต้น ทำให้ สามารถที่จะแสดงค่าเจาะจงของแต่ละโหมดได้

$$\begin{split} [P]_{I} = & [\{\sigma_1\} \ \{\sigma_2\} \ \{\sigma_3\} \ \{\sigma_4\} \ \{\sigma_5\} \ \{\sigma_6\} \ \{\sigma_7\} \ \{\sigma_8\} \ \{\sigma_9\} \ \{\sigma_{10}\} \ \{\sigma_{11}\} \ \{\sigma_{12}\}] \\ & \dots \dots 4.6.4.3 \\ [P]_{II} = & [\{\sigma_{13}\} \ \{\sigma_{14}\} \ \{\sigma_{15}\} \ \{\sigma_{16}\} \ \{\sigma_{17}\} \ \{\sigma_{18}\} \ \{\sigma_{19}\}] \end{split}$$

.....4.6.4.4

โหมดของความเค้น	ค่าเจาะจง
$\{\sigma_1\}$	83.3333
$\{\sigma_2\}$	187.1267
$\{\sigma_3\}$	69.4444
$\{\sigma_{4}\}$	83.3333
$\{\sigma_s\}$	69.4444
$\{\sigma_{6}\}$	187.1267
$\{\sigma_{7}\}$	62.6566
$\{\sigma_{s}\}$	96.5233
$\{\sigma_9\}$	96.5233
$\{\sigma_{_{10}}\}$	150.7409
$\{\sigma_{11}\}$	150.7409
$\{\sigma_{12}\}$	144.6761
$\{\sigma_{13}\}$	229.4881
$\{\sigma_{14}\}$	284.2561
$\{\sigma_{15}\}$	59.5238
$\{\sigma_{16}\}$	59.5238
$\{\sigma_{17}\}$	47.6190
$\{\sigma_{18}\}$	125.0988
$\{\sigma_{19}\}$	125.0988

ตารางที่ 4.6.4.1 ค่าเจา**ะจงของแ**ต่ละโหมดของความเค้น(ตามตัวอย่างN16 ในรูปที่ 4.1.1.1)

จากตารางจะเห็นได้ว่าทุกโหมดไม่เป็นกลุ่มโหมดของการกระจัดแบบไร้พลังงาน นำความเค้นในแต่ละโหมดไป แยกเป็นกลุ่มความเค้นต่อไปตามขั้นตอนที่กล่าวไว้แล้ว

ความเค้น	ความสามารถในการทดแทนโหมด								
	$\{\sigma_1\}$	$\{\sigma_2\}$	$\{\sigma_3\}$	$\{\sigma_4\}$	$\{\sigma_5\}$	$\{\sigma_{6}\}$	$\{\sigma_{\gamma}\}$	$\{\sigma_{12}\}$	$\{\sigma_{_{13}}\}$
$\{\sigma_{s}\}$	ได้		ได้	ได้		ได้	ได้		
$\{\sigma_9\}$	ได้	ได้		ได้	ได้		ได้		
$\{\sigma_{10}\}$	ได้	ได้	ได้	ได้					
$\{\sigma_{11}\}$	ได้			ได้	ได้	ได้			
$\{\sigma_{14}\}$	ได้		ได้	ได้	ได้		ได้	ได้	ได้
$\{\sigma_{15}\}$	ได้		ได้						
$\{\sigma_{16}\}$				ได้	ได้				
$\{\sigma_{17}\}$				ได้					
$\{\sigma_{18}\}$	ได้		ได้	ได้		ได้	ได้		
$\{\sigma_{19}\}$	ได้	ได้		ได้	ได้		ได้		

ตารางที่ 4.6.4.2 การจัดกลุ่มความเค้น

หากทำการเลือกสนามความเค้นในชิ้นส่วนดังที่เสนอข้างด้นก็จะทำให้เมตริกซ์สติฟเนสที่ได้มีโหมดการ กระจัดธรรมชาติที่ครบตามที่ต้องการ ส่งผลให้ไม่เกิดการกระจัดแบบไร้พลังงานที่จะทำให้ประสิทธิภาพของชิ้น ส่วนลดลง

และด้วยวิธีการดังกล่าวข้างต้นเราก็จะสามารถ ปรับปรุงสนามความเค้นของซิ้นสวนต่างๆให้มีประสิทธิ ภาพขึ้นได้ตามที่ต้องการ ดังนั้นขิ้นส่วน LH-OP จึงใช้สนามความเค้น

$$[P]_{6\times9} = \begin{bmatrix} 1 & x & y & 0 & 0 & 0 & 0 & 0 & \frac{1}{2}x^2 \\ 0 & 0 & 0 & 1 & x & y & 0 & 0 & -\frac{1}{2}y^2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & xy & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & y & -y \end{bmatrix}$$

4.7 การนำชิ้นส่วนไปประยุกต์

ในปัจจุบันมีการนำชิ้นส่วนพันธุ์ทางไปประยุกต์กับโปรแกรมสำเร็จรูป โดยโปรแกรมสำเร็จรูปส่วน ใหญ่จะมีการใช้ชิ้นส่วนแผ่นพื้นพันธุ์ทาง ดังที่ได้แสดงไว้ในตารางที่ 4.7.1 จะเห็นได้ว่า ในกรณีของโปรแกรม GT-STRUDL มีชิ้นส่วนพันธุ์ทางถึง 4 แบบ ในขณะที่โปรแกรม STAAD III ใช้เพียงแค่แบบเดียว ซึ่งรายละเอียด ของชิ้นส่วนที่ STAAD III ใช้แสดงไว้ในภาคผนวก ก

Program	ELEMENT	DOF per NODE
STAAD	PLATE (USE HYBRID)	6
GT-STRUDL	ST-STRUDL BPHQ (bending plate Hybrid Quadrilateral) SBHQ (Strecthing and bending hybrid quadrilateral)	6
	SBHQ (Strecthing and bending hybrid quadrilateral)	6
	SBHQ6(Strecthing and bending hybrid quadrilateral with 6 DOF)	6
	SBHQCSH(Strecthing and bending hybrid quadrilateral with Constant shear strain)	6
SAP 2000	Use shell element fot model plate	6

ตารางที่ 4.7.1 การใช้ชิ้นส่วนพันธุ์ทางในโปรแกรมสำเร็จรูป